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Abstract 
The traditional estimation of Gaussian mixture model is sensitive to heavy- 
tailed errors; thus we propose a robust mixture regression model by assuming 
that the error terms follow a Laplace distribution in this article. And for the 
variable selection problem in our new robust mixture regression model, we 
introduce the adaptive sparse group Lasso penalty to achieve sparsity at both 
the group-level and within-group-level. As numerical experiments show, 
compared with other alternative methods, our method has better perfor-
mances in variable selection and parameter estimation. Finally, we apply our 
proposed method to analyze NBA salary data during the period from 2018 to 
2019. 
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1. Introduction 

The mixture regression model is a powerful tool to explain the relationships be-
tween the response variable and the covariates when the population is heteroge-
neous and consists of several homogeneous components, and the early research 
can trace back to [1]. In 1977, EM algorithm was first proposed by [2]; it greatly 
simplified the solution procedure of the mixture regression model. Then the 
mixture regression model attracted a lot of interest from statisticians; it was 
widely applied in many fields, such as business, marketing and social sciences. 
See [3] [4] [5] for example. 

Recently, the research about the mixture regression model is becoming more 
and more detailed. On the one hand, statisticians paid attention to improving 
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the robustness of mixture regression model, [6] used the t-distribution for over-
coming the influence of outliers and [7] introduced a robust mixture regression 
model by assuming the error terms follow a Laplace distribution. Further, Wu et 
al. [8] dropped any parametric assumption about the error densities and pro-
posed the mixture of quantile regressions model. On the other hand, variable se-
lection became a research hotspot in mixture regression modeling. Khalili and 
Chen [9] considered a class of penalization methods, including L1-norm penalty, 
SCAD penalty and Hard penalty. Furthermore, the adaptive Lasso was introduced 
as a penalty function in [10], and [11] suggested the use of the Lasso-penalized 
mixture regression model as a screening mechanism in a two-step procedure. 

However, the above regularization methods are more focused on individual 
variable selection. They all ignore the grouping structures which describe the 
inherent interconnections among predictors. It may lead to inefficient models. 
In order to achieve both the robustness of mixture regression model and correct 
identification of group structures, we assume random errors follow a Laplace 
distribution and consider a situation that covariates have natural grouping 
structures, where those in the same group are correlated. In this case, variable 
selection should be conducted at both the group-level and within-group-level; 
thus we use the adaptive sparse group Lasso [12] as a penalty function of our 
proposed mixture regression model and adopt EM algorithm to estimate the 
mixture regression parameters. Moreover, under some mild conditions, we can 
prove that the maximum penalized log-likelihood estimators are both sparse and 

n -consistent simultaneously. 
The rest of this article is organized as follows. In Section 2, we introduce the 

robust mixture regression model based on Laplace distribution and adopt the 
adaptive sparse group Lasso for variable selection. In Section 3, we prove some 
asymptotic properties for our proposed method. In Section 4, we solve the prob-
lem of tuning parameters and components selection. Section 5 conducts a nu-
merical simulation to evaluate the performance of our method. In Section 6, we 
apply our proposed method to NBA salary data. Finally, the conclusion of this 
paper is given in Section 7. 

2. Model Overview 
2.1. Robust Mixture Regression with Laplace Distribution 

Let ( ) ( ){ }1 1, , , ,n ny yx x  be a random sample of observations from the popu-
lation ( ), yx , where ( )T

1, , p
px x= ∈x    is a p-dimensional covariate vector, 

and y∈  is the response variable which is dependent on corresponding x . 
Furthermore, for g mixture components, we can say that ( ), yx  follows a mix-
ture linear regression model based on a normal distribution if the conditional 
density of y given x  is 

( )
( )2T

221
| , exp ,

22

g j jj

j jj

y
f y

απ
σπσ=

 − − = −  
 

∑
x

x Ψ
β

          

(1) 

https://doi.org/10.4236/apm.2020.101004


J. T. Wang, W. Z. Ye 
 

 

DOI: 10.4236/apm.2020.101004 41 Advances in Pure Mathematics 
 

where the mixing probabilities satisfy 1 1g
jj π

=
=∑ , 0jπ >  and the parameter

( )2 2
1 1 1 1, , , , , , , ,g g g gπ α σ π α σ= Ψ β β . For the jth mixture component, there are 

intercept jα ∈ , regression coefficients ( )T
1, ,j j jpβ β= β  and variance 

( )2 0j jσ σ > . 
It is known that the mixture linear regression model is sensitive to outliers or 

heavy-tailed error distributions, and outliers impact more heavily on the mixture 
linear regression model than on the usual linear regression model, since outliers 
not only affect the estimation of the regression parameters, but also possibly to-
tally blur the mixture structure. In order to improve the robustness of the esti-
mation procedure, we introduce a robust mixture regression model with a Lap-
lace distribution 

( )
T

21

2
| , exp .

2

g
j jj

j jj

y
f y

απ
σσ=

 − −
 = −
 
 

∑
x

x Ψ
β

          

(2) 

Then we can estimate the unknown parameter Ψ  by maximizing the 
log-likelihood function 

( )
T

21 1

2
log exp .

