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Abstract 
We prove that the density function of the gradient of a sufficiently smooth 
function : dS Ω ⊂ →  , obtained via a random variable transformation of 
a uniformly distributed random variable, is increasingly closely approximated 

by the normalized power spectrum of exp iSφ
τ

 =  
 

 as the free parameter 

0τ → . The frequencies act as gradient histogram bins. The result is shown 
using the stationary phase approximation and standard integration tech-
niques and requires proper ordering of limits. We highlight a relationship 
with the well-known characteristic function approach to density estimation, 
and detail why our result is distinct from this method. Our framework for 
computing the joint density of gradients is extremely fast and straightforward 
to implement requiring a single Fourier transform operation without expli-
citly computing the gradients. 
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1. Introduction 

Density estimation methods provide a faithful estimate of a non-observable 
probability density function based on a given collection of observed data [1] [2] 
[3] [4]. The observed data are treated as random samples obtained from a large 
population which is assumed to be distributed according to the underlying den-
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sity function. The aim of our current work is to show that the joint density func-
tion of the gradient of a sufficiently smooth function S (density function of S∇ )  

can be obtained from the normalized power spectrum of exp iSφ
τ

 =  
 

 as the  

free parameter τ  tends to zero. The proof of this relationship relies on the 
higher order stationary phase approximation [5]-[10]. The joint density function 
of the gradient vector field is usually obtained via a random variable transforma-
tion, of a uniformly distributed random variable X over the compact domain 

dΩ ⊂  , using S∇  as the transformation function. In other words, if we define 
a random variable ( )Y S X= ∇  where the random variable X has a uniform 
distribution on the domain Ω  ( ( )X UNI Ω

), the density function of Y 
represents the joint density function of the gradient of S. 

In computer vision parlance—a popular application area for density estima-
tion—these gradient density functions are popularly known as the histogram of 
oriented gradients (HOG) and are primarily employed for human and object 
detection [11] [12]. The approaches developed in [13] [14] demonstrate an ap-
plication of HOG—in combination with support vector machines [15]—for de-
tecting pedestrians from infrared images. In a recent article [16], an adaption of 
the HOG descriptor called the Gradient Field HOG (GF-HOG) is used for 
sketch-based image retrieval. In these systems, the image intensity is treated as a 
function ( )S X  over a 2D domain, and the distribution of intensity gradients 
or edge directions is used as the feature descriptor to characterize the object ap-
pearance or shape within an image. In Section 5 we provide experimental evi-
dence to showcase the efficacy of our method in computing the density of these 
oriented gradients (HOG). The present work has also been influenced by recent 
work on quantum supremacy [17] [18] [19]. Here, the aim is to draw samples 
from the density function of random variables corresponding to the measure-
ment bases of a high-dimensional quantum mechanical wave function. This 
work may initially seem far removed from our efforts. However, as we will show, 
the core of our density estimation approach is based on evaluating interval 
measures of the squared magnitude of a wave function in the frequency domain. 
For this reason, our approach is deemed a wave function approach to density es-
timation and henceforth we refer to it as such. 

In our earlier effort [20], we primarily focused on exploiting the stationary 
phase approximation to obtain gradient densities of Euclidean distance func-
tions (R) in two dimensions. As the gradient norm of R is identically equal to 1 
almost everywhere, the density of the gradient is one-dimensional and defined 
over the space of orientations. The key point to be noted here is that the dimen-
sionality of the gradient density (one) is one less than the dimensionality of the 
space (two) and the constancy of the gradient magnitude of R causes its Hessian 
to vanish almost everywhere. In Lemma 2.3 below, we see that the Hessian is 
deeply connected to the density function of the gradient. The degeneracy of the 
Hessian precluded us from directly employing the stationary phase method and 
hence techniques like symmetry-breaking had to be used to circumvent the va-
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nishing Hessian problem. The reader may refer to [20] for a more detailed ex-
planation. In contrast to our previous work, we regard our current effort as a 
generalization of the gradient density estimation result, now established for ar-
bitrary smooth functions in arbitrary finite dimensions. 

1.1. Main Contribution 

We introduce a new approach for computing the density of Y, where we express 
the given function S as the phase of a wave function φ , specifically  

( ) ( )
exp

iS
φ

τ
 

=  
 

x
x  for small values of τ , and then consider the normalized  

power spectrum—squared magnitude of the Fourier transform—of φ  [21]. We 
show that the computation of the joint density function of Y S= ∇  may be ap-
proximated by the power spectrum of φ , with the approximation becoming in-
creasingly tight point-wise as 0τ → . Using the stationary phase approximation, 
a well known technique in asymptotic analysis [9], we show that in the limiting 
case as 0τ → , the power spectrum of φ  converges to the density of Y, and 
hence can serve as its density estimator at small, non-zero values of τ . In other 
words, if ( )P u  denotes the density of Y, and if ( )Pτ u  corresponds to the 
power spectrum of φ  at a given value of τ , Theorem 3.2 constitutes the fol-
lowing relation, 

( )
( )

( )
( )

0 0
0

lim d dP P
η η

ττ→
=∫ ∫

u u

u u u u
 

 

where ( )0η u  is a small neighborhood around 0u . We would like to em-
phasize that our work is fundamentally different from estimating the gradient of 
a density function [22] and should not be semantically confused with it. 

1.2. Significance of Our Result 

As mentioned before, the main objective of our current work is to generalize our 
effort in [20] and demonstrate the fact that the wave function method for ob-
taining densities can be extended to arbitrary functions in arbitrary finite di-
mensions. However, one might broach a legitimate question, namely “What is 
the primary advantage of this approach over other simpler, effective and tradi-
tional techniques like histograms which can compute the HOG say by mildly 
smoothing the image, computing the gradient via (for example) finite differences 
and then binning the resulting gradients?”. The benefits are three fold:  
 One of the foremost advantages of our wave function approach is that it re-

covers the joint gradient density function of S without explicitly computing 
its gradient. Since the stationary points capture gradient information and 
map them into the corresponding frequency bins, we can directly work with 
S without the need to compute its derivatives.  

 The significance of our work is highlighted when we deal with the more 
practical finite sample-set setting wherein the gradient density is estimated 
from a finite, discrete set of samples of S rather than assuming the availability 
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of the complete description of S on Ω . Given the N samples of S on Ω , it 
is customary to know the approximation error of a proposed density estima-
tion method as N →∞ . In [23] we prove that in one dimension, the 
point-wise approximation error between our wave function method and the 
true density is bounded above by ( )1O N  when 1 Nτ ∝ . For histograms 
and kernel density estimators [1] [2], the approximation errors are estab-
lished for the integrated mean squared error (IMSE) defined as the expected 
value (with respect to samples of size N) of the square of the 2  error be-
tween the true and the computed probability densities and are shown to be  

2
3O N

− 
  
 

 [24] [25] and 
4
5O N

− 
  
 

 [26] respectively. Having laid the foun-

dation in this work, we plan to invest our future efforts in pursuit of similar 
upper bounds in arbitrary finite dimensions.  

