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Abstract 
A new application of Chebyshev polynomials of second kind ( )Un x  to 
functions of two-dimensional operators is derived and discussed. It is related 
to the Hamilton-Cayley identity for operators or matrices which allows to 
reduce powers and smooth functions of them to superpositions of the first 

1N −  powers of the considered operator in N-dimensional case. The method 
leads in two-dimensional case first to the recurrence relations for Chebyshev 
polynomials and due to initial conditions to the application of Chebyshev 
polynomials of second kind ( )Un x . Furthermore, a new general class of 
Generating functions for Chebyshev polynomials of first and second kind 

( )Un x  comprising the known Generating function as special cases is con-

structed by means of a derived identity for operator functions ( )f A  of a 
general two-dimensional operator A . The basic results are Formulas (9.5) 
and (9.6) which are then specialized for different examples of functions 
( )f x . The generalization of the theory for three-dimensional operators is 

started to attack and a partial problem connected with the eigenvalue prob-
lem and the Hamilton-Cayley identity is solved in an Appendix. A physical 
application of Chebyshev polynomials to a problem of relativistic kinematics 
of a uniformly accelerated system is solved. All operator calculations are 
made in coordinate-invariant form.  
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1. Introduction 

The main purpose of this article is to examine an application of the Chebyshev 
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polynomials of both kinds ( )Tn z  and ( )Un z  to the reduction of 
two-dimensional operators and its possible generalization to three-dimensional 
operators with application of the corresponding Hamilton-Cayley identities. 
This is made in coordinate-invariant form which is shortly sketched in Appen-
dix A. 

In the introductory sections we consider the most important properties of 
these polynomials for our aim. We embed the Chebyshev polynomials into the 
greater frame of Ultraspherical polynomials ( ) ( ),Pn zα α  which are orthogonal in 
the finite interval 1 1z− ≤ ≤ +  and give the connection to the Hypergeometric 
function ( )2 1F , ; ;a b c z  with the Jacobi polynomials ( ) ( ),Pn zα β  as its poly-
nomial case. By this way we consider selected aspects of the Chebyshev polyno-
mials and find also some little known properties and relations, for example, a 
relation to an integral operator formed from the Bessel functions with the varia-
ble substituted by the operator of differentiation which generates a transformed 
variant of the Ultraspherical polynomials. The methods can be generalized to 
three-dimensional functions of operators and one partial problem for this is 
solved in Appendix B. 

The Jacobi polynomials and their special case of the Ultraspherical and Ge-
genbauer polynomials are used in the form in which they were introduced by 
Szegö [1] (with citations of the “old” original papers) and which became now 
standard in many monographs about Special functions and Orthogonal polyno-
mials, e.g., [2] [3] [4], as well as [5] in the NIST Handbook [6] and [7]. A special 
work about the Chebyshev polynomials is the monograph of Rivlin [8] where the 
approximation theory of functions takes on a great space. 

In present article we investigate the general two-dimensional case of reduction 
of operator functions via the Hamilton-Cayley identity that seems to be new. This 
gives also some hints on the three- and higher-dimensional cases which may lead 
to an approximate conjecture for these forms. In two-dimensional case it leads es-
sentially to an application of Chebyshev polynomials ( )Un x  and to a general 
case of Generating functions. The problem connected with the application of the 
reduction to different operator functions and the calculation of corresponding 
Generating functions of the polynomials is solved. This is the second great 
problem for application which we deal with for the two-dimensional case. We 
attacked but could not finish up to now the solution of some problems which are 
connected, in particular, with the calculation of Generating functions for the 
new polynomials in the three-dimensional case. The results may find application 
in the group theory but many groups with basically three-dimensional operators 
do not need the general case of three-dimensional operators and the corres-
ponding problems are solved already by more special approaches. 

The considerations are important for applications to functions of 
two-dimensional operators in physics illustrated in Appendix C by an example. 

We apply there the Chebyshev polynomials to an interesting problem of rela-
tivistic kinematics which uses powers of Special Lorentz transformations for a 
uniformly accelerated system (space-ship) and which is connected with the ap-
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plication to basically two-dimensional operators. We work with coordi-
nate-invariant methods which are often very advantageous and explain this in 
Appendix A. 

2. Chebyshev and Legendre Polynomials as Special Cases of  
Hypergeometric Function and Ultraspherical and 
Gegenbauer Polynomials 

We compile in this Section without proof some known basic relations for Che-
byshev polynomials of first kind ( )Tn z  and of second kind ( )Un z  including 
for rationality also Legendre polynomials ( )Pn z  as intermediate case. This il-
luminates their position within the Hypergeometric function ( )2 1F , ; ;a b c z  and 
their polynomial cases which all are representable as Jacobi polynomials 

( ) ( ),Pn zα β  with their special case of Ultraspherical polynomials ( ) ( ),Pn zα α  or, 
almost fully equivalently to the last, the Gegenbauer polynomials ( )Cn zν  in the 
standard notations [1] [2]. 