2

gn i j i jj
n

i j jj

y
L

απ
σσ= =

 − −
 = −
 
 

∑ ∑
x

Ψ
β

         

(3) 

2.2. Adaptive Sparse Group Lasso for Variable Selection 

Now, we consider a situation that covariates have natural grouping structures 

and can be divided into K groups as [ ] [ ] [ ]( )T1 T T T, , , ,k K p= ∈x x x x    by  

some known rules, where [ ] [ ] [ ]( )T

1 , ,
k

kk k
px x=x   is a group which contains kp  

variables and 1
K

kk p p
=

=∑ . Then, the log-likelihood function can be written as 

( )
[ ] [ ]T

1

21 1

2
log exp ,

2

K k k
gn i j i jkj

n
i j jj

y
L

απ
σσ

=

= =

 − −
 = −  
 

∑
∑ ∑

x
Ψ

β

      

(4) 

where [ ] [ ] [ ]( )T

1 , ,
k

kk k
j j jpβ β= β . 

In order to exploit the grouping structures of covariates, we apply the adaptive 
sparse group Lasso (adaSGL) to the robust mixture regression model, the pena-
lized log-likelihood function 

( ) ( ) ( ).n n nF L P= −Ψ Ψ Ψ                     (5) 

Here 

( ) [ ]
1 2

1 1 1 1
,

g p g K
k

n j jt jt j jk j
j t j k

P n nπ λ β π λ
= = = =

= +∑ ∑ ∑ ∑Ψ β
           

(6) 

where .  represents the Euclidean norm, 1 1jt j jtλ λ ω=  and 2 2jk j jkλ λ ξ= . 
Moreover, the weights are defined based on the maximum penalized log-likelihood 
estimator Ψ  when ( )nP Ψ  is a Lasso penalty, 

[ ] 11
,   .k

jt jt jk jω β ξ
−−

= = β
                   

(7) 
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Next, we follow the approach of Hunter and Li [13] and consider to maximize 
the ε -approximate penalized log-likelihood function 

( ) ( ) ( ), , .n n nF L Pε ε= −Ψ Ψ Ψ                    (8) 

Here 

( ) [ ]22 2 2
, 1 2

1 1 1 1 1

kpg p g K
k

n j jt jt j jk jt
j t j k t

P n nε π λ β ε π λ β ε
= = = = =

= + + +∑ ∑ ∑ ∑ ∑Ψ
     

(9) 

for some small 0ε > , and the weights are 

( ) [ ]
1 2

1 2 22 2 2

1
,    .

kp
k

jt jt jk jt
t

ω β ε ξ β ε
−

−

=

 
= + = + 

 
∑ 

           
(10) 

Following Hunter and Li [13], we can similarly show that ( ) ( ), 0n nF Fε − →Ψ Ψ  
uniformly as 0ε → , over any compact subset of the parameter space. 

2.3. EM Algorithm for Robust Mixture Regression 

However, the above penalized log-likelihood does not have an explicit maximiz-
er. We introduce an EM algorithm to simplify the computation and denote ijZ  
as a latent Bernoulli variable such that 

( )1, if th observation , is from th component;
0, otherwise.

i i
ij

i y j
Z


= 


x

      
(11) 

If the complete data set ( ), ,=T X Y Z  is observable, the complete log-likelihood 
function is 

( )
[ ] [ ]T

1

21 1

2
; log exp ,

2

K k k
gn i j i jkj

n ij
i j jj

y
L Z

απ
σσ

=

= =

  − −  = −      

∑
∑∑

x
TΨ

β

  

(12) 

where ( )T
1, , n=X x x , ( )1, , ny y=Y   and ( )11, , ngZ Z=Z  . 

According to Andrews and Mallows [14], we know that a Laplace distribution 
can be expressed as a mixture of a normal distribution and another distribution 
related to the exponential distribution. To be specific, there are latent scale va-
riables ( )1, , nV V=V   such that we have the complete log-likelihood function 

( )
[ ] [ ]( )2T2

1

221 1

3 2
1 1

; log exp

1 1log exp ,
2

K k k
gn i i j i jkj i

n ij
i j jj

gn

ij
i j i i

V yV
L Z

Z
V V

απ
σπσ

=

= =

= =

  − −  = −  
    
  

+ −  
   

∑
∑∑

∑∑

x
DΨ

β

 

(13) 

where ( ),=D T V . Naturally, we can obtain the penalized complete log-likelihood 
( ) ( ) ( ), ,; ;n n nF L Pε ε= −D DΨ Ψ Ψ . 

Suppose that ( )rΨ  is a parameter estimate for the rth iteration. In E step of 
EM algorithm, we can get ( ) ( )

, ; | , r
nE F ε

 
 D SΨ Ψ  by calculating 

( ) ( ) ( ) ( )2| , ,    | , , 1 ,r r r r
ij ij ij i ijE Z E V Zτ δ   = = =   S SΨ Ψ

        
(14) 
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where ( ),=S X Y . And we can show that 

( )
( ) ( ) ( ) [ ] [ ]( ) ( )( )

( ) ( ) ( ) [ ] [ ]( ) ( )( )
T1 1

1

T1 1
1 1

exp 2

exp 2

K k k rr r r r
j j i j i j jkr

ij g K k k rr r r r
j j i j i j jj k

y

y

π σ α σ
τ

π σ α σ

− −
=

− −
= =

− − −
=

− − −

∑

∑ ∑

x

x

β

β
    

(15) 

and 

( )
( )

( ) [ ] [ ]( )T
1

.
2

r
jr

ij K k k rr
i j i jky

σ
δ

α
=

=
− −∑ x β

              

(16) 

The calculation for ( )r
ijδ  follows the same argument as in Phillips [15]. 