 Furthermore, obtaining the gradient density using our framework in the fi-
nite N sample setting is simple, efficient, and computable in ( )logO N N  
time as elucidated in the last paragraph of Section 4. 

1.3. Motivation from Quantum Mechanics 

Our wave function method is motivated by the classical-quantum relation, 
wherein classical physics is expressed as a limiting case of quantum mechanics 
[27] [28]. When S is treated as the Hamilton-Jacobi scalar field, the gradients of 
S correspond to the classical momentum of a particle [29]. In the parlance of 
quantum mechanics, the squared magnitude of the wave function expressed ei-
ther in its position or momentum basis corresponds to its position or momen-
tum density respectively. Since these representations (either in the position or 
momentum basis) are simply (suitably scaled) Fourier transforms of each other, 
the squared magnitude of the Fourier transform of the wave function expressed 
in its position basis is its quantum momentum density. However, the time inde-
pendent Schrödinger wave function ( )φ x  (expressed in its position basis) can  

be approximated by 
( )

exp
iS
τ

 
 
 

x
 as 0τ →  [28]. Here τ  (treated as a free 

parameter in our work) represents Planck’s constant. Hence the squared magni-

tude of the Fourier transform of 
( )

exp
iS
τ

 
 
 

x
 corresponds to the quantum  

momentum density of S. The principal results proved in the article state that the 
classical momentum density (denoted by P) can be expressed as a limiting case 
(as 0τ → ) of its corresponding quantum momentum density (denoted by Pτ ), 
in agreement with the correspondence principle. 

2. Existence of Joint Densities of Smooth Function Gradients 

We begin with a compact measurable subset Ω  of d  on which we consider 
a smooth function :S Ω→  . We assume that the boundary of Ω  is smooth 
and the function S is well-behaved on the boundary as elucidated in Appendix B. 
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Let x  denote the Hessian of S at a location ∈Ωx  and let ( )det x  denote 
its determinant. The signature of the Hessian of S at x , defined as the differ-
ence between the number of positive and negative eigenvalues of x , is 
represented by σ x . In order to exactly determine the set of locations where the 
joint density of the gradient of S exists, consider the following three sets: 

( ){ }: ,S= ∇ =u x x u                      (2.1) 

( ){ }: det 0 ,= =xx                       (2.2) 

and 

( ){ }: .S= ∇ ∈ ∂Ωx x                      (2.3) 

Let ( )N = uu  . We employ a number of useful lemma, stated here and 
proved in Appendix A.  

Lemma 2.1. [Finiteness Lemma] u  is finite for every ∉u  . 
As we see from Lemma 2.1 above, for a given ∉u  , there is only a finite col-

lection of ∈Ωx  that maps to u  under the function S∇ . The inverse map 
( ) ( )1S −∇ u  which identifies the set of ∈Ωx  that maps to u  under S∇  is 

ill-defined as a function as it is a one to many mapping. The objective of the fol-
lowing lemma (Lemma 2.2) is to define appropriate neighborhoods such that the 
inverse function ( )1S −∇ , required in the proof of our main Theorem 3.2, when 
restricted to those neighborhoods is well-defined. 

Lemma 2.2. [Neighborhood Lemma] For every 0 ∉u  , there exists a closed 
neighborhood ( )0η u  around 0u  such that ( )0η u    is empty. Fur-
thermore, if 

0
0>u , ( )0η u  can be chosen such that we can find a closed  

neighborhood ( )η x  around each 
0

∈ ux   satisfying the following condi-
tions: 

1) ( )( ) ( )0S η η∇ =x u  . 
2) ( ) ( )det 0, η≠ ∀ ∈y y x  . 

3) The inverse function ( ) ( ) ( ) ( )1
0:S η η

−∇ →x u u x   is well-defined. 
4) For ( ), ,η σ σ∈ =y zy z x . 

Lemma 2.3 [Density Lemma] Given ( )X UNI Ω
, the probability density of 

( )Y S X= ∇  on d −   is given by  

( ) ( )
( )

( )1

1 1
det

k

N

k
P

µ =

=
Ω ∑

u

x

u


                 (2.4) 

where ( ){ }, 1, 2, ,k k N∈ ∀ ∈ux u  and µ  is the Lebesgue measure. 
From Lemma 2.3, it is clear that the existence of the density function P at a 

location d∈u   necessitates a non-vanishing Hessian matrix ( ( )det 0≠ ) 
∀ ∈ ux  . Since we are interested in the case where the density exists almost 
everywhere on d , we impose the constraint that the set   in (2.2), compris-
ing all points where the Hessian vanishes, has zero Lebesgue measure. It follows 
that ( ) 0µ = . Furthermore, the requirement regarding the smoothness of S  
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( ( )S C∞∈ Ω ) can be relaxed to functions S in ( )
1

2
d

C
+

Ω  where d is the dimen-
sionality of Ω  as we will see in Section 3.2.2. 

3. Equivalence of the Densities of Gradients and the Power  
Spectrum 

Define the function : dFτ →   as  

( )
( ) ( )

( )1
2 2

1 exp d
2

d

iF Sτ ττ µ
Ω

 = − ⋅  
π

 Ω
∫u x u x x          (3.1) 

or 0τ > . Fτ  is very similar to the Fourier transform of the function 

( )
exp

iS
τ

 
 
 

x
. The normalizing factor in Fτ  comes from the following lemma 

(Lemma 3.1) whose proof is given in Appendix A. 
Lemma 3.1. [Integral Lemma ] ( )2 dF Lτ ∈   and 

2
1Fτ = . 

The power spectrum defined as  

( ) ( ) ( )P F Fτ τ τ≡u u u                       (3.2) 

equals the squared magnitude of the Fourier transform. Note that 0Pτ ≥ . From 
Lemma (3.1), we see that ( )d 1Pτ =∫ u u . Our fundamental contribution lies in 
interpreting ( )Pτ u  as a density function and showing its equivalence to the 
density function ( )P u  defined in (2.4). Formally stated:  

Theorem 3.2. For 0 ∉u  ,  

( )( ) ( )
( ) ( )

0

00 0
0

1lim lim dP P
α

τα τ
αµ→ →

=∫
u

u u u
u 

 

where ( )0α u  is a ball around 0u  of radius α . 
Before embarking on the proof, we would like to emphasize that the ordering 

of the limits and the integral as given in the theorem statement is crucial and 
cannot be arbitrarily interchanged. To press this point home, we show below 
that after solving for Pτ , the 0lim Pτ τ→  does not exist. Hence, the order of the 
integral followed by the limit 0τ →  cannot be interchanged. Furthermore, 
when we swap the limits of α  and τ , we get 

( )( ) ( )
( ) ( )

0

00 0 0
0

1lim lim d limP P
α

τ ττ α τ
αµ→ → →

=∫
u

u u u
u 

 

which also does not exist. Hence, the theorem statement is valid only for the 
specified sequence of limits and the integral. 

