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Abstract 
To the Riemann hypothesis, we investigate first the approximation by step- 
wise Omega functions ( )uΩ  with commensurable step lengths 0u  con-

cerning their zeros in corresponding Xi functions ( )zΞ . They are periodi-

cally on the y-axis with period proportional to inverse step length 0u . It is 
found that they possess additional zeros off the imaginary y-axis and addi-
tionally on this axis and vanish in the limiting case 0 0u →  in complex in-
finity. There remain then only the “genuine” zeros for Xi functions to conti-
nuous Omega functions which we call “analytic zeros” and which lie on the 
imaginary axis. After a short repetition of the Second mean-value (or Bonnet) 
approach to the problem and the derivation of operational identities for Tri-
gonometric functions we give in Section 8 a proof for the position of these 
genuine “analytic” zeros on the imaginary axis by construction of a contra-
diction for the case off the imaginary axis. In Section 10, we show by a few 
examples that monotonically decreasing of the Omega functions is only a suf-
ficient condition for the mentioned property of the positions of zeros on the 
imaginary axis but not a necessary one. 
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1. Introduction 

In his article [1] from 1859 Bernhard Riemann expressed the conjecture (now 
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called Riemann hypothesis) that the function  
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with ( ), 1, 2,np n =   the (ordered) sequence of prime numbers and extended 
by him to complex variable is tσ= +  possesses nontrivial zeros only on the  

imaginary axis 
1 i
2

s t= +  (i.e., to real part 
1
2

) that remained unproved up to  

now. This function was already known to Euler (Euler product) and using the un-
iqueness of the prime-number decompositions of natural numbers 1,2,3,n =   
Euler established in about 1737 the connection to the sum form. Its main impor-
tance is as Riemann showed in [1] that one can derive from it approximations for 
the prime-number distribution. Many articles and monographs are published 
since this time to this function, e.g., [2]-[14] (some important original articles of 
the past are republished plus a few expert witnesses are published in [3])1. 

Concerning the trivial zeros of ( )sζ  Riemann excluded them by introduc-
tion of a function ( )sξ  related to ( )sζ  by  

 ( )
( )

( )
2

1 !
2 ,s

ss
s sξ ζ

 −  
 ≡

π
                     (1.2) 

and obtained in this way the simple so-called Riemann functional equation  
 ( ) ( )1 ,s sξ ξ= −                          (1.3) 

and additional symmetries. With respect to the nontrivial zeros it is fully equivalent 
to the zeta function ( )sζ  and, in addition, it excludes the only pole (a simple one) 
of the last at 1s = . Furthermore, the function ( )sξ  possesses more symmetries 
than ( )sζ  and is an even real-valued function on the real and imaginary 

axis to real part 
1
2

σ =  in contrast to the zeta function ( )sζ  and is rapidly 

decreasing on the imaginary axis (and, rapidly increasing on the real axis). For 
more easier work with the function ( )sξ  one may displace it according to  

( ) 1 1 1, i i ,
2 2 2

z z z x y t sξ σ Ξ ≡ + = + = − + = − 
 

 

 ( ) 1 1 10 0.4971207782, .
2 2 2
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   

            (1.4) 

Then the conjectured zeros lie directly on the imaginary axis. 
There are many known functions with zeros only on the imaginary axis, in 

particular, the entire modified Bessel functions ( )I zν   
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1Our first and main source for detailed serious studies in this field was the book of Edwards [2] after 
knowing the problem much earlier mainly from popular articles and books to recreation mathemat-
ics. 
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All these functions which we call here Xi functions possess integral representa-
tions of the form  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )*1 *
0 0

1d ch d sh ,z u u uz u u uz z z
z

+∞ +∞
Ξ = Ω = − Ω = Ξ − = Ξ∫ ∫ (1.6) 

where we applied partial integration. With separation of the real and imaginary 
part we find  
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where ( )uΩ  is a monotonically decreasing function of the real variable u and 
therefore with derivative ( ) ( )1 0uΩ ≥ . 

The functions ( )zΞ  are analytic even functions. We may extend the func-
tions ( )uΩ  in the integral (1.6) to negative u by definition as symmetric func-
tions of the real variable for u−∞ < < +∞   

 ( ) ( ) ( )*, , real .u u u uΩ = Ω − =                    (1.8) 

Then we obtain by inversion of the arising Fourier integral the relation  

 ( ) ( ) ( ) ( )
0

2 d i cos .u y y uy u
+∞

Ω = Ξ = Ω −
π ∫                (1.9) 

This formula provides then automatically the symmetry (1.8) of the function 
( )uΩ . 
For the Riemann Xi function ( )zΞ  the function ( )uΩ  possesses the form  

 ( ) ( ) ( ) ( )2 2 2 2 2 2

1
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as is was given in similar form in [7] (chap. 17.7, Equation (12) and Equation 
(14)) and in [2] and as it was also derived in [15]. For the modified entire Bessel  

functions ( )2 I z
z

ν

ν
 
 
 

 the Omega functions possess the form  
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where ( )
0, 0
1, 1

x
x

x
θ

<
=  >

 denotes the Heaviside step function. The continuation  

of the function ( )uΩ  to the Riemann Xi function in (1.10) from real positive 
variable u to real negative variable −u provides automatically the symmetry (1.8) 
although, astonishingly, this is not immediately to see from its given explicit 
form (see remark in [15]) and also the form (1.11) for the Omega functions to 
modified Bessel functions possesses this symmetry. 

Besides to be functions which rapidly decrease in a way that the integrals of 
the form (1.6) exist the Omega functions (1.10) and (1.11) are monotonically 
decreasing for 0u ≥  and it was the conjecture in [15] that this is a common 
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property for Xi functions to possess zeros only on the imaginary axis. For such 
functions the Second mean-value approach or Bonnet method of integration 
(e.g., Courant [16] (chap. IV), Fikhtengol’ts [17] (chap. 5, §2), Widder [18] 
(chap. 5)) can be applied which provides a function which depends on the initial 
and final values of the Omega function and which possesses in the argument a 
mean-value function with some known properties originating from the applied 
averaging process. For (1.6) assuming analyticity it possesses the form  

( ) ( )
( )( ) ( ) ( ) ( ) ( )0

0 00

sh
0 , 0 0 0 d ,

w z z
z w u u

z
+∞

Ξ = Ω Ξ = Ω = Ω ≡ Ω∫  (1.12) 

where 0Ω  denotes the lowest moment of the function ( )uΩ  which does not 
depend on the reference point. 

In our article [15], apparently, this was considered correctly only up to discus-
sion of the zeros on the imaginary axis in case of continuous Omega functions 
and considering the principal form of the functions for zeros on axes parallel to 
the imaginary axis. The last was made by actions onto the function on the im-
aginary axis by operators. From the correction to [15] it seems to remain correct 
the statement that only the monotonically decreasing step-wise constant func-
tions with equal step-lengths have to be excluded with additional zeros. The ar-
ticle [19] was mainly intended to illustrate the behavior of zeros when going 
from lower to higher Taylor-series approximations but to the end of its elabora-
tion it became almost evident that considering step-wise approximations of the 
Omega functions with commensurable step lengths2 and finally going with the 
step-lengths to zero is an appropriate method for considering the problem where 
temporal zeros in the approximations off the imaginary axis and on this axis in 
the limiting process go to complex infinity and there remain only the genuine 
zeros. To carry out this systematically is a main aim of the present article. 