In M step, we will maximize ( ) ( )
, ; | , r

nE F ε
 
 D SΨ Ψ  for updating Ψ . Now, 

we follow the tactic of [16] and find a local quadratic approximation of 2 2ψ ε+ , 
2 2

2 2 2 2 0
0 2 2

02

ψ ψ
ψ ε ψ ε

ψ ε

−
+ + +

+


               
(17) 

in a neighborhood of 0ψ . Then, we can replace the penalty function ( ),nP ε Ψ  
in ( )1 thr +  iteration by 

( )( ) ( )
( )

( )

( )
[ ] [ ]( )( )

( )

22

, 1
1 1

2 2
1

2
1 1

;
2

,
2

k

rg p
jt jtr r

n j jt jt r
j t jt

p k k r
g K jt jttr

j jk jk r
j k jk

P n

n

ε

β β
π λ η

η

β β
π λ γ

γ

= =

=

= =

 −
 = +
  
 −
 + +
 
  

∑ ∑

∑
∑ ∑

 Ψ Ψ

     

(18) 

where ( ) ( )2 2r r
jt jtη β ε= +  and ( ) [ ]( )2 2

1
kp k rr

jk jttγ β ε
=

= +∑ . Similarly, from Lange 
[17], we have 

( ) ( )
2 2T T

0 0
1

1 p

t t t
t

y y px
p

α α ψ ψ
=

 − − − − − − ∑x xψ ψ
        

(19) 

in a neighborhood of ( )T
0 01 0, , pψ ψ= ψ , where p is the dimensionality of ψ . 

And we apply (19) to ( ) ( )
, ; | , r

nE L ε
 
 D SΨ Ψ , there is a local approximation 

( )( ); rQ Ψ Ψ  of ( ) ( )
, ; | , r

nE F ε
 
 D SΨ Ψ  

( )( )
( )

( )
( ) ( )( )

( ) ( )
[ ] ( )

( )
( )

( )

2
T

2
1 1 1

1 2 22 2

1 1 1 1 1 1

2

1
1 1

;

1log log
2 2

2

k

r

rg pn
ijr r r

ij i j i j it jt jt
i j tj

pg p gK n
jt jk k r

j jt jt ij j jr r
j t k t i jjt jk

rg p
jtr

j jt jt r
j t jt

Q

y px
p

n

n

δ
τ α β β

σ

λ λ
π β β τ π σ

η γ

β
π λ η

η

= = =

= = = = = =

= =

 = − − − − − 

    − + + −     

 
 − −
 
 

∑∑ ∑

∑ ∑ ∑ ∑ ∑∑

∑ ∑

x

Ψ Ψ

β

( )
[ ]( )

( )

( ) ( )
( )

2
1

2
1

1 1

2

1 1log log
2 2

kp k rK
jtr t

jk jk r
k jk

gn
r r

ij ij r
i j ij

β
λ γ

γ

τ π δ
δ

=

=

= =

  
  + −

    
 
 − + +
 
 

∑∑

∑∑
 

(20) 

in a neighborhood of ( )rΨ . Note that (20) can be block-wise maximized in the 
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coordinates of the parameter components π , α , β  and 2σ . Here, 

( )1, , gπ π= π , ( )1, , gα α= α , ( )11, , gpβ β= β  and ( )2 2 2
1 , , gσ σ= σ . 

Under the constraints that 1 1g
jj π

=
=∑  and 0jπ > , we adopt Lagrangian 

multiplier to update π  by solving 
( ) ( ) ( ) ( )( )2, , , ; ,r r r rQ∇ = 0Ψπ α β σ

                
(21) 

where ∇  is the gradient operator, ζ  is a positive scalar and 0  is a zero vec-
tor. Then we have the set of simultaneous equations 

0,j j ja bπ ζ− − =                       (22) 

where ( )
1

n r
j ijia τ

=
= ∑  and ( ) ( )

1 21 1
p Kr r

j jt jt jk jkt kb n nλ η λ γ
= =

= +∑ ∑ , for each j. 

According to ( )j j ja bπ ζ= +  and 1 1g
jj π

=
=∑ , we can obtain the unique 

root *ζ  by solving the equation 

1
1 0.

g
j

j j

a
b ζ=

− =
+∑

                       
(23) 

Therefore, the ( )1 thr +  iterate 

( )1
* .jr

j
j

a
b

π
ζ

+ =
+                        

(24) 

Furthermore, by solving ( ) ( ) ( )( )1 2, , , ;r r rQ +∇ = 0Ψπ α β σ , we have the updates 

( )
( ) ( ) ( )( )

( ) ( )

T
11

1

n r r r
ij ij i i jir

j n r r
ij iji

yτ δ
α

τ δ
=+

=

−
=
∑

∑
x β

                
(25) 

and 

( )
( ) ( ) ( ) ( )( )

( )

21 T
12 1

1

2
.

n r r r r
ij ij i j i jir

j n r
iji

yτ δ α
σ

τ

+
=+

=

− −
=
∑

∑
x β

           
(26) 

Similarly, for the parameter jtβ  in kth group, we obtain the updated formula 

( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( )

1 T
11

1 2 1 2
1 2 1

2

2

n r r r r r
ij ij it i j i j it jtir

jt nr r r r r r
j j jt jt jk jk ij ij iti

x y px

n p x

τ δ α β
β

π σ λ η λ γ τ δ

+
=+

+ +
=

− − +
=

+ +

∑
∑

x β

     

(27) 

by solving ( ) ( ) ( ) ( )( )1 1 2 1, , , ;r r r rQ + + +∇ = 0Ψπ α β σ . 
Based on the above, we propose the following EM algorithm. 
1) Choose an initial value ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 0 0 0 2 0 0 0 0 2 0

1 1 1 1, , , , , , , ,g g g gπ α σ π α σ= Ψ β β . 
2) E-Step: at the ( )1 thr +  iteration, calculate ( )r

ijτ  and ( )r
ijδ  by (15) and (16). 