3.1. Brief Exposition of the Result 
To understand the result in simpler terms, let us reconsider the definition of the 

scaled Fourier transform given in (3.1). The first exponential 
( )

exp
iS
τ

 
 
 

x
 is a 

varying complex “sinusoid”, whereas the second exponential exp i
τ
⋅ − 

 

u x
 is a 
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fixed complex sinusoid at frequency 
τ
u . When we multiply these two complex  

exponentials, at low values of τ , the two sinusoids are usually not “in sync” and 
tend to cancel each other out. However, around the locations where ( )S∇ =x u , 
the two sinusoids are in perfect sync (as the combined exponent is stationary) 
with the approximate duration of this resonance depending on ( )det x . The 
value of the integral in (3.1) can be increasingly closely approximated via the sta-
tionary phase approximation [9] as  

( )
( )

( )

( )
( )1

12

1 1 exp .
4det

k

k

N u

k k
k

iF S iτ σ
τµ =

  ≈ − ⋅ +   Ω

π∑ x

x

u x u x


 

The approximation is increasingly tight as 0τ → . The power spectrum ( Pτ ) 

gives us the required result 
( )

( )

( )1

1 1
det

k

N u
kµ =Ω ∑

x
 except for the cross phase  

factors ( ) ( ) ( )k l k lS S− − ⋅ −x x u x x  obtained as a byproduct of two or more 
remote locations kx  and lx  indexing into the same frequency bin u , i.e., 

k l≠x x , but ( ) ( )k lS S∇ = ∇ =x x u . The cross phase factors when evaluated are  

equivalent to 
1cos
τ
 
 
 

, the limit of which does not exist as 0τ → . However,  

integrating the power spectrum over a small neighborhood ( )α u  around u  
removes these cross phase factors as τ  tends to zero and we obtain the desired 
result. 

3.2. Formal Proof of Theorem 3.2 

We wish to compute the integral 

( )
( ) ( )

( )( )1
2 2

1 exp d
2

d

iF Sτ ττ µ Ω

 = − ⋅ 
 Ωπ

∫u x u x x           (3.3) 

at small values of τ  and exhibit the connection between the power spectrum 
( )Pτ u  and the density function ( )P u . To this end define  
( ) ( ); SΨ ≡ − ⋅x u x u x . The proof follows by considering two cases: the first case 

in which there are no stationary points and therefore the density should go to 
zero, and the second case in which stationary points exist and the contribution 
from the oscillatory integral is shown to increasingly closely approximate the 
density function of the gradient as 0τ → . 

case (i): We first consider the case where ( ) 0N =u , i.e., ( )S∉∇ Ωu . In 
other words there are no stationary points [9] for this value of u . The proof 
that this case yields the anticipated contribution of zero follows clearly from a 
straightforward technique commonly used in stationary phase expansions. We 
assume that the function S is sufficiently well-behaved on the boundary such 
that the total contribution due to the stationary points of the second kind [9] 
approaches zero as 0τ → . (We concentrate here on the crux of our work and 
reserve the discussion concerning the behavior of S on the boundary and the re-
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lationship to stationary points of the second kind to Appendix 8.) Under mild 
conditions (outlined in Appendix B), the contributions from the stationary 
points of the third kind can also be ignored as they approach zero as τ  tends to 
zero [9]. Higher order terms follow suit. 

Lemma 3.3. Fix 0 ∉u  . If 
0
= ∅u  then ( ) ( )0F Oτ τ=u  as 0τ → . 

Proof. To improve readability, we prove Lemma 3.3 first in the one dimen-
sional setting and separately offer the proof for multiple dimensions. 

3.2.1. Proof of Lemma 3.3 in One Dimension 
Let s denote the derivative (1D gradient) of S. The bounded closed interval Ω  
is represented by [ ]1 2,b bΩ = , with the length ( ) 2 1L b bµ= Ω = − . As 0u ∉ , 
there is no x∈Ω  for which ( ) 0s x u= . Recalling the definition of Ψ , namely 

( ) ( );x u S x uxΨ ≡ − , we see that ( ) 0x′Ψ ≠  and is of constant sign in [ ]1 2,b b . 
It follows that ( )xΨ  is strictly monotonic. Defining ( )v x= Ψ , we have from 
(3.1) 

( ) ( )
( ) ( )2

1
0

1 exp d .
2

b

b

ivF u t v v
Lτ ττ

Ψ

Ψ

 
 
 π

= ∫  

Here ( )
( )( )1

1t v
v−

=
′Ψ Ψ

. The inverse function is guaranteed to exist due to 

the monotonicity of Ψ . Integrating by parts we get 

( ) ( ) ( )( ) ( ) ( )( )

( )
( ) ( )2

1

2 1
0 2 12 exp exp

exp d .
b

b

i b i b
F u L t b t b

i

iv t v v
i

τ
ττ

τ τ

τ
τ

Ψ

Ψ

 Ψ Ψ   
= Ψ − Ψ    

     
  ′



π

− 
∫

  (3.4) 

It follows that 

( )
( ) ( ) ( )

( ) ( )2

1
0

2 0 1 0

1 1 d .
2

b

b
F u t v v

s b u s b uLτ
τ Ψ

Ψ

 
′≤ + +  −π − 

∫  

3.2.2. Proof of Lemma 3.3 in Finite Dimensions 
As ( )0; ,∇Ψ ≠ ∀x u x0 , the vector field  

( )1 2

∇Ψ
=

∇Ψ
v x  

is well-defined. Choose 
2
dm >  (with this choice explained below) and for 

{ }1,2, ,j m∈  , recursively define the function ( )jg x  and the vector field 
( )1j+v x  as follows:  

( )1 1,g =x  

( ) ( )1j jg + = ∇ ⋅x v x  

and 

( ) ( )1 12 .j jg+ +
∇Ψ

=
∇Ψ

v x x  
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Using the equality 

( ) ( )

( ) ( ) ( ) ( )

0

0 0

exp ;

exp ; exp ;

j

j j

i g

i ii i

τ

τ τ
τ τ

 Ψ 
 

     = ∇ ⋅ Ψ − ∇ ⋅ Ψ          

x u x

v x x u v x x u
  (3.5) 

where ∇⋅  is the divergence operator, and applying the divergence theorem m 
times, the Fourier transform in (3.3) can be rewritten as  

( )
( ) ( )

( ) ( ) ( )

( ) ( )
( ) ( )( ) ( )( )

0 11
2 2

1
12 2

1 exp d
2

1 exp d
2

m
md

m j
jd

j

iF i g

ii

τ τ
ττ µ

τ
ττ µ

+
Ω

= ∂Ω

 = Ψ 
 Ω

  − ⋅ Ψ  

π

 Ωπ

∫

∑ ∫

u x x x

v x y n x y y
 (3.6) 

which is similar to (3.4). 
We would like to add a note on the differentiability of S which we briefly 

mentioned after Lemma 2.3. The divergence theorem is applied 
2
dm >  times  

to obtain sufficiently higher order powers of τ  in the numerator so as to  

exceed the 2
d

τ  term in the denominator of the first line of (3.6). This necessi-

tates that S is at least 1
2
d
+  times differentiable. The smoothness constraint on 

S can thus be relaxed and replaced by ( )
1

2
d

S C
+

∈ Ω . 

