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Abstract 
A sufficient condition for the asymptotic stability of the equilibrium point of 
a system, which appears as a model for couple of the love affair with time de-
lay, is obtained by applying the technique of linearized method and Hopf- 
bifurcation. 
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1. Introduction 

In a pioneering paper [1] and a famous book [2], Strogatz considered a simple 
pedagogical model describing a love affair. He treated harmonic oscillation 
phenomena using a topic that is already on the minds of many college students, 
which is the time evolution of a love affair between a couple. Later, Sprott [3] 
proposed more realistic nonlinear triangle models for love dynamics (cf. [4] [5]). 
Moreover, Rinaldi who is an authority in this area, has studied several types of 
models describing love affairs and published many papers (cf. [6] [7] [8] [9] 
[10]). They treated the technique of standard linearized method. On the other 
hand, we study the effect of time delay on the nonlinear dynamical model de-
scribing a love affair with feedback between two individuals.  

In this paper, we consider the following delay differential equation with feed-
back of  
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where we denote measures of the love of individuals ( )R t  and ( )J t  for the 
partner by ( )J t  and ( )R t  at time t (like a Romeo’s love or hate if negative for 
Juliet at time t and like Juliet’s love for Romeo). The parameter Rd  and Jd  
are the respective decay rates in the forgetting coefficient. The Jr  is the return 
rates for ( )R t  and it describes the direct effect of his love on the partner ( )J t . 

1 2,A A  are constant coefficients reflecting the appeal of Romeo and Juliet, re-
spectively and 1γ  is Romeo’s reaction rate to Juliet’s appeal and 2γ  is reaction 
of Juliet to Romeo’s appeal. 1 0τ ≥  and 2 0τ ≥  are nonnegative delay terms. 
Since ( )R t  and ( )J t  are each emotions at time t, naturally, it later seeks for 
the conditions that the solution ( ) ( )( ),R t J t  of Equation (1) exists, whenever 
the initial date is given and all coefficients are positive numbers. To do this, we 
assume the monotone bounded and continuously differentiable function ( )f J .  

Equation (1) is an extending model of the without delay differential equation  
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which has been proposed by Rinaldi [7] and Rinaldi et al. [11] as a model for the 
linear system of love dynamics, where Rr  describes the direct effect to her love 
on the partner ( )R t . Next, we introduce another differential model of love with 
delay  
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proposed by Liao and Ran [12] and Son and Park [13], where ( ) ( ), 1, 2iH x i =  
are the little bit strong restricted functions with same delay τ . To consider 
more reality love regime than ordinary differential system (2), they investigate 
that the stable equilibrium point is destabilized for a delay larger than a thre-
shold value and then bifurcates to a limit cycle via a Hopf bifurcation when Ro-
meo is secure and Juliet is non-secure.  

We investigate the first problem how is the condition of the asymptotically 
stable of the equilibrium point of Equation (1). Moreover, we have second one 
what is the oscillatory criteria of Equation (1) and, we should consider a simple 
example for our Equation (1).  

Our first goal is to give the asymptotic stability of equilibrium points of 
2-dimensional dynamics of Romeo and Juliet in the multiple equilibrium case, 
using linearized method. The second case we take up concerns the romantic real 
style of Romeo and Juliet with 2-difference time delays, using a technique of 
Hopf bifurcation. Moreover, we consider the oscillation criteria of (1) without 
constant terms and simple examples of the linearized equation of (1). 

We can show that the existence of solution ( ) ( )( ),R t J t  is guaranteed for 
Equation (1) whenever the initial conditions are bounded continuous functions;  
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where ( ) [ ]( ),0 ,i is C Rφ τ∈ −  (in short, C) and ( )0 0iφ ≥  for 1,2i = . Here, 
Banach space ( ),C I R  is the set of all continuous functions mapping I into R 
with supremum norm defined by 

C⋅  (in short, ⋅ ), where  

[ ] ( ),0sup ,s r s Cφ φ φ∈ −= ∈ . 