3) M-Step: at the ( )1 thr +  iteration, update jπ , jα , 2
jσ  and jtβ  by (24), 

(25), (26) and (27). 
4) Repeat E-Step and M-Step until convergence is obtained. 
Note that if a perfect least absolute deviation (LAD) fit occurs in EM algo-

rithm, i.e. ( ) ( )T 0r r
i j i jy α− − ≈x β  for some i, j and r. As a result, ( )1r

ijδ
+  will be-

come very large and numerical instability. In this article, we simply introduce a 
hard threshold to control the extremely small LAD residuals, ( )1r

ijδ
+  will be as-

signed a value of 106 when the perfect LAD fit occurs. 
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2.4. Convergence Analysis 

The EM algorithm is iterated until some convergence criterion is met. Let tol be 
a small tolerance constant and M be the maximum iterations for the proposed 
algorithm, we believe the algorithm has converged to an ideal state when 

( )( ) ( )( )1
, , ,r r

n nF F tolε ε
+ − <Ψ Ψ

                 
(28) 

or the iterations over the maximum iterations M. See [17] for details regarding 
the relative merits of convergence criteria. 

According to Dempster et al. [2], each iteration of the E step and M step of 
EM algorithm monotonically non-decreases the objective function (8), i.e.  

( )( ) ( )( )1
, , 0r r

n nF Fε ε
+ − ≥Ψ Ψ , for all 0r ≥ . Moreover, Wu [18] proved that if the 

EM sequence ( ){ }rΨ  coverges to some point *Ψ , *Ψ  is a stationary point of  

(8) under some general conditions for ( ),nF ε Ψ  and ( ) ( )
, ; | , r

nE F ε
 
 D SΨ Ψ . 

Given the facts above, in this article, we run multiple times from different initia-
lizations ( )0Ψ  in order to obtain an appropriate limit point. 

3. Asymptotic Properties 

For the regression coefficient vector jβ  in jth component, we can separate it 
into ( )TT T

1 2,j j j=β β β , where 1 jβ  is the set of non-zero effects and 2 jβ  is the 
set of zero effects. Naturally, we decompose the parameter ( )1 2,=Ψ Ψ Ψ  such 
that 2Ψ  contains all zero effects, namely 2 jβ , 1, ,j g=  . The true parameter 
is denoted as 0Ψ  and the elements of 0Ψ  are denoted with a subscript, such 
as 0 jtβ . 

For the purpose of easy discussion, we define { }1 0,
max : 0n jt jtj t

a λ β= ≠ , 

[ ]{ }*
2 0,

max : k
n jk jj k

a λ= ≠ 0β , { }1 0,
min : 0n jt jtj t

b λ β= = ,  

[ ]{ }*
2 0,

min : k
n jk jj k

b λ= = 0β . Furthermore, we let ( );f z Ψ  be the joint density 
function of ( ), y=z x  and Ω  be an open parameter space. In order to prove 
the asymptotic properties of the proposed algorithm, some regularity conditions 
on the joint distribution of z  are also required. 

A1. The density ( );f z Ψ  has common support in z  for all ∈Ψ Ω  and 
( );f z Ψ  is identifiable in Ψ  up to a permutation of the components of the 

mixture. 
A2. For each ∈Ψ Ω , the density ( );f z Ψ  admits third partial derivatives 

with respect to Ψ  for almost all z . 
A3. For each 0 ∈Ψ Ω , there are functions ( )1M z  and ( )2M z  (possibly 

depending on 0Ψ ) such that for Ψ  in a neighborhood of ( )0N Ψ , 

( ) ( ) ( ) ( ) ( ) ( )
2 3

1 1 2

; ; log ;
, ,

u u v u v w

f f f
M M M

∂ ∂ ∂
≤ ≤ ≤

∂Ψ ∂Ψ ∂Ψ ∂Ψ ∂Ψ ∂Ψ
z z z

z z z
Ψ Ψ Ψ

 

such that ( )1 dM < ∞∫ z z  and ( ) ( )2 ; dM f < ∞∫ z z zΨ . 
A4. The Fisher information matrix 
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( ) ( ) ( )
T

log ; log ;I E f f
 ∂ ∂    =     ∂ ∂     

z zΨ Ψ Ψ
Ψ Ψ

 

is finite and positive definite for each ∈Ψ Ω . 
Theorem 1. Let ( ),i i iy=z x , 1, ,i n=  , be a random sample from the joint 

density function ( );f z Ψ  that satisfies the regularity conditions A1-A4. Sup-
pose that 0p

nna →  and * 0p
nna → , as 0n → , then there is a local max-

imizer ˆ
nΨ  of the model (5) for which 

{ }1 2
0

ˆ ,n pO n−− =Ψ Ψ  

where p→  represents convergence in probability. 
Proof. Let 1 2

nr n−= . It suffices that for any given 0ε > , there is a constant 
Mε  such that 

( ) ( )0 0lim sup 1 .n n nn M
P F r F

ε

ε
→∞ =

 
+ < ≥ − 

 
Ψ Ψ

µ
µ

           
(29) 