The additional complication of the d-dimensional proof lies in resolving the 
geometry of the terms in the second line of (3.6). Here n  is the unit outward 
normal to the positively oriented boundary ∂Ω  parameterized by y . As  

2
dm > , the term on the right side of the first line in (3.6) is ( )o τ  and hence  

can be overlooked. To evaluate the remaining integrals within the summation in 
(3.6), we should take note that the stationary points of the second kind for 

( )Ψ x  on Ω  correspond to the first kind of stationary points for ( )( )Ψ x y  
on the boundary ∂Ω . We show in case (ii) that the contribution of a stationary  

point of the first kind in a 1d −  dimensional space is 
1

2
d

O τ
− 

  
 

. As the 

dimension of ∂Ω  is 1d − , we can conclude that the total contribution from  

the stationary points of the second kind is 
1

2
d

O τ
− 

  
 

. After multiplying and di-

viding this contribution by the corresponding jτ  and 2
d

τ  factors respectively, 
it is easy to see that the contribution of the jth integral (out of the n integrals in 

the summation) in (3.6) is 
1
2

j
O τ

− 
  
 

, and hence the total contribution of the m  

integrals is of ( )O τ . Here, we have safely ignored the stationary points of the 
third kind as their contributions are minuscule compared to the other two kinds 
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as shown in [9]. Combining all the terms in (3.6) we get the desired result, 
namely ( ) ( )0F u Oτ τ= . For a detailed exposition of the proof, we encourage 
the reader to refer to Chapter 9 in [9]. 

We then get ( ) ( )0P Oτ τ=u . Since ( )S∇ Ω  is a compact set in d  and 
( )0 S∉∇ Ωu , we can choose a neighborhood ( )0η u  around 0u  such that 

for ( )0η∈u u , no stationary points exist and hence 

( )
( )

0
0

lim d 0.P
η

ττ→
=∫

u

u u


 

Since the cardinality ( )N u  of the set u  defined in (2.1) is zero for 
( )0η∈u u , the true density ( )P u  of the random variable transformation 
( )Y S X= ∇  given in (2.4) also vanishes for ( )0η∈u u . 

case (ii): For 0 ∉u  , let ( )0 0N >u . In this case, the number of stationary 
points in the interior of Ω  is non-zero and finite as a consequence of Lemma 
2.1. We can then rewrite 

( )
( ) ( )

( )

( )
( )

0

0 01
12 2

1 exp ; d
2 k

N

d
k

iF G
η

τ ττ µ =

 = + Ψ 
 Ωπ

∑ ∫
u

x

u x u x


,    (3.7) 

where 

( )0exp ; d
K

iG
τ
 ≡ Ψ 
 ∫ x u x                  (3.8) 

and the domain 
( )

( )
0

1
\

N

k
k

K η
=

≡ Ω
u

x


 . The closed regions ( ){ } ( )0

1

N

k
k

η
=

u
x  are 

obtained from Lemma 2.2. 
Firstly, note that the the set K contains no stationary points by construction. 

Secondly, the boundaries of K can be classified into two categories: those that 
overlap with the sets ( )kη x  and those that coincide with Γ = ∂Ω . Propi-
tiously, the orientation of the overlapping boundaries between the sets K and 
each ( )kη x  are in opposite directions as these sets are located at different 
sides when viewed from the boundary. Hence, we can exclude the contributions 
from the overlapping boundaries between K and ( )kη x  while evaluating 

( )0Fτ u  in (3.7) as they cancel each other out. 
To compute G we leverage case (i), which also includes the contribution from 

the boundary Γ , and get  

( ) ( )1 0 , .G Oτ τ= =u                       (3.9) 

To evaluate the remaining integrals over ( )kη x , we take into account the 
contribution from the stationary point at kx  and obtain  

( )
( )

( )

( )
( ) ( )

0

2

0 2 0

exp ; d

2
exp ; , ,

4det

k

k

k

d

k

i

a i i

η
τ

τ
σ τ

τ

 Ψ 
 

 = Ψ + + 


π



π

∫
x

x

x

x u x

x u u






       (3.10) 
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where 

( ) ( )
1 1

2 2
2 0 1 0,

d d

Oτ τ τ γ
+ + 

= ≤  
 

u u                (3.11) 

for a continuous bounded function ( )1γ u  [9]. The variable a in (3.10) takes the 

value 1 if kx  lies in the interior of Ω , otherwise equals 1
2

 if k ∈∂Ωx . Since  

∉u  , stationary points do not occur on the boundary and hence 1a =  for our 
case. Recall that 

k
σ x  is the signature of the Hessian at kx . Note that the main  

term has the factor 2
d

τ  in the numerator, when we perform stationary phase in 
d dimensions, as mentioned under the finite dimensional proof of Lemma 3.3. 

Coupling (3.7), (3.8), and (3.10) yields  

( )
( )

( )
( )

( )
( )

0

0 0 3 01
12

1 1exp ; ,
4 det

k

k

N

k
k

iF iτ σ τ
τµ =

 = Ψ + + 
 Ω

π∑
u

x

x

u x u u


 (3.12) 

where 

( ) ( ) ( )

( ) ( )
2 0

3 0 1 0 1
2 2

,
, , .

2
d

τ
τ τ

τ µπ
= +

Ω

u
u u


   

As ( ) ( )1 0 , Oτ τ=u  and ( )
1

2
2 0 ,

d

Oτ τ
+ 

=   
 

u  from (3.9) and (3.11) re-

spectively, we have ( ) ( )3 0 , Oτ τ=u . Based on the definition of the power 

spectrum Pτ  in (3.2), we get  

( ) ( )
( )

( )

( )
( ) ( ) ( ) ( ) ( )

( ) ( )
( )

0

0 0

0
1

0 0

11

4 0

1 1
det

exp ; ;
1 4

det det

,

k

k l

k l

N

k

N N k l

lk
l k

P

i i

τ µ

σ σ
τ

µ

τ

=

==
≠

=
Ω

  Ψ −Ψ + −  
π

 +
Ω

+

∑

∑ ∑

u

x

u u x x

x x

u

x u x u

u



 



(3.13) 

where ( )4 0u  includes both the squared magnitude of ( )3 0 ,τu  and the cross 
terms involving the first term in (3.12) and ( )3 0 ,τu . Notice that the main term 
in (3.12) can be bounded independently of τ  as  

( )0exp ; 1, 0
4kk

i iσ τ
τ
 Ψ + = ∀ ≠ 



π


xx u  

and ( )det 0,
k

k≠ ∀x . Since ( ) ( )3 0 , Oτ τ=u , we get ( ) ( )4 0 , Oτ τ=u . 
Furthermore, as ( )4 0 ,τu  can also be uniformly bounded by a function of u  
for small values of τ , we have  

( )
( )

0

4 00
lim , d 0.