Since all nontrivial zeros of the Riemann zeta function can never be found ex-
plicitly this suggested from the beginning of the work that we have to look for 
methods which do not need the exact zeros and rest only on general properties 
of the considered functions and which, therefore, are true for a whole category of 
functions including the mentioned ones. We find that in the step-wise approach 
with commensurable step lengths there exist two different and well-separated 
kinds of zeros on the imaginary axis where the first kind possesses also zeros off 
the imaginary axis and in the limiting case of vanishing step lengths go to com-
plex infinity whereas the second kind stabilizes in the limiting procedure of va-
nishing step lengths on the genuine zeros of the Xi functions to the considered 
Omega functions and, apparently, do not possess zeros off the imaginary axis 
(Sections 3 - 5 and also 8). This is underlined via the Second mean-value ap-
proach or Bonnet method of integration which can be successfully completed 
and since in this method the transition from the imaginary axis to axes parallel 
to the imaginary axis is possible using the Cauchy-Riemann equations in an in-

 

 

2To this case belong also functions with only rational proportions of step-length (that means com-
mensurable step lengths) for which then the smallest common part of all step lengths can be taken as 
(genuine) step length u0. 
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tegrated form. We repeat this approach in short form in the Sections 6 - 8 and 
give in Section 8, apparently relatively simple, proof that the “genuine” zeros in 
continuous case lie only on the imaginary axis. In Section 10, we show by exam-
ple that the (strictly and non-strictly) monotonically decreasing of Omega func-
tions in the limiting case of vanishing step lengths is a sufficient criterium for 
zeros only on the imaginary axis but is not a necessary one. An advantage of the 
mentioned methods is also that they provide arguments that step-wise constant 
Omega functions with incommensurable step-lengths (plus monotonically de-
creasing) fall also under the category for which the Xi functions possess only ze-
ros on the imaginary axis. 

2. Commensurable Step-Wise Approximations of Omega  
Functions to Riemann Xi Function and to Other  
Appropriate Xi Functions 

We approximate the (in general, non-strictly) rapidly decreasing function ( )Ω u   

 ( ) ( ) ( )1 2 1 2, , or 0 ,u u u u u
u
∂ < ⇒ Ω ≥ Ω Ω ≤ ∂ 

          (2.1) 

with limiting value  

 ( ) 0,uΩ → +∞ =                          (2.2) 

by a step-wise constant function with equal step lengths 0 0u u≡ ∆ >  (a para-
meter which finally in a limiting procedure we let go to zero) of the following 
form (Figure 1) 

 ( ) ( ) ( )( )( )0 0 0
0

1 1 ,
2n

u n u u nu u n uθ θ
∞

=

  Ω = Ω + − − − +  
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∑       (2.3) 

where ( )xθ  denotes the Heaviside step function (see Section 1). 
The integration according to (1.6) leads to  
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∑

∑
        (2.4) 

where we introduced the abbreviations  

 ( )( )0 0 0
1 31 .
2 2

n u n u n u      ∆Ω + ≡ Ω + −Ω +      
      

         (2.5) 

Due to ( )uΩ  as monotonically decreasing functions according to (2.1) they 
have to satisfy the inequalities  

 ( )( )01 0,n u∆Ω + ≥                        (2.6) 

and due to definition (2.5) their sum is  

 ( )( ) ( ) ( )0
0 0

0
1 0 , for 0 ,

2n

u
n u u

∞

=

 ∆Ω + = Ω → Ω → 
 

∑      (2.7) 

which for 0 0u →  as indicated goes to ( )0Ω .  

https://doi.org/10.4236/apm.2020.105013


A. Wünsche 
 

 

DOI: 10.4236/apm.2020.105013 206 Advances in Pure Mathematics 
 

 
Figure 1. Approximation of the Omega function to the Riemann Xi function by a 
step-wise constant function with equal step length as example for such approximations. 
Finally we let the step length u0 go to zero. The additional zeros off the y-axis from the 
stepwise approximation go then to complex infinity. This procedure of step-wise ap-
proximation of a function is very similar to the usual introduction of the definite integral.  
 

If the sequence of numbers ( )( )01n u∆Ω +  decreases rapidly in a way that 
the sum in (2.5) converges for all z∈  then the function ( )z zΞ  is an entire 
function of the complex variable iz x y= + . We will show that for arbitrary 
fixed real variable x it is a periodic function of the variable y. First, we find the 
periodicity  

 ( ) ( )0 0
0

2sh sh i , 0, 1, 2, ,ku z u z k
u

  π
= + = ± ±     

           (2.8) 

with its (minimal) period length 
0

2
u
π  and more generally  

 ( )( ) ( ) ( )0 0
0

2sh 1 sh 1 i , 0, 1, 2, .kn u z n u z k
u

  π
+ = + + = ± ±     

     (2.9) 

From this according to (2.4) results the periodicity of the function ( )z zΞ   

( ) ( ) ( )

( )

0 0

0 0

2 2i i i i i i

2 2i i , 0, 1, 2, .

k kz z x y x y x y x y
u u

k kz z k
u u

      π π
Ξ = + Ξ + = + + Ξ + +               

   π π
= + Ξ + = ± ±   
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

 (2.10) 

with the same period length 
0

2
u
π  which for arbitrary fixed x is a periodicity on 

all axes ix y+  parallel to the imaginary axis 0x =  and thus ( )z zΞ  in the 

form obtained from (2.4) is a Fourier series to period length 
0

2
u
π . For the func-
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tion ( )zΞ  this leads to  

 ( ) ( )
0 0

1 2 2i i , 0, 1, 2, .k kz z z k
z u u
   π π

Ξ = + Ξ + = ± ±   
   

      (2.11) 

Although this is no more a periodicity of the functions ( )zΞ  their zeros repeat 
periodically for arbitrary fixed variable x on corresponding y-axes. Concerning 
these zeros they appear with half of the period of the function ( )z zΞ  that means  

with distances 
0u
π  on all axes ix y+  with fixed variable x parallel to the im-

aginary axis (the imaginary axis included). 
In the next Section we derive some more detailed representations of the Xi 

function ( )zΞ  which permit us to crystalize two different kinds of zeros in the 
considered step-wise commensurable approximation of the Omega function 
( )uΩ  and call this in the further text shortly the “commensurable step-wise case”. 

3. Representation of the Xi Function in Commensurable  
Step-Wise Case by Chebyshev Polynomials 

Since 0z =  is not a zero of the Xi function ( )zΞ  it is rational to investigate 
instead in most cases the function ( )z zΞ . We will show in next Section that in 
commensurable step-wise case there appear two different kinds of zeros from 
which the second kind is “not analytically” in a way which we will explain. 
Shortly saying, “not analytically” means that these zeros come from separate in-
dependent vanishing of two different functions which are not necessarily Real 
and Imaginary part of an analytic function of variable z. A great role plays in this 
case the periodicity condition (2.10). 

The condition for zeros in the commensurable step-wise case is the simulta-
neous vanishing of Real and Imaginary part of (2.4) that means the vanishing of  
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n u n u x n u y
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∞

=

∞

=

Ξ = + Ξ +

= ∆Ω + + +

= ∆Ω + + +

+ + +

∑

∑
      (3.1) 

We derive now alternative representations of this function which split from the 
Imaginary part a factor depending on ( ),x y  which is not involved in the va-
nishing of the zeros called “not analytically”. This will be accomplished in next 
Section. For this purpose we use the Chebyshev polynomials of first and second 
kind and as preparation we consider some of their basic properties. 