Now, there is a local maximum in { }0 :nr Mε+ ≤Ψ µ µ  with large probabil-

ity, and this local maximizer ˆ
nΨ  satisfies ( )0

ˆ
n p nO r− =Ψ Ψ . Then we let 

( ) ( ) ( )
( ) ( ) ( ) ( )

0 0

0 0 0 0 .
n n n n

n n n n n n

F r F

L r L P r P

∆ = + −

   = + − − + −   

µ µ

µ µ

Ψ Ψ

Ψ Ψ Ψ Ψ
     

(30) 

Without loss of generality, we assume that the first jd  coefficients of 0 jβ  
are non-zero and the first jK  groups contain all non-zero effects of 0 jβ , 
where 0 jβ  is the true regression coefficient vector in the jth component of the 
mixture regression model. Hence, we have 

( ) [ ]
0 1 0 2 0

1 1 1 1
.

j jd Kg g
k

n j jt jt j jk j
j t j k

P n nπ λ β π λ
= = = =

= +∑ ∑ ∑ ∑Ψ β
         

(31) 

Since ( )0n nP r+Ψ µ  is a sum of non-negative terms, removing terms corres-
ponding to zero effects makes it smaller, 

( ) ( ) ( )

[ ] [ ] [ ]

0 0

1 0 0
1 1

2 0 0
1 1

.

j

j

n n n n
dg

j jt jt n jt jt
j t

Kg
k k k

j jk j n j j
j k

L r L

n r

n r

π λ β µ β

π λ

= =

= =

∆ ≤ + −

 − + − 

 − + − 

∑ ∑

∑ ∑

µ µ

β µ β

Ψ Ψ

          

(32) 

By Taylor’s expansion, triangular inequality and arithmetic-geometric mean 
inequality, 

( ) ( ) ( ) ( ) ( ){ }

[ ] [ ] [ ]

T1 2 T
0 0 0 0

1 0 0
1 1 1

*
2 0 0

1 1 1

1 1 1 ,
2

,

.

j

j

n n n n p

dg g

j jt jt n jt jt n j
j t j

Kg g
k k k

j jk j n j j n j
j k j

L r L n L I o

n r na d

n r na K

π λ β µ β

π λ

−

= = =

= = =

 ′+ − = − + 

 + − ≤ 

 + − ≤ 

∑ ∑ ∑

∑ ∑ ∑

Ψ Ψ Ψ Ψµ µ µ µ

µ

β µ β µ

  

(33) 

Regularity conditions indicate that ( ) ( )1 2
0n pL O n′ =Ψ  and ( )0I Ψ  is posi-
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tive definite, and it is not difficult to find that the sign of ( )n∆ µ  is completely 

determined by ( ) ( ){ }T
0

1 1 1
2 pI o − + Ψµ µ . Therefore, for any given 0ε > , 

there is a sufficiently large Mε  such that 

( )lim sup 0 1 ,nn M
P

ε

ε
→∞ =

 
∆ < > − 

 µ
µ

                
(34) 

which implies (29), this completes the proof. 
Theorem 2. Suppose that the conditions given in Theorem 1 and g is known, 

0p
nna → , * 0p

nna → , p
nnb → ∞  and * p

nnb → ∞ , as 0n → . Then, 
for any n -consistent maximum penalized log-likelihood estimator ˆ

nΨ , we 
have the following: 

1) Sparsity: As n →∞ , ( )2
ˆ 0jP = →0β , 1, ,j g=  . 

2) Asymptotic normality: 

( ) ( ) ( ) ( ) ( )( )01 01
1 01 1 01 1 01

ˆ , ,n n dP P
n I N I

n n
 ′′ ′  + − + →  
   

0
Ψ Ψ

Ψ Ψ Ψ Ψ  

where d→  denotes convergence in distribution and ( )1 01I Ψ  is a Fisher in-
formation when all zero effects are removed. 

Proof. In order to prove the sparsity of Theorem 2, we consider the partition 
( )1 2,=Ψ Ψ Ψ  and let ( )1

ˆ ,0Ψ  is the maximizer of the penalized log-likelihood 
function ( )1,nF 0Ψ , which is regarded as a function of 1Ψ . It suffices to show 
that in the neighborhood ( )1 2

0 O n−− =Ψ Ψ , there is the probability
 ( ) ( )( )1 2 1

ˆ, , 0 1n nP F F− < →0Ψ Ψ Ψ  as n →∞ . Then we have 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 2 1 1 2 1 1 1

1 2 1

ˆ ˆ, , , , , ,

, , .

n n n n n n

n n

F F F F F F

F F

 − = − + −    
≤ −  

0 0 0 0

0

Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ

Ψ Ψ Ψ

 

(35) 

On the other hand, 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 1 2 1 1 2 1, , , , , , .n n n n n nF F L L P P− = − − −      0 0 0Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ (36) 

By the mean value theorem, 

( ) ( ) ( ) T
1

1 2 1 2
2

,
, , n

n n

L
L L

∂ 
− =  ∂ 

0
Ψ

Ψ Ψ Ψ Ψ
Ψ

ξ

            
(37) 

for some ( )1 2
2 O n−≤ =Ψξ . By the mean value theorem and regularity con-

dition A3, we can get 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) { } ( ) ( )

011

2 2

011 1 1

2 2 2 2

1 2
1 1 1 01 1 01

1 1

,,

,, , ,

.

nn

nn n n

n n

i i p p
i i

LL

LL L L

M M O n O n
= =

∂∂
−

∂ ∂

∂∂ ∂ ∂
≤ − + −

∂ ∂ ∂ ∂

   ≤ + − = + − =      
∑ ∑

0

00 0

z z

ΨΨ
Ψ Ψ

ΨΨ Ψ Ψ
Ψ Ψ Ψ Ψ

Ψ Ψ Ψ Ψ

ξ

ξ

ξ ξ

(38) 