The Rodrigues-type formula of the definition of Jacobi polynomials in the 
very successful form with notation ( ) ( ),Pn zα β  introduced by Szegö [1] is [2]-[8] 

( ) ( ) ( )
( ) ( )

( ) ( )

( ) ( )
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2

1 1P 1 1
2 ! 1 1

1
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n n
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The Jacobi polynomials are the following special case of the Hypergeometric 
function ( )2 1F , ; ;a b c z   
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with the symmetry  
( ) ( ) ( ) ( ) ( ), ,P 1 P .n
n nz zα β β α= − −                  (2.3) 

A relation connected with an argument transformation in the Jacobi polyno-
mials of the form [1]  

( ) ( ) ( ) ( ) ( ) ( ), , 2 1 ,1 3P P 1 P ,
2 1

n
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n n n
z zz z
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    (2.4) 

together with some modifications using the symmetry of the Jacobi polynomials 
(2.3) is generally possible. The Jacobi polynomials and all their special cases be-
long to the classical orthogonal polynomials in a finite interval as which in their 
standard form is chosen the interval 1 1x− ≤ ≤ + . 

Two essentially different expansions of the Jacobi polynomials are 
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In general, a simple form of the Taylor series of Jacobi polynomials in powers 
of z does not exist since the summations in formulae for the coefficients  

( ) ( ),P 0
l

nlz
α β∂

∂
 cannot be calculated in closed form. The differentiation of Jacobi 

polynomials leads again to Jacobi polynomials but with changed parameters 
( ),α β   

( ) ( ) ( ) ( ), 1, 1
1

1P P .
2n n

nz z
z

α β α βα β + +
−

∂ + + +
=

∂
             (2.6) 

Furthermore, in general, all powers of z from zero up to degree n are included 
with non-vanishing coefficients in ( ) ( ),Pn zα β . This changes radically in the spe-
cial case α β=  with powers only in steps of two from the maximal one down-
wards. 

The special case α β=  of the Jacobi polynomials is called the Ultraspherical 
polynomials1. This case admits the following new representation by the Hyper-
geometric function in comparison to (2.2)  

( ) ( ) ( )
( )
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     (2.7) 

which is the possible application to (2.2) of a quadratic transformation of Gauss 
and Kummer [9] (Chapter 2.1.5). There are two almost but not fully equivalent 
forms of Ultraspherical polynomials ( ) ( ),Pn zα α  and ( )Cn zν  where the lasts are 
called Gegenbauer polynomials and which are related to each other by  
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Sometimes, the Gegenbauer polynomials ( )Cn zν  possess advantages in com-
parison to Ultraspherical polynomials ( ) ( ),Pn zα α , for example, in case of diffe-
rentiation 
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1The name results from the Spherical harmonics ( )Y ,m
l θ ϕ  which can be represented by the fol-

lowing formula  

( ) ( )
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, where  

( )( )P cosm
l θ  depends only on θ  as continuous variable. Among others the polynomials ( )Pm

l x  

possess the following representation by Ultraspherical polynomials (positive sign of 21 x−  is to 

choose) ( ) ( ) ( ) ( ) ( ),2 2
!

P 1 P ,
2 !

m
m mm

l l mm

l m
x x x

l −

+
= −  and are called Associated Legendre polynomials (Le-

gendre polynomials in case 0m = ). 
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where the coefficients on the right-hand side do not depend on the degree n of 
the polynomial that, however, is the case for differentiation of ( ) ( ),Pn zα α  (see 
(2.6)). Despite their equivalence the recurrence relations for the Gegenbauer po-
lynomials ( )Cn zν  possess a simpler form than that for ( ) ( ),Pn zα α  and are 

( ) ( ) ( ) ( ) ( ) ( )1 10 1 C 2 C 2 1 C ,n n nn z n z z n zν ν νν ν+ −= + − + + + −     (2.10) 

in comparison to  

( )( ) ( ) ( ) ( )( ) ( ) ( )
( )( ) ( ) ( )

, ,
1

,
1

0 1 2 1 P 2 2 1 1 P

1 P ,
n n

n

n n z n n z z

n n z

α α α α

α α

α α α

α α
+

−

= + + + − + + + +

+ + + +
 (2.11) 

for the Ultraspherical polynomials. 
The Ultraspherical polynomials possess a transformation which for even 

2n m=  and odd 2 1n m= +  leads to special Jacobi polynomials with trans-
formed argument and unequal upper parameters as follows (Szegö [1])  
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They are a consequence of the quadratic transformations of the Hypergeome-

tric function ( )2 1F , ; ;a b c z  in case of 1
2

a b c+ − = ±  with a result which can-

not be expressed by the Gegenbauer polynomials ( )Cn zν  alone. 