η
τ

τ
→

=∫
u

u u


                    (3.14) 

Observe that the term on the right side of the first line in (3.13) matches the 
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anticipated expression for the density function ( )0P u  given in (2.4). The cross 
phase factors in the second line of (3.13 arise due to multiple remote locations 

kx  and lx  indexing into u . The cross phase factors when evaluated can be  

shown to be proportional to 
1cos
τ
 
 
 

. Since 0
1lim cosτ τ→

 
 
 

 is not defined,  

( )0 0lim Pτ τ→ u  does not exist. We briefly alluded to this problem immediately 
following the statement of Theorem 3.2 in Section 3. However, the following 
lemma which invokes the inverse function ( ) ( ) ( ) ( )1

0:S η η
−∇ →x u u x 

—defined in Lemma 2.2 where x  is written as a function of u —provides a 
simple way to nullify the cross phase factors. Note that since each ( )1S −∇ x  is a 
bijection, ( )N u  doesn’t vary over ( )0η u . Pursuant to Lemma 2.2, the Hes-
sian signatures ( )k

σ x u  and ( )l
σ x u  also remain constant over ( )0η u .  

Lemma 3.4. [Cross Factor Nullifier Lemma] The integral of the cross term in 
the second line of (3.13) over the closed region ( )0η u  approaches zero as 

0τ → , i.e., k l∀ ≠  

( )

( )( ) ( )( )

( )( ) ( )( )0

1 10
2 2

exp ; ;
lim d 0.

det det
k l

k l
i

η
τ

τ
→

  Ψ −Ψ    =∫
u

x u x u

x u u x u u
u

  

      (3.15) 

The proof is given in Appendix A. Combining (3.14) and (3.15) yields  

( )
( ) ( ) ( )

( )

( )( ) ( )
( )

0 0 0
0 1

1 1lim d d d .
det

k

N

k
P P

η η η

ττ µ→ =

= =
Ω ∑∫ ∫ ∫

u

u u ux u

u u u u u
  

  (3.16) 

Equation (3.16) demonstrates the equivalence of the cumulative distributions 
corresponding to the densities ( )Pτ u  and ( )P u  when integrated over any 
sufficiently small neighborhood ( )0η u  of radius η . To recover the density 
( )P u , we let α η<  and take the limit with respect to α . 
Taking a mild digression from the main theme of this paper, in the next sec-

tion (Section 4), we build an informal bridge between the commonly used cha-
racteristic function formulation for computing densities and our wave function 
method. The motivation behind this section is merely to provide an intuitive 
reason behind our Theorem 3.2, where we directly manipulate the power  

spectrum of ( ) ( )
exp

iS
φ

τ
 

=  
 

x
x  into the characteristic function formulation  

stated in (4.2), circumventing the need for the closed-form expression of the 
density function ( )P u  given in (2.4). We request the reader to bear in mind 
the following cautionary note. What we show below cannot be treated as a for-
mal proof of Theorem 3.2. Our attempt here merely provides a mathematically 
intuitive justification for establishing the equivalence between the power spec-
trum and the characteristic function formulations and thereby to the density 
function ( )P u . On the basis of the reasons described therein, we strongly be-
lieve that the mechanism of stationary phase is essential to formally prove our 
main theorem (Theorem 3.2). It is best to treat the wave function and the cha-
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racteristic function methods as two different approaches for estimating the 
probability density functions and not reformulations of each other. To press this 
point home, we also comment on the computational complexity of the wave 
function and the characteristic function methods at the end of the next section. 

4. Relation between the Characteristic Function and Power  
Spectrum Formulations of the Gradient Density 

The characteristic function ( )Yψ w  for the random variable ( )Y S X= ∇  is 
defined as the expected value of ( )exp i Y⋅w , namely  

( ) ( ) ( ) ( )( )1exp exp d .Y E i Y i Sψ
µ Ω

≡ ⋅ = ⋅∇   Ω ∫w w w x x        (4.1) 

Here 
( )
1

µ Ω
 denotes the density of the uniformly distributed random variable 

X on Ω . 
The inverse Fourier transform of a characteristic function also serves as the 

density function of the random variable under consideration [30]. In other 
words, the density function ( )P u  of the random variable Y can be obtained 
via  

( )
( )

( ) ( )

( ) ( )
( )( )

1 exp d
2

1 exp d d .
2

Yd

d

P i

i S

ψ ω

µ Ω

π
= − ⋅

= ⋅ ∇ −  π Ω

∫

∫∫

u w u w

w x u x w
       (4.2) 

Having set the stage, we can now proceed to highlight the close relationship 
between the characteristic function formulation of the density and our formula-
tion arising from the power spectrum. For simplicity, we choose to consider a  

region Ω  that is the product of closed intervals, [ ]
1

,
d

i i
i

a b
=

Ω =∏ . Based on the 

expression for the scaled Fourier transform ( )Fτ u  in (3.1), the power spec-

trum ( )Pτ u  is given by  

( )
( ) ( )

( ) ( ) ( )( )1 exp d d .
2 d

iP S Sτ ττ µ Ω Ω

  = − − ⋅ −   Ωπ
∫ ∫u x y u x y x y  

Define the following change of variables, 

, .
2τ

− +
= =

x y x yω ν  

Then ,
2 2
τ τ

= + = −x yω ων ν  and the integral limits for ω  and ν  are given 

by 

1
,

d
i i i i

i

a b b a
W

τ τ=

− − =   
∏  

1
,

2 2

d
i i

i i
i

V a b
ω τ ω τ

=

 
= + − 

 
∏ω  
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where iω  is the ith component of ω . Note that the Jacobian of this transfor-
mation is dτ . Now we may write the integral ( )Pτ u  in terms of these new va-
riables as 

( )
( ) ( )

( )1 , d
2 d

W

Pτ ξ
µ

=
Ωπ
∫u uω ω                (4.3) 

where 

( ) ( ), exp exp d .
2 2V

i S S iτ τξ
τ
     = + − − − ⋅          

∫u u
ω

ω ωω ν ν ω ν     (4.4) 

The mean value theorem applied to 
2 2

S Sτ τ   + − −   
   

ω ων ν  yields 

( ) ( )( )( ), exp , d ,
V

i Sξ  = ⋅ ∇ − ∫u z u
ω

ω ω ν ω ν           (4.5) 

where 

( ) ( ), 1
2 2

c cτ τ   ≡ + + − −   
   

z ω ων ω ν ν  

with [ ]0,1c∈ . When ω  is fixed and 0τ → , ( ), →z ν ω ν  and so for small 
values of τ  we get 

( ) ( )( ), exp d .
V

i Sξ
∈

≈ ⋅ ∇ −  ∫
n

u u
ω

ω ω ν ν             (4.6) 

Again we would like to drive the following point home. We do not claim that 
we have formally proved the above approximation. On the contrary, we believe 
that it might be an onerous task to do so as the mean value theorem point z  in 
(4.5) is unknown and the integration limits for ν  directly depend on τ . The 
approximation is stated with the sole purpose of providing an intuitive reason 
for our theorem (Theorem 3.2) and to provide a clear link between the characte-
ristic function and wave function methods for density estimation. 