Using the following known identity of functions ( )( )sh 1n z+  to Chebyshev 
polynomials of second kind ( )( )U chn z  (e.g., [20] [21] [22] [23] [24] and others)  

 ( )( ) ( )( )
( ) ( )( ) ( )( )

( )
sh 1 sin 1

U ch , U cos ,
sh sinn n

n z n z
z z

z z
+ +

= ⇔ =    (3.2) 

we obtain from (2.4) the following representation of ( )z zΞ  
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( ) ( ) ( )( ) ( )( )0 0 0
0

sh 1 U ch .n
n

z z u z n u u z
∞

=

Ξ = ∆Ω +∑           (3.3) 

It separates from the sum part in (2.4) the function ( )0sh u z  by using the Che-
byshev polynomials of second kind ( )Un z  and this separation is only possible 
for arbitrary commensurable step-lengths 0u . The Chebyshev polynomials of 
second kind ( )Un z  are essentially the derivatives of Chebyshev polynomials of 
first kind ( )1Tn z+  according to  

 ( ) ( ) ( ) ( )1 2
1U T , U U ,

1n n n nt t t t
n t + − −

∂
= = −

+ ∂
           (3.4) 

and are related to the Chebyshev ( )Un t  polynomials of first kind ( )Tn t  by 
(among others)  

 ( ) ( ) ( ) ( ) ( )2
0 0

U T T , T T .
n n

k
n n j n k n n

j k
t t t t t t− − −

= =

= = =∑ ∑         (3.5) 

Recurrence relations can be represented, for example, in the following forms 
(e.g., [21])  

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 1

1 1 1

U 2 U U U T ,

T 2 T T U U .
n n n n n

n n n n n

t t t t t t t

t t t t t t t
+ − +

+ − −

= − = +

= − = −
           (3.6) 

These relations hold for arbitrary complex variable t. 
From (3.4) follows with substituted argument  

 ( ) ( )( ) ( )( )1
1sh U ch T ch ,

1n nz z z
n z +

∂
=

+ ∂
               (3.7) 

and  
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n n

n n j
j j

z z n j z−
= =

= = −∑ ∑           (3.8) 

where we used in addition to (3.2) the (known) relations  

 ( )( ) ( ) ( )( ) ( )T ch ch , T cos cos .n nz nz z nz= ⇔ =          (3.9) 

This means that for real variable z x=  the Chebyshev polynomials ( )( )T chn x  
and ( )( )U chn x  are positive and satisfy the inequalities  

 ( )( ) ( )( ) ( )*T ch 1, U ch 1, , real .n nx x n x x≥ ≥ + =        (3.10) 

The Chebyshev polynomials ( )( )T cosn x  are mutually orthogonal for real va-
riable x according to  
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,0

0
,

, 0
d T cos T cos
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2

m
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m n

n
x x x

n

δ

δ
π

π =
= π

≠
∫           (3.11) 

For complex variable ix y+  they are mutually orthogonal only within the limits 
of a full period 2π  from arbitrary 0x  up to 0 2x + π  according to  
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that means for basic intervals of lengths 2π  of all trigonometric functions  
( )cos nx  and ( )sin nx  with 0,1,2,n =  . The analogous relation for the 

Chebyshev polynomials of second kind is  

 
( ) ( )( ) ( )( )

( )( ) ( )( ) ( )

0

0

0

0

2 2

2

d sin i U cos i U cos i

= d sin i sin i , , 0,1, 2, .

x
m nx

x
mnx

x x y x y x y

x m x y n x y m nδ

+ π

+ π

+ + +

+ + = π =

∫

∫ 

  (3.13) 

The prolongation of these relations to negative 0m <  and (or) 0n <  is possi-
ble using the relations given in (3.4) and (3.5). 

With (2.4) and (3.3) we have derived different representations of the Xi func-
tions ( )zΞ  for step-wise constant Omega functions ( )uΩ  of commensurable 
step lengths and with sufficiently rapid decrease. We will now analyze their zeros 
in dependence on the step length 0u . This can be completely done for the prin-
cipal position of their zeros and is made in the next Section. 

4. Two Kinds of Zeros in Commensurable Step-Wise Case 

In (3.3) the function ( )z zΞ  for the commensurable step-wise case which by 
their vanishing provides the zeros is split in two factors. The first factor 

( )0sh u z  can only vanish on the imaginary axis iz y=  that means for 0x =  
and leads to the zeros  

( ) ( )( ) ( )0 0
0

0 sh sh i , i i , 1, 2, ,k k
ku z u x y z z y k
u
π

= = + ⇒ = = = = ± ±   (4.1) 

The zeros which all lie on the imaginary axis are equidistant with half of the pe-

riod length 
0

2 k
u
π  (see (2.10)). If 0u  goes to zero then this period length goes 

from its smallest zero at 1
0

iz
u
π

=  together with all higher ones to complex in-

finity3  

 
0 0

10 0
0

lim lim i i .
u u

z
u±→ →

π
= ± → ± ∞                      (4.2) 

Thus this kind of zeros vanish in the limiting case of vanishing step length 0u  
from the list of zeros and is no more relevant for continuous Omega functions. 

We consider now the second factor in (3.3) more in detail and write it as fol-
lows  

 

( )
( ) ( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

0 0
00

0 2 0
0 0

0 0
0 0

1 U ch
sh

1 T ch

1 ch 2 ,

n
n

n

n j
n j

n

n j

z z
n u u z

u z

n u u z

n u n j u z

∞

=

∞

−
= =

∞

= =

Ξ
= ∆Ω +

= ∆Ω +

= ∆Ω + −

∑

∑ ∑

∑ ∑

           (4.3) 

where we used the identity (3.5) for its transformation. Split in Real and Imagi-
nary part we have  

 

 

3Clearly, there exists only one complex infinity. 
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( ) ( )
( )( )

( )( ) ( )( ) ( )( ){
( )( ) ( )( ))

0

0 0 0
0 0

0 0

i
sh i

1 ch 2 cos 2

ish 2 sin 2 .

n

n j

x y x y
u x y

n u n j u x n j u y

n j u x n j u y

∞

= =

+ Ξ +

+

= ∆Ω + − −

+ − −

∑ ∑       (4.4) 

To find the zeros of this expression is the most difficult part of the problem to 
find all zeros of ( )z zΞ . First one sees that this part contains the genuine zeros 
of ( )z zΞ  which remain after the limiting transition to vanishing step length 

0u . If we diminish the step length 0u  then, roughly speaking, the differences 
( )( )01n u∆Ω +  become smaller but in the same measure the number of sum 

terms enlarges in a certain u-interval ( ) ( )1 0 2 01 , , 1n u n u+ +    and their prod-
ucts remains nearly constant and also the changes of the polynomial values of 

( )( )0U chn u z  for 0 0u →  under fixed variable z go then to zero for conti-
nuous Omega functions. From the two conditions for zeros of the expression 
(4.4) that means the simultaneous vanishing of its Real and Imaginary part  

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

0 0 0
0 0

0 0 0
0 0

0 1 ch 2 cos 2 ,

0 1 sh 2 sin 2 ,

n

n j

n

n j

n u n j u x n j u y

n u n j u x n j u y

∞

= =

∞

= =

= ∆Ω + − −

= ∆Ω + − −

∑ ∑

∑ ∑
       (4.5) 

it is only simple to establish a manageable condition for zeros on the imaginary 
axes 0x = . In this case the second condition in (4.5) for vanishing of the Im-
aginary part is identically satisfied and we do not have to be concerned more 
about this condition. Therefore, for 0x =  there remains to be satisfied only the 
condition of vanishing of the Real part which simplifies in this case to  

 
( )( ) ( )( )

( )( ) ( )( )

0 0
0 0

0 0
0

0 1 cos 2

1 U cos .

n

n j

n
n

n u n j u y

n u u y

∞

= =

∞

=

= ∆Ω + −

= ∆Ω +

∑ ∑

∑
              (4.6) 

One may suppose that this condition is solvable at least, in principle, for known 
Omega functions ( )uΩ . In the limiting case of vanishing step length 0u  for 
continuous Omega functions this provide all “genuine” zeros of ( )z zΞ  on the 
imaginary axis iz y= . These are the zeros which we call zeros of first kind and 
which are “analytically” since they are gained by vanishing of Real and Imagi-
nary part of an analytic function. There arises the question about possible zeros 
of ( )z zΞ  for 0x ≠  that is off the imaginary axis in commensurable step-wise 
case and in the case of continuous Omega functions. A simple proof that in case 
of continuous Omega functions the zeros of ( )z zΞ  on the imaginary axes are 
the only ones provides the Second mean-value or Bonnet approach which we 
give in Section 8. Now, however, we will examine the case of possible zeros in 
commensurable step-wise case off the imaginary axis. 