2. Stability Criteria of Equilibrium Points 

In this section we study the stability of equilibrium points of Equation (1). We 
have the equilibrium point ( )* * * *,E E R J=  of Equation (1), where  
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We investigate the stability of the equilibrium point ( )* * * *,E E R J=  by linea-
rization. Let  

( ) ( )* ,R t R x t= +  

( ) ( )* ,J t J y t= +  

where ( )x t  and ( )y t  are small perturbations. Then, the linearized form of 
the Equation (1) about the equilibrium point *E  is writing ( ) ( ),x t y t  for ( )x t  
and ( )y t .  

 
( ) ( ) ( ) ( )
( ) ( ) ( )

*
2

1

,

.
R

J J

x t d x t f J y t

y t d y t r x t

τ

τ

′= − + −

= − + −





                (5) 

Remark 1. We consider ( )f J  are particular forms by taken as two cases: for 
some odd integer 1l ≥ ,  
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where 0K >  is a real number and 0J  is the concentration parameters related 
to the switching of the love individual by a Juliet’s love function ( )J t . For 

1l = , the function f in (H1) is considered by [6] and the function f of (H2) is 
treated in [14]. It seems that (H2) is a more adjust condition than (H1) as situa-
tion of love affairs. So, in this paper, we mainly employ the condition (H2).  

In the case where (H1) and (H2), respectively, *J  is given by the solution of 
the equation  

( ) ( )1* * * 0
l lR J

R J R J

r r A KAJ J KJ
d d d d

+ +
− + − =  
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where 2 1 1 2R JA d A r Aγ γ= + . In Equation (5), the case where each assumption 
(H1) and (H2), we have  
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respectively.  
We can show the next theorem by using Routh-Hurwitz theorem (cf. [2] [11] 

and [15]) for the second-order differential equation.  
The stability results in this article are the following. 
Theorem 1 (without delay case). (cf. [11]). Suppose that  

 ( )*0 and .R J R J Jd d d d r f J′+ > >                   (6) 

Then, the equilibrium point *E  of Equation (1) with 1 2 0τ τ= =  is asymp-
totically stable. 

Theorem 2 (with delay case). The necessary and sufficient condition for the 
asymptotic stability of the equilibrium point *E  of Equation (1) with all delay 

0τ >  is the condition (6). 
Proof. To prove this theorem, we apply the approach of (Theorem 3.7.3 in 

[16]). When delays 1 2, 0τ τ ≠ , the characteristic equation associated with (5) can 
be written as  

 ( ) 2, e 0,D a b c τλλ τ λ λ −= + + + =                  (7) 

where  
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and 1 2τ τ τ= + . It is easy to verify the necessity of the condition (6). For in-
stance, if (6) does not hold then the trivial solution of (5) is not asymptotically 
stable for 0τ = , from the proof of Theorem 1. If a real number z and a 0τ ≥  
exist such that ( ), 0D iz τ =  then for such τ , the characteristic Equation (7) 
has a pair of pure imaginary roots and hence the trivial solution of (5) is not 
asymptotically stable.  

Setting iλ µ ν= +  in (7) and separating the real and imaginary parts, we get 
a system of transcendental equations:  

 2 2 e cos 0,a b c µτµ ν µ ντ−− + + + =                   (9) 
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 2 e sin 0.a c µτµν ν ντ−+ − =                     (10) 

Here, in formula (9), the variables of the trigonometric functions are covered 
with (7) and (8). One can write (7) in the form  

2 0,a wλ λ+ + =  

where ew b c λτ−= + . For any real z, and 0τ ≥ , we have  

( ) 2, e .izD iz z aiz b c ττ −= − + + +  

Then, for 0z = , ( ), 0D iz b cτ = + ≠  by (6) and (8). For 0z ≠ , let us suppose  

τ  varies on the interval 
20,
z

 π
 
  

 implying that zτ  will vary in [ ]0,2π . This  

means that eizτ  will vary over unit circle. Thus we can let for 0z ≠ , zτ  to be 
another independent variable σ  (where zσ τ= − ). We can write  

( ) ( ) ( ) ( ) ( )2, , , cos sin .H z G z iK z z b c i az cσ σ σ σ σ= + = − + + + +  

Thus,  

 ( ) 2, cos 0,G z z b cσ σ= − + + =                   (11) 

 ( ), sin 0.K z az cσ σ= + =                     (12) 