Furthermore, note that the integral range for ω  depends on τ  and so 

when 1O
τ
 =  
 

ω , 0τ →/ω  as 0τ →  and hence the above approximation for  

( ),ξ uω  in (4.6) might seem to break down. To evade this seemingly ominous 
problem, we manipulate the domain of integration for ω  as follows. Fix an 

( )0,1∈  and let  

[ ] [ ]
1 1

\ , ,
d d

i i i i
i i

W W W W M M M Mτ∞

= =

 = = − − 
 

∏ ∏ 
 

where 

( ) 1.i i iM b a τ −≡ −                       (4.7) 

By defining iM  as above, note that in W τ , ω  is deliberately made to be 

( )1O τ −  and hence 0τ →ω  as 0τ → . Hence the approximation for 
( ),ξ uω  in (4.6) might hold for this integral range of ω . For consideration of 

W ∞∈ω , recall that Theorem 3.2 requires the power spectrum ( )Pτ u  to be in-
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tegrated over a small neighborhood ( )0α u  around 0u . By using the true 
expression for ( ),ξ uω  from (4.4) and performing the integral for u  prior to 
ω  and ν , we get 

( )
( )

( )( ){ }
( )

( )

0

0

, d d

exp , exp d d d .

W

VW

i S i

α

α

ξ
∞

∞

 
 = ⋅ ∇ − ⋅     

∫ ∫

∫ ∫ ∫

u

u

u u

z u u



ω

ω ω

ω ν ω ω ν ω
 

Since both iM  in (4.7) and the lower and the upper limits for iω , namely 

i ib a
τ
−

±  respectively approach ∞  as 0τ → , the Riemann-Lebesgue lemma 

[21] guarantees that W ∞∀ ∈ω , the integral  

( )
( )

0

exp di
α

− ⋅∫
u

u u


ω  

approaches zero as 0τ → . Hence for small values of τ , we can expect the 
integral over W τ  to dominate over the other. This leads to the following ap-
proximation,  

( )
( )

( ) ( ) ( )
( )

0 0

1d , d d ,
2 d

W

P
τα α

τ ξ
µ

≈
π Ω

∫ ∫ ∫
u u

u u u u
 

ω ω        (4.8) 

as τ  approaches zero. Combining the above approximation with the approxi-
mation for ( ),ξ uω  given in (4.6) and noting that the integral domain for ω  
and ν  approaches d  and Ω  respectively as 0τ → , the integral of the 
power spectrum ( )P uτ  over the neighborhood ( )0α u  at small values of τ  
in (4.3) can be approximated by  

( )
( )

( ) ( ) ( )
( )( )

0 0

1d exp d d d .
2 dP u u i S

α α

τ
µ Ω

≈ ⋅ ∇ −  Ωπ
∫ ∫ ∫∫

u u

u u
 

ω ν ν ω  

This form exactly coincides with the expression given in (4.2) obtained through 
the characteristic function formulation. 

The approximations given in (4.6) and (4.8) cannot be proven easily as they 
involve limits of integration which directly depend on τ . Furthermore, the 
mean value theorem point ( ),z ν ω  in (4.5) is arbitrary and cannot be deter-
mined beforehand for a given value of τ . The difficulties faced here emphasize 
the need for the method of stationary phase to formally prove Theorem 3.2. 

As we remarked before, the characteristic function and our wave function 
methods should not be treated as mere reformulations of each other. This dis-
tinction is further emphasized when we find our method to be computationally 
more efficient than the characteristic function approach in the finite sample-set 
scenario where we estimate the gradient density from N samples of the function 
S. Given these N sample values Ŝ  and their gradients Ŝ∇ , the characteristic 
function defined in (4.1) needs to be computed for N integral values of ω . Each 
value of ω  requires summation over the N sampled values of ( )( )exp i S∇ xω . 
Hence the total time required to determine the characteristic function is 
( )2O N . The joint density function of the gradient is obtained via the inverse 
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Fourier transform of the characteristic function, which is an ( )logO N N  op-
eration. The overall time complexity is therefore ( )2O N . In our wave  

function method the Fourier transform of ( )ˆ
exp

iS
τ

 
  
 

x
 at a given value of τ   

can be computed in ( )logO N N  and the subsequent squaring operation to 
obtain the power spectrum can be performed in ( )O N . Hence the density 
function can be determined in ( )logO N N , which is more efficient when 
compared to the ( )2O N  complexity of the characteristic function approach. 

5. Experimental Evidence in 2D 

We would like to emphasize that our wave function method for computing the 
gradient density is very fast and straightforward to implement as it requires 
computation of a single Fourier transform. We ran multiple simulations on 
many different types of functions to assess the efficacy of our wave function me-
thod. Below we show comparisons with the standard histogramming technique 
where the functions were sampled on a regular grid between  

[ ] [ ]0.125,0.125 0.125,0.125− × −  at a grid spacing of 13

1
2

. For the sake of 

convenience, we normalized the functions such that the maximum gradient 
magnitude value ( )S∇  is 1. Using the sampled values Ŝ , we first computed  

the fast Fourier transform of 
ˆ

exp iS
τ

 
  
 

 at 0.00004τ = , then computed the  

power spectrum followed by normalization to obtain the joint gradient density. 
We also computed the discrete derivative of S at the grid locations to obtain the 
gradient ( )1 2

ˆ ˆ,x xS S S∇ =  and then determined the gradient density by histo-
gramming. For better visualization, we marginalized the density along the radial 
and the orientation directions. The plots shown in Figure 1 provide visual, em-
pirical evidence corroborating our theorem. Notice the near-perfect match be-
tween the gradient densities computed via standard histogramming and our 
wave function method. The accuracy of the density marginalized along the 
orientations further strengthens our claim made in Section 1 about the wave 
function method serving as a reliable estimator for the histogram of oriented 
gradients (HOG). In Figure 2, we verify the convergence of our estimated den-
sity to the true density as 0τ →  in accordance with Theorem 3.2. 

6. Conclusions 

Observe that the integrals 

( ) ( ) ( ) ( ) ( ) ( )
0 0

0 0d , dI P I P
η η

τ τ= =∫ ∫u u
u u u u u u

 
 

give the interval measures of the density functions Pτ  and P respectively. 
Theorem 3.2 states that at small values of τ , both the interval measures are ap-
proximately equal, with the difference between them being ( )O τ  which con-
verges to zero as 0τ → . Recall that by definition, Pτ  is the normalized power  
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Figure 1. Comparison results. 1) Left: Gradient magnitude density, 2) Right: Gradient orientation density. In each sub-figure, we 
plot the density function obtained from histogramming and the wave function method at the top and bottom respectively. 