We begin now to deal with the problem of zeros of ( )z zΞ  off the imaginary 
axis in commensurable step-wise case. First, we derive a modified representation 
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of expression (4.4). The Hyperbolic and Trigonometric functions of real argu-
ments in (4.4) can be again written using the Chebyshev polynomials of first and 
second kind and according to (3.2) and (3.9) we arrive at the representations  

 

( ) ( )
( )( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( )( ) ( )( )

0 2 0 2 0
0 00

0 0 0 1 2 0 1 2 0
0 0

i i
1 T ch T cos

sh i

ish sin 1 U ch U cos ,

n

n j n j
n j

n

n j n j
n j

x y x y
n u u x u y

u x y

u x u y n u u x u y

∞

− −
= =

∞

− − − −
= =

+ Ξ +
= ∆Ω +

+

+ ∆Ω +

∑ ∑

∑ ∑
(4.7) 

with separated Real and Imaginary part. If we exclude the zeros of the factor 
( )0sin u z  which lie on the imaginary axis and are dealt with in (4.4) then for 

zeros to 0x ≠  off the imaginary axis due to the inequality  

 ( ) ( )0sh 0, 0 .u x x≠ ≠                        (4.8) 

we have to satisfy the following two conditions for Real and Imaginary part of 
(4.7)  

 
( )( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( )( )

0 2 0 2 0
0 0

0 0 1 2 0 1 2 0
0 0

0 1 T ch T cos ,

0 sin 1 U ch U cos .

n

n j n j
n j

n

n j n j
n j

n u u x u y

u y n u u x u y

∞

− −
= =

∞

− − − −
= =

= ∆Ω +

= ∆Ω +

∑ ∑

∑ ∑
 (4.9) 

The expressions on the two right-hand sides in (4.9) are not the Real and Imagi-
nary part of an analytic function of variable iz x y= + . The zeros which we de-
termine by the two conditions (4.9) are therefore “not analytically” determined. 
We call them zeros of second kind for the commensurable step-wise kind and 
discuss them in next Section. 

5. Possible Zeros of Xi Function in Commensurable  
Step-Wise Case off the Imaginary Axis 

One case for a possible satisfaction of the second of the conditions (4.9) is im-
mediately to see and is  

 ( ) ( )0
0

0 sin , , 1, 2, .k
ku y y y k
u
π

= ⇒ = = = ± ±             (5.1) 

It leads to the same possible y-values for the zeros as the condition (5.1). For the 
possible satisfaction of the first of the conditions (4.9) we have to distinguish the 
cases of even 2k l=  and odd 2 1k l= +  due to  

 
( ) ( ) ( )

( ) ( ) ( )( ) ( )

2 0 2
0

2 1 0 2 1
0

2 , cos cos 2 1, 0,1,2, ,

2 1
, cos cos 2 1 1, 0,1,2, ,

l l

l l

ly u y l l
u

l
y u y l l

u+ +

π
= ⇒ = π = =

+ π
= ⇒ = + π = − =





(5.2) 

For the Chebyshev polynomials ( )Tn z  for argument 1z = +  and 1z = −  holds  

 ( ) ( ) ( ) ( )T 1 1, T 1 1 , 0, 1, 2, ,n
n n m= − = − = ± ±              (5.3) 

and inserted in the first condition in (4.9) we get two different forms. 
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The first condition (4.9) for even 2ly  and thus for ( )cos 2 1lπ =  takes on 
the form  

 
( )( ) ( )( ) ( )

( )( ) ( )( )

0 2 0 2
0 0

0 0
0 0

0 1 T ch T 1

1 ch 2 0,

n

n j n j
n j

n

n j

n u u x

n u n j u x

∞

− −
= =

∞

= =

= ∆Ω +

= ∆Ω + − >

∑ ∑

∑ ∑
           (5.4) 

and for odd 2 1ly +  and thus ( )( )cos 2 1 1l + π = −  we find  

 
( )( ) ( )( ) ( )

( ) ( )( ) ( )( )

0 2 0 2
0 0

0 0
0 0

0 1 ch 1

1 1 ch 2 .

n

n j n j
n j

nn

n j

n u T u x T

n u n j u x

∞

− −
= =

∞

= =

= ∆Ω + −

= − ∆Ω + −

∑ ∑

∑ ∑
          (5.5) 

The condition (5.4) contains only positive sum terms and cannot vanish. There-
fore this case is not possible for zero off the imaginary axis. However, in the case 
(5.5) we have positive and negative sum terms on the right-hand side and it may 
or may not become zero for certain 0x ≠ . In this case one may have zeros of 

( )z zΞ  off the imaginary axis for the commensurable step-wise case. These zeros 
go for 0 0u →  to complex infinity as we see from the lowest zero 1, 1ilz x y= +  
with undetermined 1,lx  in (5.1). 

Excluding the zeros of ( )0sin u y  in case of 0x ≠  there remains now to dis-
cuss the last case of simultaneous zeros for variable values ( ),x y  of the two 
conditions  

 
( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

0 2 0 2 0
0 0

0 1 2 0 1 2 0
0 0

0 1 T ch T cos ,

0 1 U ch U cos ,

n

n j n j
n j

n

n j n j
n j

n u u x u y

n u u x u y

∞

− −
= =

∞

− − − −
= =

= ∆Ω +

= ∆Ω +

∑ ∑

∑ ∑
     (5.6) 

following from (4.9). The right-hand sides of these two conditions are not Real 
and Imaginary part of an analytic function of the complex variable iz x y= +  
and thus it belongs to the case which we call “nonanalytic” ones. It is hardly 
possible to determine the zeros of the case (5.6) if such exist at all. However, it 
seems to us that we can prove that also these zeros for 0 0u →  go to complex 
infinity. For this purpose, we make in both conditions in (5.6) a Taylor series 
expansion of the Chebyshev polynomials in powers of 0u  according to  

 

( )( )

( )( ) ( )
( )

( )( )

( )( ) ( )
( )

2
2 2

0 0

2 2
0 0

2
2 2

0 0

2 2
0 0

T ch 1 ,
2

2 !
U ch 1 ,

6 1 !

T cos 1 ,
2

2 !
U cos 1 .

6 1 !

n

n

n

n

nu x u x

n
u x n u x

n

nu y u y

n
u y n u y

n

= + +

+
= + + +

−

= − +

+
= + − +

−









               (5.7) 

For the sum over all ( )( )01n u∆Ω +  we obtain according to (2.7) in the limiting 
case 0 0u →   
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 ( )( ) ( )
0

00 0
lim 1 0 .
u n

n u
∞

→ =

∆Ω + = Ω∑                     (5.8) 

By combination of (5.7) and (5.8) in the functions of the right-hand side in (5.6) 
and taking only the first term of the expansions it seems to be evident that the 
following expressions are true for 0 0u →   

 
( )( )

( )( ) ( )

0

0

00 0 0

2
00 0 0

lim 1 1 ,

lim 1 2 .

n

u n j

n

u n j

n u

n u n j

∞

→ = =

∞

→ = =

 
∆Ω + + →∞ 

 
 

∆Ω + − + →∞ 
 

∑ ∑

∑ ∑





           (5.9) 

Therefore in the limiting case 0 0u →  the conditions (5.6) cannot be satisfied if 
(5.9) is correct and there cannot exist zeros ( )0,l lx y≠  in considered case4. 
One may argument in favor of this result also in the following way. If for a cer-
tain finite 0u  exists a zero of both conditions (4.9) then in a higher approxima-
tion with 0 0u u′ <  this zero will be destroyed and it may be expected that in the 
limiting case to vanishing 0u  it does not stabilize to a certain value. 

6. Short Summary of the Second Mean-Value Approach to  
Zeros for Monotonically Decreasing Omega Functions 

The approach to the zeros of the Riemann Xi function ( )zΞ  and to other func-
tions with a possible integral representation (1.6) with a monotonically decreas-
ing function ( )uΩ  which for u → +∞  vanishes so rapidly that the integral 
exists was developed in [15]. We compile here the main results which seem to be 
correct and try to shut the gaps which were for the possible zeros off the imagi-
nary axis. 