Here 01Ψ  is a subvector of 0Ψ  with all zero regression coefficients removed. 
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Regularity conditions imply that ( ) ( )1 2
01 2,n pL O n∂ ∂ =0Ψ Ψ , therefore  

( ) ( )1 2
1 2,n pL O n∂ ∂ =Ψ Ψξ . In this case, we have 

( ) ( ) ( )1 2
1 2 1

1 1
, ,

j

g p

n n p jt
j t d

L L O n β
= = +

− = ∑ ∑0Ψ Ψ Ψ
           

(39) 

for large n. And for the penalized function ( )nP Ψ , 

( ) ( )
[ ]

1 2 1

*

1 1 1 1

, ,

.
j j

n n

g p g K
k

j n jt j n j
j t d j k K

P P

nb n nb nπ β π
= = + = = +

−

≥ +∑ ∑ ∑ ∑

0Ψ Ψ Ψ

β
        

(40) 

Since nnb →∞  and *
nnb →∞  as n →∞ , we have 

( ) ( ) ( ) ( )1 2 1 1 2 1, , , , 0n n n nL L P P− − − <      0 0Ψ Ψ Ψ Ψ Ψ Ψ
       

(41) 

with probability to one as n →∞ . This completes the proof of the sparsity. 
For the asymptotic normality of Theorem 2, we still use the same argument as 

in Theorem 1 and consider ( )1,nF 0Ψ  is a function of 1Ψ , there is a n
-consistent local maximizer of this function, say 1Ψ̂ , that satisfies 

( ) ( ) ( )
( )1ˆ ˆ1 1 1 ,

ˆ
.

n

n n n n
F L P

=

∂ ∂ ∂  = − = 
∂ ∂ ∂   0

0
Ψ Ψ

Ψ Ψ Ψ
Ψ Ψ Ψ

           

(42) 

By the Taylor’s expansion, 

( )
( )

( ) ( ) ( ) ( )
( )

( )
( ) ( ) ( ){ }( )

1

1

2
01 01

1 01T
ˆ ˆ1 1 1 1,

01 01 1 01
ˆ ˆ1 ,

ˆ ,

ˆ .

n

n

n nn
p

n
n n p

L LL
o n

P
P P o n

=

=

 ∂ ∂∂  = + + − 
∂ ∂ ∂ ∂  

∂
′ ′′= + + −

∂

0

0

Ψ Ψ

Ψ Ψ

Ψ ΨΨ
Ψ Ψ

Ψ Ψ Ψ Ψ

Ψ
Ψ Ψ Ψ Ψ

Ψ
    

(43) 

Substituting into (42), we have 

( ) ( ) ( ) ( ) ( ) ( )
2

01 01
01 1 01 01T

11 1

ˆ .n n
n p n

L L
P o n P

 ∂ ∂ ′′ ′− + − = − 
∂∂ ∂  

Ψ Ψ
Ψ Ψ Ψ Ψ

ΨΨ Ψ
   

(44) 

In addition, regularity conditions imply that 

( ) ( ) ( ) ( ) ( )( )
2

01 01
1 01 1 01T

11 1

1 1, , .n n d
p

L L
I o N I

n n
∂ ∂

− = + →
∂∂ ∂

1 0
Ψ Ψ

Ψ Ψ
ΨΨ Ψ   

(45) 

Finally, we can get 

( ) ( ) ( ) ( ) ( )( )01 01
1 01 1 01 1 01

ˆ , .n n dP P
n I N I

n n
 ′′ ′  + − + →  
   

0
Ψ Ψ

Ψ Ψ Ψ Ψ
   

(46) 

by the Slutsky’s theorem. This completes the proof of the asymptotic normality. 
Now, we know that, as long as the conditions 0p

nna → , * 0p
nna → , 

p
nnb → ∞  and * p

nnb → ∞  are satisfied when n →∞ , the conclusions of 
theorem 1 and theorem 2 are tenable. Since the estimator β  based on the Lasso 
penalty, it can be n -consistent. Then, for any ( )1,2, ,j g∈  , we have 

0
p

jt jtβ β→  for jt d≤  and ( )1jt pO nβ =  for jt d> . Based on the fact 
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1 1jt j jtλ λ ω= , we can take ( )1 1 2
1 ,j n nλ − −∈  which satisfies the 0p

nna →  and 
p

nnb → ∞ . Similarly, for 2 2jk j jkλ λ ξ=  with [ ] [ ]
0

k kp
j j→β β  for jk K≤  

and [ ] ( )1k
j pO n=β  for jk K> , we also take ( )1 1 2

2 ,j n nλ − −∈  to satisfy 

the * 0p
nna →  and * p

nnb → ∞ . 

4. Tuning Parameters and Components Selection 

In this section, we need to solve two problems. One concerns the number of 
components g and the other problem is the selection of the tuning parameters 

( )11 12 1 2, , , ,g gλ λ λ λ= λ . Until now, there is little theoretical support for the se-
lection of these hyper parameters. In former literatures, the cross validation [19] 
and the generalized cross validation [20] provided some effective guidances for 
these problems. Grün and Leisch [21] and Nguyen and McLachlan [22] indi-
cated that the Bayesian information criterion (BIC) has a good performance in 
solving these problems. In this paper, we still use the BIC, 

( ) ( )
1

ˆBIC 2 3 1 log ,
g

n n j
j

L g d n
=

 
= − + − + 

 
∑Ψ

            
(47) 

where jd  the number of non-zero regression coefficients in the jth regression 
model. 