Here, eliminating σ  from (11) and (12), we get  

( ) ( ) ( )4 2 2 2 22 0.U z z a b z b c= + − + − =  

A necessary and sufficient condition for ( ) 0U z =  not to have non-zero real 
root is 2 2 0b c− ≥ , that is, b c≥  from (6). If ( ) 0U z =  has non-zero real root, 
then 2 2 0b c− < . From (11) and (12), we have  

2tan .az
z b

σ −
=

−
 

Then, we obtain the real values of σ  which satisfy (11) and (12). Thus, a set of 
necessary and sufficient condition for the asymptotic stability of the interior 
equilibrium is c b< . This completes the proof of Theorem 2. 

Remark 2. The above Theorem 1 and 2 hold for the both functions (H1) and 
(H2). This talk is motivated by Das et al. [17] [18] and Hamaya et al. [19], that is 
“Study the stability and the existence of almost periodic solutions of the Equa-
tion (5)”, and we also regard Theorem 1, 2 and next Theorem 3, 4 as a partial 
answer in the affirmative for their research.  

For the more complicated equation of (3), [4] [10] [11] and [20] have shown 
the asymptotic stability of the equilibrium point *E  under the more compli-
cated conditions using a bifurcation technique and others. 

3. Estimation for the Length of Delay to Preserve Stability  
and Bifurcation Results 

In this section, we suppose that in the absence of delay ( )* * *,E R J  is asymp-
totically stable. This is guaranteed if (6) holds. By continuity of solutions and for 
sufficiently small 1 2 0τ τ τ= + > , all eigenvalues of (7) have negative real parts 
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provided that no eigenvalue bifurcates from +∞ , which could happen since this 
is a retarded delay system. It is then possible to use a criterion of Nyquist which 
we describe below to estimate the range of τ  for which *E  remains asymp-
totically stable. Here we follow the approach by [16] [17] [18] for such estima-
tion of τ . We consider the system (5) and the space of real valued continuous 
functions defined on [ ),C τ− ∞  satisfying the initial conditions (4). 

Theorem 3. If  

 ( )* 0,R J R J Jd d d d r f J′+ > − ≥                    (13) 

then there exists a τ+  given by  
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2

2
, where 0,

c c c a b c
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c
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τ
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+
+

+

− + + − −
= − − >  

such that for all τ τ+< , the equilibrium point *E  of (5) is asymptotically sta-
ble. 

Proof. Let ( ) ( ),x W y W  be the Laplace transform of ( )x t  and ( )y t , re-
spectively. Taking the Laplace transform of (5), we have  
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The inverse Laplace transform of ( )x W  will have terms which exponentially 
increase with time, if ( )x W  has poles with positive real parts. For *E  to be 
locally asymptotically stable, it is necessary and sufficient that all poles of ( )x W  
have negative real parts. We shall employ the Nyquist criterion which states that 
if W is arc length of a curve encircling the right half plane, the curve ( )x W  will 
encircle the origin a number of times equal to the difference between the num-
ber of poles and the number of zeros of ( )x W  in the right half plane. We see 
that the conditions for the local asymptotically stability of *E  is given by  

 
( ){ }
( ){ }

0

0

0,

0,

Im S i

Re S i

ν

ν

>

=
                        (14) 

where ( ) 2 eS W W aW b c λτ−= + + +  and 0ν  is the smallest positive root of the 
Equation (14), where , ,a b c  are numbers in (7). 
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In our case, these conditions become  

0 0sin ,a cν ν τ>  
2
0 0cos .b cν ν τ− + = −  

To get our estimate on the length of delay, we recall conditions  

 sin ,a cν ντ>                         (15) 

 2 cos ,b cν ντ− + = −                      (16) 

and *E  is stable if the inequality (15) holds at 0ν ν= , when 0ν  is the first 
positive root of Equation (16). Our technique will be to find an upper bound ν+  
on 0ν  independent of τ  and then to estimate τ  so that (15) holds for all 
values of ν , 0 ν ν+≤ ≤ , hence in particular at 0ν ν= .  