The Second mean-value or Bonnet approach was applied in [15] to the 
integral (1.6)  

 ( ) ( ) ( )
0

d ch .z u u uz
+∞

Ξ = Ω∫                      (6.1) 

We discuss shortly whether the requirements for the application of the Bonnet 
method are satisfied in our case. The real-valued function ( )uΩ  of the real va-
riable u has to be monotonically decreasing (in a wide sense including step-wise 
cases) that is satisfied for (1.10) and (1.11). The function ( )ch uz  or its Real and 
Imaginary part are integrable for fixed finite variable iz x y= +  in the whole 
complex plane with results which separately for Real and Imaginary part can be 
taken from (A.1) in Appendix A. For the limiting case u →∞  we find genera-
lized functions as follows (see Appendix A, (A.7))  

 
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

0

0

d ch cos i i ,
2

id sh sin i i .
2

u ux uy y x y x

u ux uy y x y x

δ δ

δ δ

+∞

+∞

π
= − + +

π
= − − +

∫

∫
          (6.2) 

Since ( )uΩ  is rapidly decreasing for u → +∞  (smaller than an arbitrary Gauss 

 

 

4In principle, it is already sufficient that the first of these conditions is satisfied. 

https://doi.org/10.4236/apm.2020.105013


A. Wünsche 
 

 

DOI: 10.4236/apm.2020.105013 214 Advances in Pure Mathematics 
 

function is sufficient, see also Section 10) this should not be a cause that the 
Bonnet method cannot be applied. Since in case of convergence the integrand is 
an analytic function of the variable z the integral (1.6) should also be an analytic 
function of z and, therefore, also the mean-value function should be such. Thus 
the application of the Second mean-value or Bonnet approach to the integral 
(1.6) leads to the following principal form  

 ( ) ( ) ( ) ( ) ( )
( )( )

( ) ( ) ( )

0 0

0

0 0 0

sh
0 d ch 0 ,

i , i , ,

w z w z z
z u uz

z
w x y u x y v x y

Ξ = Ω = Ω

+ = +

∫           (6.3) 

with ( )0w z  the mean-value function which usually we do not know exactly 
and with  

 ( ) ( ) 00
0 d .u u

+∞
Ξ = Ω ≡ Ω∫                      (6.4) 

The zeros of the function 
( )sh z
z
′
′

 lie on the imaginary axis iz y′ ′=  at  

i ik kz y k′ ′= = π  with 1, 2,k = ± ±   and with 0z′ =  excluded. With separated 
real and imaginary part of all involved functions we have  

 

( )
( )

( ) ( )
( )
( ) ( )( )( )( )
( ) ( ) ( ) ( )( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )( )

0 0

0 0 0 0

0 0 0 0

0 0 0 0

i i
0 0

sh , i , i

sh , , i , ,

sh , , cos , ,

i ch , , sin , , .

z z x y x y

u x y v x y y x y

u x y x v x y y u x y y v x y x

u x y x v x y y u x y y v x y x

u x y x v x y y u x y y v x y x

Ξ + Ξ +
=

Ω Ω

= + +

= − + +

= − +

+ − +

 (6.5) 

For zeros of the function ( )zΞ  it is necessary that the right-hand side vanishes 
and this is only possible if Real and Imaginary part vanish that is under simulta-
neous satisfaction of the following two conditions ( 0z =  as zero already ex-
cluded)  

 
( ) ( )
( ) ( ) ( )

0 0

0 0

, , 0,

, , , 1, 2, .

u x y x v x y y

u x y y v x y x k k

− =

+ = π = ± ± 

             (6.6) 

Clearly, the same condition follows if we calculate the squared modulus of (6.5) 
and set it equal to zero  

 
( )
( )

( )
( )

( ) ( )( ) ( ) ( )( )

*

2 2
0 0 0 0

0
0 0

sh , , sin , , ,

z z z z

u x y x v x y y u x y y v x y x

 Ξ Ξ
≤   Ω Ω 
= − + +

    (6.7) 

which is only possible if both squares on the right-hand side vanish that leads 
again to the two conditions (6.6) for zeros. 

From the first condition (6.6) follows for zeros ( )0 0 0,z x y=   

 
( )
( )

0 0 0 0

0 0 0 0

,
,

,
v x y x
u x y y

=                          (6.8) 
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as one equivalent to it and suggests how difficult it would be to find such values 
( )0 0,x y  that they also satisfy the second condition in (6.6) for a certain k. We 
now discuss how this simplifies for the imaginary axis 0x =  where due to 

( )0 0, 0v y =  the first condition in (6.6) is identically satisfied. 
From the symmetry (1.6) of the Xi function ( )zΞ  follows for the function 
( )0w z   

 ( ) ( ) ( ) ( )( )**
0 0 0 0 ,w z w z w z w z= − = =                (6.9) 

and as consequence separated for its Real and Imaginary part  

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 0 0 0

0 0 0 0

, , , , ,

, , , , .

u x y u x y u x y u x y

v x y v x y v x y v x y

= − − = − = −

= − − = − − = − −
         (6.10) 

From (6.10) follows then for the imaginary axis 0x =  the vanishing of  
( )0 0,v y  due to ( ) ( )0 00, 0, 0v y v y= − =  and the function (6.5) possesses the 

simple form  

 
( )
( ) ( )( ) ( )( )0 0

i
sin 0, , 0, 0 .

0
y y

u y y v y
Ξ

= =
Ω

             (6.11) 

For the zeros on the imaginary axis follows now from the vanishing of ( )iyΞ  
the only condition (see (6.6))  

 ( )( )0sin 0, 0,u y y =                        (6.12) 

with the solutions ( 0k =  was already excluded before)  

 ( ) ( )0 0, , 1, 2, .u y y k k= π = ± ±                  (6.13) 

However, we do not explicitly know the function ( )0 0,u y  and also in case we 
would know it, in general, we were not able to solve it and to determine all solu-
tions. For the proof of the Riemann hypothesis and other possible cases for ap-
propriate Omega functions ( )uΩ  this is not necessary. We have only to ensure 
that the solutions (6.13) provide all solutions for the zeros of Xi functions ( )zΞ  
to the Omega function ( )uΩ  in (1.10) and other appropriate functions such as 
(1.11) that is the case for continuous Omega functions. This and some technical 
approaches we investigate in the next two Sections. 

7. Further Development of the Second Mean-Value  
Approach to Zeros of Monotonically Decreasing Omega  
Functions 

We begin now to investigate the restrictions for zeros (6.6) in the Second mean- 
value approach by derivation of some more technical relations which provide the 
extension of the functions in this approach from the imaginary axis iz y=  to 
the whole complex z-plane. 

In [15] was derived that an analytic function  

 ( ) ( ) ( ) ( )i , i , ,w z w x y u x y v x y≡ + = +                (7.1) 

with Real part ( )0,u y  and Imaginary part ( )0,v y  on the imaginary axis 
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possesses the following operational identities that means can be applied to arbi-
trary functions ( )f y 5  

( ) ( )

( ) ( )

( ) ( )

( ) ( )

cos 0, sin 0,

, cos , sin ,

sin 0, cos 0,

, sin , cos ,

x u y x v y
y y

u x y x v x y x
y y

x u y x v y
y y

u x y x v x y x
y y

   ∂ ∂
+   ∂ ∂   

   ∂ ∂
= +   ∂ ∂   

   ∂ ∂
− +   ∂ ∂   

   ∂ ∂
= − +   ∂ ∂   

             (7.2) 

This is a consequence of the Cauchy-Riemann equations. Applied to the func-
tion ( ) 1f y =  this provides  

 
( ) ( ) ( )

( ) ( ) ( )

cos 0, sin 0, , ,

sin 0, cos 0, , ,

x u y x v y u x y
y y

x u y x v y v x y
y y

   ∂ ∂
+ =   ∂ ∂   

   ∂ ∂
− + =   ∂ ∂   

           (7.3) 

They can be derived by integration of the Cauchy-Riemann equations for ana-
lytic functions and allow to determine the functions ( ),u x y  and ( ),v x y  if 
their values ( )0,u y  and ( )0,v y  on the imaginary axis are known. These eq-
uations simplify further if the function ( ) ( )( ) 0

0, ,
x

v y v x y
=

=  is vanishing and 
are then  

 ( ) ( ) ( ) ( ), cos 0, , , sin 0, .u x y x u y v x y x u y
y y

   ∂ ∂
= = −   ∂ ∂   

      (7.4) 