Suppose that there is a set of parameter combinations ( ) ( ){ }1 1, , , ,S Sg gλ λ . 
For each parameter combination ( ),s sg λ , 1, ,s S=  , we can obtain the pa-
rameter estimate ,

ˆ
n sΨ  by the proposed algorithm, and there is a BICs  which 

depends on corresponding ,
ˆ

n sΨ . Finally, we set the best parameter combination 
( ) ( )* *, ,

s s
g g=λ λ  for our robust mixture model, where * arg min BICss

s = . 

5. Numerical Simulation 

To quantify the performance of our proposed robust mixture regression model 
based on adaptive sparse group Lasso (adaSGL-RMR), we design a numerical 
simulation and generate sample data ( ) 1

, n
i i i

y
=

x  from the following mixture re-
gression model 

[ ] [ ]

[ ] [ ]

T
1 1 11

T
2 2 21

, if 1;

, if 2,

K k k
k
K k k
k

Z
y

Z

α ε

α ε
=

=

 + + == 
+ + =

∑
∑

x

x

β

β
             

(48) 

where Z is a component indicator. There are 6K =  groups and each group 
consists of 5 covariates, covariates within the same group are correlated, whereas 
those in different groups are uncorrelated. In order to generate the covariates 

1 30, ,X X , we first generate 30 random variables, 1 30, ,R R , independently 
from ( )0,1N , then obtain kC , 1, ,6k =  , from a multivariate normal distri-
bution with mean zero and ( ) 1 2

1 2, ,, 0.8 t t
k t k tcov C C −= . The generation of the co-

variates 1 30, ,X X  as following: 

( )
( ), 5 1

5 1 ,    1 6,  1 5.
2

k t k t
k t

C R
X k t− +

− +

+
= ≤ ≤ ≤ ≤

           
(49) 
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The model parameters include 1 2 0.5π π= = , 1 3α = − , 2 3α = ,  
[ ] ( )T1
1 2.5, 2, 1.5,0,0= − −β ,  [ ] ( )T2

1 1.5, 2.5, 1,0,0= −β ,  [ ] ( )T1
2 0,0, 2, 1,1.5= −β , 

[ ] ( )T2
2 0,0, 2,1, 2.5= −β , [ ] [ ] ( )T3 6

1 2 0, ,0= = = β β , 2 2
1 2 1σ σ= = . The random  

error 1ε  and 2ε  are independent and we consider the follow four cases: 1) 
( )1 2, 0,1Nε ε  ; 2) 1 2,ε ε   Laplace distribution with mean 0 and variance 1; 3) 

1 2 3, tε ε  , t-distribution with 3 degrees of freedom; 4) a mixture normal distri-
bution ( ) ( )2

1 2, 0.95 0,1 0.05 0,5N Nε ε + . 
We use three methods for comparing. The Gaussian mixture model (GMM) 

based on Lasso penalty (Lasso-GMM), the GMM model based on adaptive Lasso 
penalty (adaL-GMM) and the adaSGL-RMR model. The fmr package of the R 
programming language is used to compute the parameter estimates of Las-
so-GMM and adaL-GMM. 

In this article, the algorithm is terminated when the change in the penalized 
complete log-likelihood function is less than 10−5 or meets the maximum itera-
tions 105. Furthermore, we adopt a threshold value for β̂  in the consideration 
of practical situation. To be specific, ˆ

jtβ  will be assigned a value of 0 if 
5ˆ 10jtβ −< , for some j and t. To evaluate the performances of variable selection 

and data fitting, we introduce the average number of selected non-zero variables 
(nvars) without intercepts, average number of selected non-zero groups (ngroups), 
frequency of correct identification of group sparsity structures (cgroups), false 
negative rate (FNR) of missing important predictors, false positive rate (FPR) of 
selecting unimportant predictors and average value of root mean square errors 
(RMSE). Here, 

FN FPFNR ,  FPR
TP FN FP TN

= =
+ +                

(50) 

and 

( ) ( )22
0 0

1 ˆˆRMSE ,
1g p

= − + −
+

α α β β
            

(51) 

where TP is the number of true positives, TN is the number of true negatives, FP 
is the number of false positives and FN is the number of false negatives for each 
fitted model. 

As shown in Table 1, in case (1) through case (4), Lasso-GMM fails to identify 
non-zero groups and selects too many unimportant predictors, adaL-GMM is 
inclined to select less unimportant predictors and achieves higher cgroups at the 
cost of ignoring some important predictors. As a contrast, adaSGL-RMR has a 
better performance in variable selection and RMSE indicates that the parameter 
estimates of our algorithm are closer to the true parameters of mixture regres-
sion model. Moreover, the simulation results clearly show that adaSGL-RMR 
still maintain its superiority in identifying the group sparsity structures when the 
distribution of random errors has a heavy tail. Therefore, no matter from the 
model complexity or the goodness of fit to the data, our proposed method is 
more competitive than other methods. 
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Table 1. Results of Lasso-GMM, adaL-GMM and adaSGL-RMR on 100 replicates, 300n = . 