The unique positive solution of 2 0b cν − − = , denoted by ν+  is always 
greater than or equal to 0ν . Then, we have  

.b cν+ = +  

From (15),  

 0 sin .ca ντ
ν

< −                        (17) 

At 1 0τ =  and 2 0τ = , 0a >  and ( )0 1,2i iτ = =  in Equation (16) gives  
2 .b c aν = + <  

Hence, (17) is valid when 0τ = , so by continuity, it continues to hold for small 
enough 0τ >  at 0ν ν= . Now, by substituting 2ν  from (16) into (17), we get  

2 cos sin .cb c aν ντ ντ
ν

= + < −  

Thus,  

( )cos 1 sin .cc a b cντ ντ
ν

− + < − −  

Let us define ( ) ( ), cos 1 sinccφ τ ν ντ ντ
ν

= − +  and we set ( )a b cη = − + . 

Using the estimates sinντ ντ≤  and 2 211 cos
2

ντ ν τ− ≤ , we obtain  

( ) ( ) ( )2 21, , , .
2

c cφ τ ν ψ τ ν ν τ τ ψ τ ν+≤ = + ≤  

Now, if ( ),ψ τ ν η+ < , then ( )0,φ τ ν η< . Let τ+  denote the unique positive 
root of ( ),ψ τ ν η+ = . Then, we have  

( )2 21 0.
2

c c a b cν τ τ+ + − − − =  

Thus,  

( )2 2

2

2
,

c c c a b c
c
ν

τ
ν

+
+

+

− + + − −
=  

where 0a b c− − > . 
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Then, for τ τ+< , the Nyquist criteria holds and τ+  is the estimate for the 
length of the delay τ  for which stability is preserved. Thus, the proof of this 
theorem completes. 

Theorem 4. If we set ( ) ( ) 22 *
2 0R J JP d d r f J ′= − <   and if *E  is unstable  

for 0τ = , then it remains unstable for 0τ > . Moreover, if 2 0P <  and if *E  
is asymptotically stable for 0τ = , then it is impossible that it remains stable for 
all 0τ > . 

Hence, there exists a ˆ 0τ >  such that, for ˆτ τ< , the equilibrium point *E  
is asymptotically stable and for ˆτ τ> , the equilibrium point *E  is unstable 
and moreover, as τ  increases through τ̂ , *E  bifurcates into small amplitude 
periodic solutions of Hopf type [4] [13]. The existence of unique τ̂  is given by  

 1
2

ˆ1ˆ tan , 0,1,2, .
ˆ ˆˆ

a n n
b

ντ
ν νν

− π = + = − 
             (18) 

Our required τ̂  is given by 0n =  in (18) and hence the Hopf-bifurcation cri-
teria are satisfied. 

Proof. Let us consider λ  and hence µ  and ν  as a function of τ . We are 
interested in the change of stability of equilibrium point ( )* * *,E R J  which oc-
curs at the values of τ  for which 0µ =  and 0ν ≠ , that is 0b c+ ≠  by (9). 
Let τ̂  be such that ( )ˆ 0µ τ =  and ( ) ˆˆ 0ν τ ν= ≠ . Then (9) and (10) become  

 2ˆ ˆˆcos = 0,b cν τν− + +                       (19) 

 ˆ ˆˆsin 0.a cν τν− =                         (20) 

From the above equations, we get  

 ( ) ( )4 2 2 2 2ˆ ˆ2 0.a b b cν ν+ − + − =                   (21) 

To analyze the change in the behavior of the stability of *E  with respect to τ , 
we examine the sign of d dµ τ  as µ  crosses zero, that is we analyze the sign 
of ( )ˆd dµ τ τ  where ( )ˆ 0µ τ = . If this derivative is positive (negative) then 
clearly a stabilization (destabilization) can not take place at that value of τ . We 
differentiate Equation (9) and Equation (10) with respect to τ . Then setting 

ˆ, 0τ τ µ= =  and ˆν ν= , we get  

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆd d d d
, ,

d d d d
µ τ ν τ µ τ ν τ

ξ η α η ξ β
τ τ τ τ

+ = − + =  

where  
ˆˆ ˆcos ,a cξ τ τν= −  

ˆ ˆˆ ˆ2 sin ,cη ν τ τν= − −  

ˆ ˆ ˆ ˆˆ ˆsin and cos .c cα ν τν β ν τν= =  

We have  

 ( ) ( )2 2 ˆd
.