In this form they may be applied to the considered problem. 
Due to vanishing of ( )0 ,v x y  on the y-axis according to (6.11) for the func-

tion ( ) ( ) ( )0 0 0i , i ,w x y u x y v x y+ = +  to the Xi function ( )zΞ  we may directly 
apply relations (7.4) in the form  

 ( ) ( ) ( ) ( )0 0 0 0, cos 0, , , sin 0, .u x y x u y v x y x u y
y y

   ∂ ∂
= = −   ∂ ∂   

   (7.5) 

However, we may apply them also to the function ( )0 0,yu y  with  
( )0 0, 0yv y =  on the imaginary axis and they take on in this case the following 

form for the Imaginary part of ( )0w z z   

 
( ) ( ) ( ) ( )

( )( )

0 0 0 0

0

, , cos 0, sin 0,

cos 0, ,

u x y y v x y x x u y y x u y x
y y

x u y y
y

   ∂ ∂
+ = −   ∂ ∂   

 ∂
=  ∂ 

 (7.6) 

and for the Real part of ( )0w z z   

 

 

5The analogous form was given for known functions ( ),0u x  and ( ),0v x  on the x-axis which, 

however, is not needed here for our further investigations. 
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( ) ( ) ( ) ( )

( )( )

0 0 0 0

0

, , cos 0, sin 0,

sin 0, .

u x y x v x y y x u y x x u y y
y y

x u y y
y

   ∂ ∂
− = +   ∂ ∂   

 ∂
=  ∂ 

   (7.7) 

One sign in the operator identities on the right-hand side of (7.6) and (7.7) has 
changed in comparison to (7.4). This happened since ( )0 0,u y y  is now the 
Imaginary part of ( )0w z z  which alone is non-vanishing on the imaginary axis 
and from (7.3) follows for the reconstruction in this case  

 ( ) ( ) ( ) ( ), sin 0, , , cos 0, .u x y x v y v x y x v y
y y

   ∂ ∂
= =   ∂ ∂   

       (7.8) 

The equivalence of the two forms (7.5) and (7.6) to (7.4) can be also established 

by the following general identities in application of the operators cos x
y

 ∂
 ∂ 

 

and sin x
y

 ∂
 ∂ 

 to a product ( ) ( )f y g y  of two functions ( )f y  and ( )g y   

 
( ) ( )( ) ( ) ( )

( ) ( )

cos cos cos

sin sin ,

x f y g y x f y x g y
y y y

x f y x g y
y y

       ∂ ∂ ∂  =        ∂ ∂ ∂         
     ∂ ∂  −      ∂ ∂       

   (7.9) 

and in similar way  

 
( ) ( )( ) ( ) ( )

( ) ( )

sin sin cos

cos sin .

x f y g y x f y x g y
y y y

x f y x g y
y y

       ∂ ∂ ∂  =        ∂ ∂ ∂         
     ∂ ∂  +      ∂ ∂       

  (7.10) 

In their structure we find a striking similarity to the addition theorems for Cosine 
and Sine functions. Their derivation becomes simple if in intermediate calculations  

we make the transition to the complex displacement operators exp ix
y

 ∂
± ∂ 

 that  

we do not write down. We emphasize only that the braces { }  in (7.9) and 
(7.10) are understood in the sense that the operators inside do not exceed their 
action outside their brace limits. 

If we apply (7.9) and (7.10) to eigenfunctions ie py  and ie qy  of the operator 

Hermitean operator i
y
∂

−
∂

 then from (7.9) follows  

 
( )( ) ( )( ) ( ) ( )( ) ( )

( ){ } ( ){ } ( ){ } ( ){ }

i i i

i i i i

cos e cos i e ch e

ch e ch e sh e sh e ,

p q y p q y p q y

py qy py qy

x x p q x p q
y

xp xq xp xq

+ + + ∂
= + = + ∂ 

= +

 (7.11) 

and analogously  
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( )( ) ( )( ) ( ) ( )( ) ( )

( ){ } ( ){ } ( ){ } ( ){ }( )

i i i

i i i i

sin e sin i e ish e

i sh e ch e ch e sh e .

p q y p q y p q y

py qy py qy

x x p q x p q
y

xp xq xp xq

+ + + ∂
= + = + ∂ 

= +

 (7.12) 

This may be considered as alternative proof of the relations (7.9) and (7.10) 
which play a role for the transition from the imaginary axis to axes parallel to the 
imaginary axis. In the following the eigenvalues and eigenfunctions of the operator  

i
y
∂

−
∂

 play a main role. 

8. Principal Position of Analytic Zeros of Xi Functions in the  
Second Mean-Value Approach Including the Riemann  
Hypothesis 

As two independent conditions for zeros of the function (6.5) in considered case 
of monotonically decreasing Omega functions including step-wise constant Ome-
ga functions with incommensurable step lengths we derived (6.6) using (7.6) and 
(7.7). The result may be written  

 
( )( ) ( ) ( )

( )( ) ( ) ( ) ( )

0 0 0

0 0 0

sin 0, , , 0,

cos 0, , , , 1, 2, ,

x yu y xu x y yv x y
y

x yu y yu x y xv x y k k
y

 ∂
= − = ∂ 

 ∂
= + = π = ± ± ∂ 



 (8.1) 

We now introduce the abbreviation  

 ( ) ( )0 0 0, ,f y yu y≡                         (8.2) 

and may write then the conditions (1) shorter  

 
( )

( ) ( )

0

0

sin 0,

cos , 1, 2, ,

x f y
y

x f y k k
y

 ∂
= ∂ 

 ∂
= π = ± ± ∂ 



              (8.3) 

Since usually we do not know this function explicitly we will make a general 
expansion of ( )0f y  into a complete orthogonal set of eigenfunctions of the  

operator i
y
∂

−
∂

 to real eigenvalues p which are  

 ( ) ( ) ( )i i i1 d e , i e e , , .
2

p q y py pyy p q p p q
y

δ
+∞ −

−∞

∂
= − − = ∈

π ∂∫       (8.4) 

The given orthonormality using the delta “function” is well known. The expansion  

of ( )0f y  into the complete set of eigenfunctions ie py  of the operator i
y
∂

−
∂

  

is nothing else than the Fourier integral  

 ( ) ( ) ( ) ( )i i
0 0 0 0

1d e , d e .
2

py pyf y p f p f p y f y
+∞ +∞ −

−∞ −∞
= ⇔ =

π∫ ∫       (8.5) 

With this general assumption we now go into the conditions for zeros (8.1). 
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Inserting (8.5) into the two conditions (8.3) they take on the form  

 
( ) ( ) ( )

( ) ( ) ( ) ( )

i i
0 0

i i i
0 0

sin d e i d sh e 0,

cos d e d ch e d e .

py py

py py py

x p f p p px f p
y

x p f p p px f p k p p
y

δ

+∞ +∞

−∞ −∞

+∞ +∞ +∞

−∞ −∞ −∞

 ∂
= = ∂ 

 ∂
= = π ∂ 

∫ ∫

∫ ∫ ∫

 

 

(8.6) 

Due to orthonormality of the eigenfunctions in the Fourier expansion from 
these two equations follows  

 
( ) ( )
( ) ( ) ( ) ( )

0

0

sh 0,

ch , 1, 2, ,

px f p

px f p k p kδ

=

= π = ± ±







              (8.7) 

and we have to solve these two equations for the Fourier components ( )0f p  
from which the last is an inhomogeneous equation. The general solution of this 
infinite linear system with x as parameter is the general solution of the homoge-
neous equations plus special solutions of the inhomogeneous equation. 