1 2,ε ε  Model nvars ngroups cgroups FNR FPR RMSE 

 True model 12 4 100 0 0 0 

N (0, 1) Lasso-GMM 49.71 11.97 2.08 0.00 0.79 0.09 

 adaL-GMM 20.38 8.66 51.00 0.01 0.17 0.06 

 adaSGL-RMR 13.66 4.00 88.00 0.00 0.03 0.06 

Laplace (1) Lasso-GMM 46.19 11.97 3.00 0.00 0.71 0.12 

 adaL-GMM 26.15 9.95 34.83 0.01 0.29 0.10 

 adaSGL-RMR 13.47 4.05 89.25 0.00 0.03 0.09 

t3 Lasso-GMM 40.84 11.81 6.83 0.00 0.63 0.15 

 adaL-GMM 29.34 10.65 24.67 0.01 0.36 0.12 

 adaSGL-RMR 13.67 4.09 88.42 0.00 0.04 0.11 

( ) ( )20.95 0,1 0.05 0,5N N+  Lasso-GMM 50.26 11.99 1.83 0.00 0.79 0.09 

 adaL-GMM 21.02 8.93 46.75 0.01 0.19 0.07 

 adaSGL-RMR 13.69 4.00 88.00 0.00 0.04 0.06 

6. Real Data Analysis 

In this section, we will analyze how NBA players’ performances of regular season 
affect their salaries. We gather salaries for all players in the NBA from the web-
site https://hoopshype.com/salaries/players/2018-2019, during the period from 
2018 to 2019. Performance measures for individuals are gathered from the web-
site https://www.foxsports.com/nba/stats?season=2018 in the 2018-2019 regular 
season, which include scoring, rebounding, assists and defense statistics. By li-
minating missing data, we obtain a complete dataset, which contains salaries for 
248 NBA players and 27 measures of performance. 

These performance measures are divided into five groups and covariates in 
the same group are correlated. Score: points per game (PPG), points per 48 mi-
nutes (PTS/48), field goals made per game (FGM/G), field goal attempts per 
game (FGA/G), 3 point FG made per game (3FGM/G), 3 point FG attempts per 
game (3FGA/G), free throws made per game (FTM/G), free throw attempts per 
game (FTA/G), high point total in a single game (HIGH), points per shot (PPS). 
Rebound: offensive rebounds per game (ORPG), defensive rebounds per game 
(DRPG), rebounds per 48 minutes (RPG/48), offensive rebound% (OFF REB%), 
defensive rebound% (DEF REB%), rebound% (REB%). Assist: assists per game 
(APG), assists per 48 minutes (AST/48), assist% (AST%), turnovers per game 
(TPG), turnover% (TO%). Steal: steals per game (SPG), steals per 48 minutes 
(STL/48), steal% (STL%). Block: blocks per game (BPG), blocks per 48 minutes 
(BLK/48), block% (BLK%). 

The matrix X  should be column standardized to have mean 0 and variance 
1 for avoiding a poor fitting result. Then we use the stepAIC function from R 
package MASS to realize variable selection of the standard linear model via the 
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BIC, the predicted logged salaries from the stepwise-BIC linear model shows a 
mean square error (MSE) of 0.60 and adjusted R2 of 0.42, these terrible results 
motivate us to conduct further research for this problem. The logged salaries 
histogram shows multi-modality from Figure 1, it is acceptable to use the mix-
ture regression model for predicting the logged salaries. 

For comparison, we run multiple analyses that include three sets of starting 
parameters for each of ( )2,3,4g =  models. The predicted results from the 

2g =  adaSGL-RMR model (BIC = 625) have a MSE of 0.11 and adjusted R2 of 
0.90. The predicted results from the 3g =  adaSGL-RMR model (BIC = 598) 
have a MSE of 0.05 and adjusted R2 of 0.95. The predicted results from the 

4g =  adaSGL-RMR model (BIC = 517) have a MSE of 0.04 and adjusted R2 of 
0.96. See Table 2 for more details. These results suggest that the 4g =  
adaSGL-RMR model has the smallest MSE and explains the largest proportion of 
variance for the logged salaries from the 2018/19 NBA regular season. Moreover, 
from Figure 2, the predicted densities show a good characterization of the mul-
ti-modality in the logged salaries for the adaSGL-RMR models, with the step-
wise-BIC linear model not being able to model this. 

 

 
Figure 1. Histogram and density estimate for logged salaries 

 
Table 2. Parameter estimates for NBA salary data. 

Covariates 
g = 2 g = 3 g = 4 

comp.1 comp.2 comp.1 comp.2 comp.3 comp.1 comp.2 comp.3 comp.4 

π 0.56 0.44 0.17 0.41 0.42 0.19 0.36 0.41 0.04 

Intercept 14.93 16.39 14.39 15.18 16.43 14.39 15.21 16.43 17.12 

PPG 0.44  0.19 0.50 0.23   0.13  

PTS/48          

FGM/G  0.23     0.18   

FGA/G      0.11 0.49   

3FGM/G        −0.03  

3FGA/G          

FTM/G      0.09    
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Continued 

FTA/G  0.09        

HIGH          

PPS          

ORPG     0.06     

DRPG          

RPG/48          
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Figure 2. Summary of densities for predicted and observed logged salaries. 

7. Conclusion 

In this paper, we propose a robust mixture regression model based on a Laplace 
distribution and consider the adaptive sparse group Lasso for variable selection. 
Its oracle properties are proved completely in Section 3. In addition, the numer-
ical simulation and real data application show that our method has better per-
formance in parameter estimation and variable selection than other methods. A 
limitation of this study is that we only consider the mixture regression model 
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with K no-overlapping groups and ignore the case when there are some overlaps 
between different groups. In our future work, we will pay more attention to this 
problem. 
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