d
µ τ

ξ η ξα ηβ
τ

+ = −  

Thus,  
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( )
2 2

ˆd
.

d
µ τ ξα ηβ
τ ξ η

−
=

+
 

( )ˆd
d
µ τ
τ

 has the same sign as ξα ηβ− . Now,  

( ) ( )
2

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆcos sin 2 sin cos

ˆ ˆ ˆ ˆˆ ˆsin 2 cos .

a c c c c

ac c

ξα ηβ τ τν ν τν ν τ τν ν τν

ν τν ν τν

− = − − − −

= +
 

Substituting the values of ˆˆsinτν  and ˆˆcosτν  from (19) and (20), we get  

( )2 2 2ˆ ˆ2 2 .a bξα ηβ ν ν − = + −   

Let  

( ) 2
1 2 ,z z P z Pφ = + +  

where  
2 2 2

1 2 = ,R JP a b d d= − +  

( ) ( ){ } 222 2 *
2 .R J JP b c d d r f J ′= − = −  

 

Now, ( )zφ  is the solution of (21) with 2ˆ zν = . Then, we have  

( ) ( )
2

2 2 2
1 2

ˆd
ˆ ˆ2 2 2 .

ˆd
P a b

z

φ ν ξα ηβν ν
ν
−

= + = + − =  

Then,  

( ) ( )2 2 2

2

ˆd ˆd
.

ˆd dz

φ ν µ τξ η
τν

+
= ⋅  

Thus, we have  

( ) ( )22

2 2

ˆdˆd ˆ
.

d dz

φ νµ τ ν
τ ξ η

= ⋅
+

 

Therefore, the criteria for preservation of instability (stability) of ( )* * *,E R J  
has the following cases;  

1) If the polynomial ( )zφ  has no positive root (being contradictory to the 
existence of ˆ 0ν >  be real) there can be no change of stability.  

2) If ( )zφ  is increasing (decreasing) at all of its positive roots, instability 
(stability) is preserved.  

Now, in this case,  
(C1) If 2 0P < , ( )zφ  has a unique positive real root, then it must increase at 

that point. Because, ( )zφ  is a cubic in z, ( )limz zφ→∞ = ∞ . 
(C2) If 2 0P > , then (C1) is satisfied, that is there can be no change of stability. 

From (19) and (20), (18) is satisfied. This completes the proof of Theorem 4. 

4. Oscillatory Criteria 

We study the oscillatory behavior of the linearized system (1) involving two dis-
tinct delays which are different. But, so far as the author’s knowledge goes, there 
are very few studies on the analysis of oscillation of model with unequal delays. 
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To make the study mathematically tractable, all the delays are assumed to be 
equal and equal to the 1/2 of the sum of all the delays. From physiological date, 
it’s not psychology, today delay is nearly 28 - 30 hours in [18], from the numeri-
cal simulation of the linearized system, it is seen that the pulsated or oscillatory 
behavior is present, if the individual unequal delay exceed from 5 hours to two 
days. For simplicity, without much loss of generality, we assume that  

1 2τ τ τ= = , where ( )5 1,2i iτ > = . Then the system (5) can be written as  

 
( ) ( ) ( ) ( )
( ) ( ) ( )

* ,

,
R

J J

x t d x t f J y t

y t d y t r x t

τ

τ

′= − + −

= − + −





                 (22) 

where ( )*0, 0, 0, 0R Jd d f Jτ ′> > > >  and 0Jr > . We will find a set of suffi-
cient conditions for all bounded solutions of the linearized system (22) to be os-
cillatory when the system has equal multi delays (cf. [16]). Here we adopt the 
following definition. 

Definition 1. A nontrivial vector ( ) ( ){ }T
,u x t y t=  defined on [ )0,α , some 

0α > , is said to be oscillatory, if and only if at least one component of ( )x t  
has arbitrary large zeros on [ )0,α . 