The homogeneous equations to (8.7) are  

 
( ) ( )
( ) ( )

0

0

sh 0,

ch 0,

px f p

px f p

=

=





                         (8.8) 

Solutions for ( )0f p  may only exist at such values of the variable x for which 
( )sh 0px =  and ( )ch 0px =  that means ( )sh px  and ( )ch px  have to vanish 

simultaneously and since at these points we have simple zeros of the mentioned 
functions the general solutions of the two Equation (8.8) are6  

 

( )

( ) ( ) ( )

0
1

0
1

i i i ,
2

2 1 2 1
i i ,

2 2 2

k

k

k

k

a k kf p p p
x x

k kb
f p p p

x x

δ δ

δ δ

+∞

=

+∞

=

 π π    = − − +    
    

 − π − π   
= − + +         

∑

∑





     (8.9) 

with constants ka  and kb  and where we took into account the symmetry of 
Real and Imaginary part of the Xi function. These two solutions are contradic-
tory and exclude themselves mutually. The only way out of this dilemma is to 
assume  

 0,x =                             (8.10) 

meaning that there does not exist a common solution of the two homogeneous 
equations for finite variable x and therefore zeros for 0x ≠  off the imaginary 
axis. From the inhomogeneous Equation (8.7) inserting 0x =  follows then as 
general solution for zeros for the Fourier components ( )f p   

 ( ) ( ) ( )0 , 1, 2,f p k p kδ= π = ± ±

                 (8.11) 

and after inverse Fourier transformation according to (8.5) with the abbreviation  

 ( ) ( )0 , 1, 2, .f y k k= π = ± ±                   (8.12) 

This is our already known equation for zeros of the Xi function ( )zΞ  on the 

 

 

6Due to ( ) ( ) ( ) ( )1n nz z n zδ δ −= −  no derivatives of the delta function with 0n ≠  can be present in 

the solutions. 
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imaginary axis iz y= . 
We excluded in this way all “analytical” zeros off the imaginary axis in limit-

ing case of continuous Omega functions. Furthermore, for the limiting transi-
tion from the commensurable step-wise case all zeros off the imaginary axis go 
to complex infinity for step length 0 0u →  or do not provide any solution. 
Since to the included cases of Omega functions belongs also the Omega function 
to the Riemann Xi function ( )zΞ  it seems to be a proof of the Riemann hypo-
thesis that all zeros of the Riemann Xi function lie on the imaginary axis and 
thus also all nontrivial zeros of the Riemann zeta function ( )sζ . For the mod-
ified Bessel functions mentioned in Section 1 for which this property is already 
proved by their differential equations (e.g., [25] [26]) this would be an alterna-
tive proof. We think that the commensurable step-wise cases within all cases of 
monotonically decreasing Omega functions play a similar role as the rational 
numbers within all real numbers. 

9. Some Further Remarks to the Derivations According to  
the Bonnet Approach 

One may be astonished and it was an essential problem that in the Second 
mean-value approach we found according to (8.10) that all zeros lie on the im-
aginary axis whereas in the commensurable step-lengths approach we obtained 
also zeros off the imaginary axis. We could, however, show that for vanishing 
step lengths 0 0u →  the additional zeros off the imaginary axis go to complex 
infinity. For this purpose we followed the derivation of Second mean-value 
(Bonnet) approach in the cited monographs [16] [17] [18] and could not dis-
cover a defect in their correctness also for the case of the commensurable 
step-wise approach. They are derived in mentioned sources for real mean vales. 
We extended it to the complex analytic mean-value function ( )0w z  that is ap-
parently justified for the whole complex integral (1.6) for continuous Omega 
functions but only not for the commensurable step-wise case where we could 
separate a factor ( )0sh u z  (see (3.3)) with its own zeros which are moreover pe-
riodically on the imaginary axis and the remaining functions with real and imagi-
nary part cannot be unified to an analytic function. In this case as it seems to us one 
has to introduce two different mean-value function ( )1 ,u x y  and ( )2 ,v x y  sepa-
rately instead of one analytic mean-value function ( ) ( ) ( )0 0 0, i ,w z u y y v x y= + . 
These functions which are then involved into real and imaginary part can be 
calculated according to (A.1) in the following way  

 

( ) ( )
( )( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( )
( )( ) ( )( ) ( )( ) ( )( )

1

2

( , )

0

1 1 1 1
2 2

,

0

2 2 2 2
2 2

d ch cos

sh , cos , ch , sin ,
,

d sh sin

ch , sin , sh , cos ,
.

u x y

v x y

u ux uy

x u x y x u x y y y u x y x u x y y
x y

u ux uy

x v x y x v x y y y v x y x v x y y
x y

+
=

+

−
=

+

∫

∫
   (9.1) 
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We did not investigate this up to now. 
What was incorrect or even wrong in our article [15]! We obtained only the  

“analytic” zeros which are involved in 
( )( )0sh w z z

z
 and, principally, lie on the  

imaginary axis iz y= . Moreover, this was not shown in such evident way as it is 
made in present paper in Section 8 by derivation of the contradiction (8.9) for 
the homogeneous solutions for the Fourier components of the function in the 
Hyperbolic Sine. The “non-analytic” solutions which are possible in the com-
mensurable step-wise case (and, apparently, are possible only in this case as the 
limiting case 0 0u →  suggests) were not seen since they are not contained in  

the function (6.3). The operator identity 2 2cos sin 1x x
y y

   ∂ ∂
+ =   ∂ ∂   

 which  

was applied there to the mean-value function was a faux pas and may be only 
used for identical transformations and simplifications but cannot provide new 
conclusions for the position of the zeros. However, using it one may see that the 
homogeneous equations to (8.6) or (8.7) are contradictory without providing a 
solution for 0x ≠ . Our paper [19] was not intended as approach to a proof of 
the Riemann hypothesis and similar theorems for the modified Bessel function 
and was merely intended as illustration what one may expect for the zeros going 
from lower to higher approximations in Taylor series expansion of the Xi func-
tion but it was there shortly sketched the idea that one may establish for the 
commensurable step-wise case the exclusion of all additional zeros (now called 
“non-analytic” ones) off the imaginary axis and which go to complex infinity in 
the limiting case of vanishing step length. The execution of this plan in present 
paper proved to be much more difficult and branched than thought at this time. 

10. Monotonic Decrease of Omega Function as Sufficient (or  
Necessary (or Both)) Condition for Zeros of Xi Functions  
Only on the Imaginary Axis 

The monotonic decrease of the Omega function ( )uΩ  in the integral  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1

0
d ch , 0, lim 0,n

u
z u u uz u u

+∞

→+∞
Ξ = Ω Ω ≤ Ω =∫     (10.1) 

is a necessary condition for the applicability of the Second mean-value approach 
of integration (Bonnet method) but it is not necessary for more general Xi func-
tions ( )zΞ  which may possess zeros only on the imaginary axis iz y= . This 
becomes already evident since by multiple partial integration the integral (10.1) 
under smoothness conditions of ( )uΩ  at 0u =  can be transformed to  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
2 0

2 1
2 1 0

1 d ch

1 d sh , 0,1,2, ,

n
n

n
n

z u u uz
z

u u uz n
z

+∞

+∞ +
+

Ξ = Ω

= − Ω =

∫

∫ 

      (10.2) 

where already ( ) ( )1 uΩ  is not monotonically decreasing (or increasing) and 
( ) ( )2 uΩ  is not even definite. 
We consider now two simple examples of Omega functions which are not 
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monotonically decreasing but lead to a Xi function with zeros only on the im-
aginary axis. The first example is (Figure 2(a))  

 ( ) ( ) ( )
( )3

2
3
2

3 !I
242 2 , ch .

3

2

az
u u uu z a az
a a a az

θ

 
 
    Ω = − − ⇒ Ξ =   

     
 
 

 (10.3) 

It is known that the modified analytic Bessel function  

( ) ( ) ( )( )3
2
3 3
2

3 !I
3 ch sh2

2

t
t t t

tt

 
  − 

=
 
 
 

 possesses zeros only on the imaginary axis and 

for the factor ( )ch t  this is evident. The second example is (Figure 2(a))  

 ( ) ( ) ( )

2

sh
21 1 2 , ch ,

2

az
u uu z a az

aza a
θ

  
        Ω = − − − ⇒ Ξ =       

 
 

 (10.4) 

with 
( ) ( )1

2
1
2

1 !I
2 sh

=

2

t
t

tt

 
 
 

 
 
 

. We see that also in this case the Xi function possesses  

zeros only on the imaginary axis. In addition, we see that the zeros of the second 
factor are not simple zeros but possess the multiplicity 2 (double zeros). These 
two cases are not comprised by the Second mean-value approach to the integral 
(10.1) and already ( )0Ω  which is needed in this approach (6.3) is in these two 
cases vanishing ( )0 0Ω = . 
 