 

spectrum of the wave function ( ) ( )
exp

iS
φ

τ
 

=  
 

x
x . Hence we conclude that 

the power spectrum of ( )φ x  can potentially serve as a joint density estimator 
for the gradient of S at small values of τ , where the frequencies act as gradient 
histogram bins. We also built an informal bridge between our wave function 
method and the characteristic function approach for estimating probability den-
sities, by directly trying to recast the former expression into the latter. The diffi-
culties faced in relating the two approaches reinforce the stationary phase me-
thod as a powerful tool to formally prove Theorem 3.2. Our earlier result proved 
in [20], where we employ the stationary phase method to compute the gradient 
density of Euclidean distance functions in two dimensions, is now generalized in 
Theorem 3.2 which establishes a similar gradient density estimation result for 
arbitrary smooth functions in arbitrary finite dimensions. 

As mentioned earlier, in [23] we have established error bounds in one dimen-
sion for the practical finite sample-set setting, wherein the gradient density is 
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Figure 2. Convergence of our wave function method as 0τ → . The value of τ  is steadily decreased from right to left, top to 
bottom. 

 
estimated from a finite, discrete set of samples, instead of assuming that the 
function is fully described over a compact set Ω . In the future, we plan to ex-
tend this work and derive similar finite sample error bounds for gradient density 
estimation in arbitrary higher dimensions. 
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Appendix A. Proof of Lemmas 

1) Proof of Finiteness Lemma 
Proof. We prove the result by contradiction. Observe that u  is a subset of 

the compact set Ω . If u  is not finite, then by Theorem (2.37) in [31], u  
has a limit point 0 ∈Ωx . If 0 ∈∂Ωx , then ∈u   giving a contradiction. 
Otherwise, consider a sequence { } 1n n

∞

=
x , with each n ∈ ux  , converging to 0x . 

Since ( )nS∇ =x u  for all n, from continuity it follows that ( )0S∇ =x u  and  

hence 0 ∈ ux  . Let 0n n≡ −p x x  and n
n

n

≡
p

h
p

. Then  

( ) ( )
00lim ,n n

n
n

S S
→∞

∇ −∇ −
= 0xx x p

p


 

where the linear operator 
0x  is the Hessian of S  at 0x  (obtained from the 

set of derivatives of the vector field : d dS∇ →   at the location 0x ). As 
( ) ( )0nS S∇ = ∇ =x x u  and 

0x  is linear, we get  

0
lim .nn→∞

= 0x h  

Since nh  is defined above to be a unit vector, it follows that 
0x  is rank defi-

cient and ( )0
det 0=x . Hence 0 ∈x   and ∈u   resulting in a contradic-

tion. 
2) Proof of Neighborhood Lemma 
Proof. Observe that the set   defined in (2.2) is closed because if 0x  is a 

limit point of  , from the continuity of the determinant function we have 
( )0

det 0=x  and hence 0 ∈x  . Being a bounded subset of Ω ,   is also 
compact. As ∂Ω  is also compact and S∇  is continuous,   is compact and 
hence d −   is open. Then for 0 ∉u  , there exists an open neighborhood  

( )0r u  for some 0r >  around 0u  such that ( )0r = ∅u   . By letting 

2
rη = , we get the required closed neighborhood ( ) ( )0 0rη ⊂u u   contain-

ing 0u . 

Since ( )
0

det 0,≠ ∀ ∈x ux  , points 1, 2 and 3 of this lemma follow directly 
from the inverse function theorem. As 

0u  is finite by Lemma 2.1, the closed 
neighborhood ( )0η u  can be chosen independently of 

0
∈ ux   so that 

points 1 and 3 are satisfied 
0

∀ ∈ ux  . In order to prove point 4, note that the 
eigenvalues of x  are all non-zero and vary continuously for ( )η∈x x . As 
the eigenvalues never cross zero, they retain their sign and so the signature of the 
Hessian stays fixed. 

3) Proof of Density Lemma 
Proof. Since the random variable X is assumed to have a uniform distribution 

on Ω , its density at every location ∈Ωx  equals 
( )
1

µ Ω
. Recall that the  

random variable Y is obtained via a random variable transformation from X, 
using the function S∇ . The Jacobian of S∇  at a location ∈Ωx  equals the 
Hessian x  of the function S at x . Barring the set   corresponding to the 
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union of the image (under S∇ ) of the set of points   (where the Hessian va-
nishes) and the boundary ∂Ω , the density of Y exists on d∈ −u    and is 
given by (2.4). Please see well known sources such as [30] for a detailed explana-
tion. 

For the sake of completeness we explicitly prove the well-known result stated 
in Integral Lemma 3.1. 

4) Proof of Integral Lemma 
Proof. Define a function ( )H x  by 

( )
1: if ;
0 : otherwise.

H
∈Ω

≡ 


x
x  

Let ( ) ( ) ( )
exp

iS
f H

τ
 

=  
 

x
x x . Then, 

( )
( ) ( )

( ) ( )
1

2 2

1 exp d .
2

d

i
F fτ ττ µ

− ⋅ 
=  

 π Ω
∫

u x
u x x  

Letting 
τ

=
uv  and ( ) ( )G Fτ=v u , we get  

( ) ( ) ( )
( )

( ) ( )
1

2 2

2

1 exp d .
2

d

dG f iτ µ ⋅
π

Ω = −∫v x v x x  

As f  is 1
  integrable, by Parseval’s Theorem (see [21]) we have  

( ) ( ) ( ) ( ) ( )2 2 2
d d d .df F Fτ ττ µ τ µ= Ω = Ω∫ ∫ ∫x x v v u u  

By noting that  

( ) ( ) ( )
2

2
d exp d ,

iS
f µ

τΩ

 
= = Ω 

 
∫ ∫

x
x x x  

the result follows. 
5) Proof of Cross Factor Nullifier Lemma 
Proof. Let ( ),k lp u  denote the phase of the exponential in the cross term (ex-

cluding the terms with constant signatures), i.e., 

( ) ( )( ) ( )( )
( )( ) ( )( ) ( ) ( )( )

, ; ;

.
k l k l

k l k l

p

S S

= Ψ −Ψ

= − − ⋅ −

u x u u x u u

x u x u u x u x u
       (A.1) 

Its gradient with respect to u  equals  

( ) ( )( ) ( )( ) ( ) ( ), k lk l k l k lp J S J S   ∇ = ∇ − − ∇ − − +   x xu x u u x u u x u x u  

where 
k

J x  is the Jacobian of ( )x u  at kx  whose ( )th,i j  term equals j

i

x
u
∂

∂
  

(with a similar expression for 
k

J x ). Since ( )( ) ( )( )k lS S∇ = ∇ =x u x u u , we get 
( ) ( ) ( ), 0k l l kp∇ = − ≠u x u x u . This means that the phase function of the expo-

nential in the statement of the lemma is non-stationary and hence does not con-
tain any stationary points of the first kind. Let 
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( )
( )( ) ( )( )