Let us define  

( ){ }*max , ,1 0,Jf J r γ′ = >  and 

{ }max , 0.R Jd d d− − = − <  

Theorem 5. We assume the following conditions:  

 (i) , and (ii) e e.dd τγ γτ> <


                   (23) 

Then all the bounded solutions of (22) corresponding to continuous initial 
conditions on [ ],0τ−  are oscillatory on [ )0,∞ . 

Proof. Suppose that there exists a solution ( ) ( ){ }T
,u x t y t=  of (22), which is 

bounded and non oscillatory on [ )0,∞ .  
Then, it follows that there exists a * 0t >  such that no component of ( )x t  

has a zero for *t t τ> + , and as a consequence, we have  

( ) ( ) ( ) ( )* ,Rx t d x t f J y t τ′≥ − + −  

( ) ( ) ( ) *, for 2 .J Jy t d y t r x t t tτ τ≥ − + − > +  

Let ( ) ( ) ( ) 0u t x t y t= + > , for *t t τ≥ + . Thus, we get  
( ) ( ) ( )u t du t u tγ τ≥ − + −

  for * 2t t τ≥ + . Now, we consider the scalar delay dif-
ferential equation  

 ( ) ( ) ( ) ( ) ( )* * *, for 2 , with , , .v t dv t v t t t v s u s s t tγ τ τ τ = − + − ≥ + = ∈ + 


 (24) 

Using the comparison theorem in [16], we have  

 ( ) ( ) *, for 2 .u t v t t t τ≤ ≥ +                    (25) 

We now claim that all bounded solutions of (24) are oscillatory on )* 2 ,t τ + ∞ . 
Suppose that this is not the case, then the characteristic equation associated with 
(24) is given by  
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e ,d λτλ γ −= − +  

has a non positive root, we say, * 0λ <  and it follows from (i) of (23) that  
* 0λ ≠ , then * 0λ < , and hence, we have  

*
* e .d

λ τ
λ γ≥ − +  

Then, 
*

* ed
λ τ

λ γ+ ≥ , and by the expansion into series of eX  for some  

X ∈R , it is clear that ( ) ( )
* 1 *e

d
d

λ τ
τ λ

+ −
≥ +



 . Thus, we get  

*

1
*

1 e .de
d

λ τ
τγ γτ

λ
−≥ ≥

+




 

The local inequality contradicts (ii) of (23), and hence, our claim regarding the 
oscillatory nature of v on [ )0,∞  is valid. Since v has arbitrarily large zeros by 
(25), which means that ( ) ( ) ( )u t x t y t= +  is oscillatory implying that ( )tx  
is oscillatory, but this is absurd. Since ( )tx  is taken to be non oscillatory vector. 
So, there cannot exist a bounded non oscillatory solution of (22) when the con-
ditions (i) and (ii) of (23) hold, and therefore, the proof is complete. 

5. Examples 

We consider concrete examples of the following linearized equation of Equation 
(1)  

 
( ) ( ) ( )
( ) ( ) ( )

2

1

,

, 0,

x t ax t by t

y t cx t dy t t

µ

µ

= − + −

= − − >





                (26) 

where, in Equation (5), ,R Jd a d d= = , 1 1 2 2,τ µ τ µ= = , Jr c=  and  

( )*f J b′ = , and moreover, all parameters can be set 0 , , , 1a b c d< <  by our as-
sumptions for (5) and especially (22). 

i) For simplicity, we set 1 2, 1 3, 1 3, 1 2a b c d= = = =  and 1 2 2µ µ= = . 
Then, ( ) ( )1 2 1 3 0R Jd a r c= = > = = > , and  

( ) ( ) ( )*1 2 1 3 0Jd d f J b′= = > = = > . Thus, it clear satisfies assumption (6) and 
(H2). Moreover, we have  

( ) ( ) ( ) ( ) ( )* * *3 4 tanh and , 1.2,1.0 ,f J J E R J= = ≈  

where  

( )
( ){ }

*
2*

3 4

cosh
f J

J
′ =  

for 0 1J ≡  in H2. The initial functions are defined by  

( ) ( )1 1 0, andR θ φ θ= ≡ >  

( ) ( )2 1 0,J θ φ θ= ≡ >  

belong to the ( ) [ ]2,0 for 1,2.i C iφ θ ∈ − =  
From our Theorem 2, we can show that for time delay 2 0iµ = > , the zero 
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solution 0E  of Equation (5) is asymptotically stable, i.e. the equilibrium pint 
*E  of Equation (1) is asymptotically stable by assumptions (6) and (H2).  
ii) We also set 1 2, 1 3, 1 3, 1 2a b c d= = = =  and 1 21, 5µ µ= = . Then,  