 
(a)                                                       (b) 

Figure 2. Four Omega functions to the explanation of properties of Xi functions ((a) and (b)). In the first two examples the 
Omega functions ( ( )xθ  Heaviside step function) are not monotonically decreasing to zero but, nevertheless, the corres-

ponding Xi functions possess zeros only on the imaginary axis. We know from the transition (1.6) to a representation by 
the derivative of the Omega function that this must hold also under certain condition if the Omega function consist of two 
parts, a monotonically increasing and a monotonically decreasing part. In the two other examples the Omega functions are 
not decreasing faster than exponentially and the integral for the Xi function is not convergent in the whole z-plane. The Xi 
functions possess then poles in these cases.  
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The considerations show that monotonic decreasing of the Omega function 
does not belong to the necessary conditions for the absence of zeros in the Xi 
functions off the imaginary axis. However, it is a sufficient criterium for zeros 
only on the imaginary axis due to the applicability of the Second mean-value 
approach in this case to the integral (10.1), where the step-wise constant Omega 
functions with commensurable step length have to be excluded that means a set 
of measure zero within the whole set of possible Omega functions. 

The Omega function in (10.1) has to vanish in infinity so rapidly that the 
integral exists. If the convergence is only guaranteed for a part of the z-plane as  

it is the case for decrease such as functions exp u
a

 − 
 

 with positive fixed a then  

appear also poles in the Xi function as the following two examples show, first 
(Figure 2(b))  

 ( ) ( ) 2 2exp , ,
1

u au z
a a z

 Ω = − ⇒ Ξ =  − 
             (10.5) 

with two simple poles on the real axis at 1z
a

=  and 1z
a

= −  but without zeros, 

and second (Figure 2(b))  

 ( ) ( )1 , ,
ch 2cos

2

au z
u az
a

π
Ω = ⇒ Ξ =

π   
   
   

           (10.6) 

with an infinite series of simple poles on the real axis at  

( )2 1, 0, 1, 2,mz m
a
+

= = ± ±   (the lowest two agree with that of (10.5)) but also  

without zeros at all. In the last two cases the integral (10.1) does not converge in 
the whole z-plane. 

We mention here in addition the instructive example of linear decrease of the 
Omega function ( )uΩ  up to ( ) 0aΩ =  for a finite value u a=   

 ( ) ( ) ( )

2

sh
21 , .

2
2

az
u au a u z

aza
θ

  
      Ω = − − ⇒ Ξ =    

 
 

        (10.7) 

It leads to zeros only on the imaginary axis at ( )2i , 1, 2,k
kz z k
a
π

= = = ± ±  .  

However, these zeros are double zeros, the same as for the second factor in 
(10.4)). This example shows that not in all cases for monotonically decreasing 
Omega functions one obtains Xi functions with only simple zeros on the imagi-
nary axis. Considered for the whole real axis 0 u≤ < ∞  this is not a strictly 
monotonically decreasing Omega function. 

11. Conclusions 

Two functions plaid in our derivations the main role: the Xi function ( )zΞ  of 
the complex variable z and the Omega function ( )uΩ  of the real variable u 
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which are connected by the integral in (1.6). The Omega function is supposed to 
be a monotonically (non-strictly) decreasing function up to zero in infinity for 
u →∞  and it is stated that the Xi function possesses zeros only on the imagi-
nary axis y if the Omega function is not a step-wise constant function with 
commensurable step lengths. The step-wise constant Omega functions with 
commensurable step lengths are taken as approximations of the considered Xi 
function with final limiting procedure of step length 0u  going to zero where 
the zeros which do not lie on the imaginary axis and a part of additional zeros on 
the imaginary axis go to complex infinity. We show that due to splitting of their 
Xi function into the product (3.3) they possess two different kinds of zeros 
where the zeros of first factor are not restricted to the imaginary axis but go to 
complex infinity in the limiting case of vanishing step lengths whereas the zeros 
of the second factor stabilize to the “genuine” zeros of the considered function 
and are restricted to the imaginary axis. Since the made assumptions are true for 
the Omega function to the Riemann Xi function this proves if correct also the 
Riemann hypothesis that all non-trivial zeros of the Riemann zeta function lie on  

the axis parallel to the imaginary axis with real part 
1
2

. This is accomplished in  

Section 8 by an, apparently simple, proof. Our approach is very similar to the 
primary introduction of the notion of a definite integral of a function by making 
first a step-wise approximation of the function and then going to zero with the 
step lengths by a limiting procedure. 

The further considerations of this article (Sections 6 - 8) show that the treat-
ment by the Second mean-value theorem is an alternative one to other ap-
proaches. To exclude the cases of Xi functions with zeros off the imaginary axis 
was absent in our article [15] and is here made. In Section 10, it is clarified 
which role plays the condition of monotonic decrease of the Omega function 
with the result that it is sufficient for presence of zeros only on the imaginary 
axis (under the other made assumptions) but is not necessary for this. We give 
examples with not monotonically decreasing Omega functions which lead to Xi 
functions with zeros only on the imaginary axis. In our examples these zeros are 
not simple zeros in all cases. In case of Omega functions which decrease in infin-
ity only as simple exponential function (exponent proportional only to variable 
u) the integral (1.6) is no more convergent in the whole complex z-plane and 
there appear poles in the Xi function. 

It seems to us that also an approach from the zeros of Taylor series approxi-
mations of the Xi function should be possible in case if it is perfectly possible to 
prove that in the transition to next higher approximations all zeros off the im-
aginary axis go to complex infinity and only the zeros on the imaginary axis sta-
bilize as the “genuine” zeros of the Xi functions to continuous Omega functions 
with the supposed properties. The considered illustrations in [19] show such a 
behavior but a difficulty of the analytic treatment in this way is here that the 
transition from an approximation to the next higher approximation is hardly 
possible in perfect analytic form without further approximations leading finally 
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to quadratic equations which are then easily to solve. 
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Appendix A 

A category of proper and improper integrals over products of Hyperbolic 
and Trigonometric functions 

For the separate application of the second mean-value approach (Bonnet ap-
proach) to Real- and Imaginary part of (1.7) we derive here some proper and 
corresponding improper integrals where the last lead to Generalized functions. 

The first two (proper) integrals with real parameter a which we need for the 
Bonnet approach are known with the result  

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )
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∫

∫
      (A.1) 

For a possible approach of the Bonnet approach to the lower representation in 
(1.7) separately to the increasing and decreasing part (not made in this article) 
we give the following two analogous integrals  
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+

∫

∫
   (A.2) 

We calculate now the corresponding improper integrals for a → +∞  and 
start from the following two integrals which are well known from the theory of 
Fourier transformation of Generalized functions (e.g., [27], chap. II, §5, (15), 
(15’) and §9, (31), (31’), and from many others)  

 
( )
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               (A.3) 

where   applied to a function means that the principal value is to take at the 
singularity of the kind of a simple pole. As a consequence of these relations follows  

 ( ) ( ) ( )
0 0

1d cos , d sin .u uy y u uy
y

δ
+∞ +∞

= π =∫ ∫            (A.4) 

From this follows by changing the order of differentiation and integration  
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Using Taylor series expansions of the Hyperbolic functions we generalize this 
now to a category of improper integrals from which the first is calculated more 
in detail as follows  
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Together with further such improper integrals calculated in analogous way this 
provides  
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          (A.7) 

We emphasize that such generalized functions as ( )iy xδ −  and 1
iy x−

  do  

not belong to the mostly considered spaces of Generalized function ′  or ′  
but to the space ′  of Fourier transformations of functions of ′  over the 
space   of Fourier transforms of basic functions of   and, clearly here, of 
two variables ( ),x y  with the possibility to extend the range of definition of the 
variables to complex ones. 
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