,
1 .

det det
k l

k lq =

x u x u

u
 

             (A.2) 

Since , 0k lp∇ ≠ , consider the vector field ( ) ( )
( )

( ),
, ,2

,

k l
k l k l

k l

p
q

p

∇
=

∇

u
f u u

u
 and 

as before note that  

( ) ( )

( ) ( ) ( ) ( )

, ,

, , , ,

exp

exp exp

k l k l

k l k l k l k l

i p q

i ii p i p

τ

τ τ
τ τ

 
 
 

     = ∇ ⋅ − ∇ ⋅          

u u

f u u f u u
  (A.3) 

where ∇⋅  is the divergence operator. Inserting (A.3) in the second line of 
(3.13), integrating over ( )0η u , and applying the divergence theorem we get  

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )( )

0

0

0

, ,

, ,

, ,

exp d

exp d

exp d .

k l k l

k l k l

k l k l

i p q

ii p

ii p

η

η

η

τ

τ
τ

τ
τ∂

 
 
 

  = ∇ ⋅     

 − ⋅  
 

∫

∫

∫

u

u

u

u u u

f u u u

f n u v v







           (A.4) 

Here n  is the unit outward normal to the positively oriented boundary 
( )0η∂ u  parameterized by v . In the right side of (A.4), notice that all terms 

inside the integral are bounded. The factor τ  outside the integral ensures that 

( )
( ) ( )

0

, ,0
lim exp d 0.k l k l

i p q
η

τ τ→

  = 
 ∫

u

u u u


 

Appendix B. Well-Behaved Function on the Boundary 

One of the foremost requirements for Theorem 3.2 to be valid is that the func-
tion ( ) ( ); SΨ = − ⋅x u x u x  have a finite number of stationary points of the 
second kind on the boundary for almost all u . The stationary points of the 
second kind are the critical points on the boundary Γ = ∂Ω  where a level curve 

( ); cΨ =x u  touches Γ  for some constant c [9] [10]. Contributions from the  

second kind are generally 
1

2
d

O τ
+ 

  
 

, but an infinite number of them could pro-

duce a combined effect of 2
d

O τ
 
  
 

, tantamount to a stationary point of the first  

kind [9]. If so, we need to account for the contribution from the boundary which 
could in effect invalidate our theorem and therefore our entire approach. How-
ever, the condition for the infinite occurrence of stationary points of the second 
kind is so restrictive that for all practical purposes they can be ignored. If the 
given function S is well-behaved on the boundary in the sense explained below, 
these thorny issues can be sidestepped. Furthermore, as we will be integrating 
over u  to remove the cross-phase factors, it suffices that the aforementioned 
finiteness condition be satisfied for almost all u  instead of for all u . 
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Let the location ∈Γx  be parameterized by the variable y , i.e., ( )x y . Let 
( )Q x  denote the Jacobian matrix of ( )x y  whose ( )th,i j  entry is given by 

( ) .j
ij

i

x
Q

y
∂

=
∂

x  

Stationary points of the second kind occur at locations x  where 
( )( ); 0∇Ψ =x y u , which translates to  

( )( ) 0.Q S∇ − =x u                     (B.1) 

This leads us to define the notion of a well-behaved function on the boundary.  
Definition: A function S is said to be well-behaved on the boundary provided 

(B.1) is satisfied only at a finite number of boundary locations for almost all 
∈u  .  
The definition immediately raises the following questions: 1) Why is the as-

sumption of a well behaved S weak? and 2) Can the well-behaved condition im-
posed on S be easily satisfied in all practical scenarios? Recall that the finiteness 
of premise (B.1) entirely depends on the behavior of the function S on the 
boundary Γ . Scenarios can be manually handcrafted where the finiteness as-
sumption is violated and (B.1) is forced to be satisfied at all locations. Hence it is 
meaningful to ask: What stringent conditions are required to incur an infinite 
number of stationary points on the boundary? We would like to convince the 
reader that in all practical scenarios, S will contain only a finite number of sta-
tionary points on the boundary and hence it is befitting to assume that the func-
tion S is well-behaved on the boundary. The reader should bear in mind that our 
explanation here is not a formal proof but an intuitive reasoning of why the 
well-behaved condition imposed on S is reasonable. 

To streamline our discussion, we consider the special case where the boundary 
Γ  is composed of a sequence of hyper-planes as any smooth boundary can be 
approximated to a given degree of accuracy by a finite number of hyper-planes. 
On any given hyperplane, ( )Q x  remains fixed. Recall that from the outset, we 
omit the set   (i.e., ∉u  ) which includes the image under S∇  of the 
boundary Γ = ∂Ω . Hence S∇ ≠ u  for any point ∈Γx  for ∉u  . Since the 
rank of Q is 1d −  and S∇ − u  is required to be orthogonal to all the 1d −  
rows of Q for condition 33 to hold, S∇ − u  is confined to a 1-D subspace. So if 
we enforce S∇  to vary smoothly on the hyperplane and not be constant, we 
can circumvent the occurrence of an infinite number of stationary points of the 
second kind for all u . Additionally, we can safely disregard the characteristics 
of the function S at the intersection of these hyperplanes as they form a set of 
measure zero. To press this point home, we now formulate the worst possible 
scenario where S∇  is a constant vector t . Let   denote a portion of Γ  
where S∇ = t . Let 0=u u  and 1=u u  result in infinite number of stationary 
points of the second kind on  . As S∇ − u  is limited to a 1-D subspace, we 
must have ( )1 0λ− = −t u t u  for some 0λ ≠ , i.e., ( )1 01 λ λ= − +u t u . So in 
any given region of Γ , there is at most a 1-D subspace (measure zero) of u  
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which results in an infinite number of stationary points of the second kind in 
that region. Our well-behaved condition is then equivalent to assuming that the 
number of planar regions on the boundary where S∇  is constant is finite. 

The boundary condition is best exemplified with a 2D example. Consider a 
line segment on the boundary 2 1x mx b= + . Without loss of generality, assume  

the parameterization 1y x= . Then 
1

Q
m
 

=  
 

. Equation (B.1) can be interpreted 

as 1 2 1 2S mS u mu+ = +  where, i
i

SS
x
∂

=
∂

. So if we plot the sum 1 2S mS+  for  

points along the line, the requirement reduces to the function 1 2S mS+  not os-
cillating an infinite number of times around an infinite number of ordinate loca-
tions 1 2u mu+ . It is easy to see that the imposed condition is indeed weak and is 
satisfied by almost all smooth functions. Consequently, we can affirmatively 
conclude that the enforced well-behaved constraint (B) does not impede the 
usefulness and application of our wave function method for estimating the joint 
gradient densities of smooth functions. 
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