( ) ( )1 2 1 3 0R Jd a r c= = > = = > , and ( ) ( ) ( )*1 2 1 3 0Jd d f J b′= = > = = > .  
Thus, it satisfies assumption (6) and (H1). We denote the initial functions by  

( ) ( )1 1 0, andR θ φ θ= ≡ >  

( ) ( )2 1 0,J θ φ θ= ≡ >  

belong to the ( ) [ ] ( ) [ ]1 21,0 and 5,0 .C Cφ θ φ θ∈ − ∈ −  
By our Theorem 2, we can show that for time delays 1 1 0µ = >  and  

2 5 0µ = > , the zero solution 0E  of Equation (5) is asymptotically stable, i.e. 
the equilibrium pint *E  of Equation (1) is asymptotically stable by assump-
tions (6) and (H2). 

6. Conclusions 

We got the results of Theorem 2 - 5 that the asymptotic stability of the equili-
brium point *E  and the oscillatory condition for the delay difference Equation 
(1), by using the technique of linearized method, the bifurcation technique and 
others. Moreover, we have given the simple example for Theorem 2 that the 
equilibrium point *E  of Equation (5), that is Equation (1), is the asymptotical-
ly stable by assumptions (6), (H2) and all positive delay 0τ > . 

Figures 1-4 of the final page denote the asymptotic stability of the zero solu-
tion of Equation (26). Here, we denote measures of the love of individuals, 

( )x x t=  and ( )y y t=  for the partner ( )x t  and ( )y t  at time t, and more-
over the vertical line is time t. 

In the case of (i) of Examples 5, the solutions of (26) approach the equilibrium 
point ( ) ( )( ) ( ), 0,0x t y t = .  

Figure 2 is the phase space of (x, y)-plane in Figure 1.  
 

 

Figure 1. ( ) ( )( ), ,t x t y t . 
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Figure 2. ( ) ( )( ),x t y t . 

 

 

Figure 3. ( ) ( )( ), ,t x t y t . 

 

Figure 4. ( ) ( )( ),x t y t . 
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In the case of (ii) of Examples 5, the solutions of (26) approach the equili-
brium point ( ) ( )( ) ( ), 0,0x t y t = .  

Figure 4 is the phase space of (x, y)-plane in Figure 3.  

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Strogatz, S. (1988) Love Affairs and Differential Equations. Mathematics Magazine, 

61, 35. https://doi.org/10.2307/2690328 

[2] Strogatz, S. (1994) Nonlinear Dynamics and Chaos. Addison-Wesley, Boston.  

[3] Sprott, J. (2004) Dynamical Models of Love. Nonlinear Dynamics, Psychology and 
Life Science, 8, 303-314.  

[4] Deng, W., Liao, X., Dong, T. and Zhou, B. (2017) Hopf Bifurcation in a Love-Tri- 
angle Model with Time Delays. Neurocomputing, 260, 13-24.  
https://doi.org/10.1016/j.neucom.2017.02.062 

[5] Naoyuki, S., Sinka, I. and Taro, M. (2014) Analysis of Mathematical Model for Di-
vorce. Research Institute for Mathematical Sciences (RIMS) Koukyuroku, Kyoto 
University, Kyoto, 8-17.  

[6] Rinaldi, S. (1998) Laura and Petrach: An Intriguing Case of Cyclical Love Dynam-
ics. SIAM, Journal on Applied Mathematics, 58, 1205-1221.  
https://doi.org/10.1137/S003613999630592X 

[7] Rinaldi, S. (1998) Love Dynamics: The Case of Linear Couples. Applied Mathemat-
ics and Computation, 95, 181-192. https://doi.org/10.1016/S0096-3003(97)10081-9 

[8] Rinaldi, S. and Gragnani, A. (1998) Love Dynamics between Secure Individuals: A 
Modeling Approach. Nonlinear Dynamics, Psychology and Life Science, 2, 283-301.  
https://doi.org/10.1023/A:1022935005126 

[9] Rinaldi, S., Rossa, F.D. and Dercole, F. (2010) Love and Appeal in Standard Couples. 
International Journal of Bifurcation and Chaos, 20, 2443-2451.  
https://doi.org/10.1142/S021812741002709X 

[10] Rinaldi, S., Rossa, F.D. and Landi, P. (2013) A Mathematical Model of “Gone with 
the Wind”. Physica A, 392, 3231-3239. https://doi.org/10.1016/j.physa.2013.03.034 

[11] Rinaldi, S., Rossa, F.D., Dercole, F., Gragnani, A. and Landi, P. (2016) Modeling 
Love Dynamics. World Scientific, Singapore, World Scientific Series on Nonlinear 
Science Series A, 89. https://doi.org/10.1142/9656 

[12] Liao, X. and Ran, J. (2007) Hopf Bifurcation in Love Dynamical Models with Non-
linear Couples and Time Delays. Chaos Solutions and Fractals, 31, 853-865.  
https://doi.org/10.1016/j.chaos.2005.10.037 

[13] Son, W.-S. and Park, Y.-J. (2011) Time Delay Effect on the Love Dynamic Model.  

[14] Akio, M. and Szidarovszky, F. (2016) Love Affairs Dynamics with One Delay in 
Losing Memory or Gaining Affection. Institute of Economic Research, Chuo Uni-
versity, Tokyo, 260, 1-23.  

[15] Murray, J.D. (2002) Mathematical Biology. Third Edition, Springer, Berlin.  

[16] Gopalsamy, K. (1992) Stability and Oscillations in Delay Differential Equations of 
Population Dynamics. Kluwer Academic Publishers, Berlin.  

https://doi.org/10.4236/apm.2020.105017
https://doi.org/10.2307/2690328
https://doi.org/10.1016/j.neucom.2017.02.062
https://doi.org/10.1137/S003613999630592X
https://doi.org/10.1016/S0096-3003(97)10081-9
https://doi.org/10.1023/A:1022935005126
https://doi.org/10.1142/S021812741002709X
https://doi.org/10.1016/j.physa.2013.03.034
https://doi.org/10.1142/9656
https://doi.org/10.1016/j.chaos.2005.10.037


K. Saito et al. 
 

 
DOI: 10.4236/apm.2020.105017 311 Advances in Pure Mathematics 
 

https://doi.org/10.1007/978-94-015-7920-9 

[17] Das, P., Roy, A.B. and Das, A. (1994) Stability and Oscillations of a Negative Feed-
back Delay Model for the Control of Testosterone Secretion. BioSystems, 32, 61-69.  
https://doi.org/10.1016/0303-2647(94)90019-1 

[18] Das, P. and Roy, A.B. (1997) The Role of Four Regulatory Hormones in Controlling 
Testicular Function in a Delay Model. Mathematical and Computer Modelling, 25, 
101-116. https://doi.org/10.1016/S0895-7177(97)00033-2 

[19] Hamaya, Y., Takagi, S. and Saito, K. (2020) On the Love Dynamical Model with 
Delay, to Appear.  

[20] Bielczyk, N., Bondnar, M. and Forys, U. (2012) Delay Can Stabilize: Love Affairs 
Dynamics. Applied Mathematics and Computation, 219, 3923-3937.  
https://doi.org/10.1016/j.amc.2012.10.028 

 
 

https://doi.org/10.4236/apm.2020.105017
https://doi.org/10.1007/978-94-015-7920-9
https://doi.org/10.1016/0303-2647(94)90019-1
https://doi.org/10.1016/S0895-7177(97)00033-2
https://doi.org/10.1016/j.amc.2012.10.028

	Love Dynamical Models with Delay
	Abstract
	Keywords
	1. Introduction
	2. Stability Criteria of Equilibrium Points
	3. Estimation for the Length of Delay to Preserve Stability and Bifurcation Results
	4. Oscillatory Criteria
	5. Examples
	6. Conclusions
	Conflicts of Interest
	References