The Chebyshev polynomials of first kind ( )Tn z  and of second kind ( )Un z  
and the Legendre polynomials ( )Pn z  are important special cases of the Ul-
traspherical polynomials ( ) ( ),Pn zα α . In particular, Chebyshev polynomials of 
second kind are equivalently defined by 
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and Legendre polynomials by  
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However, this cannot successfully be continued to upper index 0ν =  since 
these polynomials are ( )0

,0Cn nz δ=  that means they are different from zero on-
ly for 0n = . Instead of this the Chebyshev polynomials of first kind ( )Tn z  are  
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defined by the Ultraspherical polynomials ( )
1 1,
2 2Pn z

 − − 
   as  
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  (2.15) 

They possess unique properties among all Ultraspherical polynomials. The li-
miting transition used in (2.15) including the number 0n =  provides  
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Since ( )Tn z  is not regularly defined as special case 0ν =  of the Gegenbau-
er polynomials ( )Cn zν  one has to expect peculiarities in this special case which 
do not follow from the general case of Gegenbauer polynomials and must be 
separately derived. For example, they do not satisfy the recurrence relations 
(2.10) if the polynomials ( )Tn z  are included. The recurrence relations for the 
three considered special series of polynomials can be written  

( ) ( ) ( )1 10 U 2 U U ,n n nz z z z+ −= − +  

( ) ( ) ( ) ( ) ( )1 10 1 P 2 1 P P ,n n nn z n z z n z+ −= + − + +  

( ) ( ) ( )1 10 T 2 T T .n n nz z z z+ −= − +               (2.17) 

This shows that they are the same for both kinds of Chebyshev polynomials. 
With these recurrence relations the polynomials can be continued to arbitrary 
negative indices 1, 2,n = − −   that finds its explanation after transition to tri-
gonometric polynomials (Section 4). 

The recurrence relations for ( )Un z  and for ( )Pn z  are specializations  

1ν =  and 1
2

ν =  of (2.10) where that for ( )Un z  was additionally divided by 

the common factors ( )1n + . The recurrence relation for ( )Tn z  arises from  

special case 1
2

α = −  in (2.11) using the definition (2.15) and division by com-

mon factors. 

3. Series Expansion of Ultraspherical and Gegenbauer,  
Chebyshev and Legendre Polynomials and Fibonacci and  
Lucas Numbers 

As special cases α β=  of Jacobi polynomials ( ) ( ),Pn zα β  the Ultraspherical 
polynomials ( ) ( ),Pn zα α  and equivalently the Gegenbauer polynomials ( )Cn zν  
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possess series expansions which follow from (2.5) by corresponding specializa-
tion. From the symmetry  

( ) ( ) ( ) ( ) ( ), ,P 1 P ,n
n nz zα α α α− = −                 (3.1) 

follows that the polynomials for even 2n m=  can only contain even powers of z 
and for odd 2 1n m= +  only odd powers of z. From the two series representa-
tions of the Hypergeometric function in (2.5) follow then by reordering of the 
arising double sums and evaluating the inner sum for the Ultraspherical poly-
nomials ( ) ( ),Pn zα α  

( ) ( ) ( ) ( )
( ) ( ) ( )

( )

( )

( )

( ) ( )

2
, 2 2

2
0

2 2
2

0

1 !
P 1

! 2 ! !2

11 !2 ! 2 2 ,
1 ! 2 !2 ! !
2

n
k

k n k
n k

k

ln

n l

l

n
z z z

k n k k

n ln
z

l n ln

α α

α

α
α

αα

α

 
  

−

=

 
   −

=

− +
= −

− +

 − + − − +  =
− + − 

 

∑

∑

    (3.2) 

or equivalently for Gegenbauer polynomials ( )Cn zν   
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The second representations of the (pure) series in powers of z follows also di-
rectly from the representation (2.7) by the Hypergeometric function and its 
Taylor series expansion. 

From the discussed expansions follow in the most important special cases the 
expansions for: 

Chebyshev polynomials of second kind  
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Legendre polynomials  
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Chebyshev polynomials of first kind  
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The first written expansions are the direct specializations from (2.5). 
The representations for the Chebyshev polynomials ( )Tn z  and ( )Un z  

given at second place in (3.6) and (3.4) lead to the following known interesting 
representation for ( )Tn z , e.g., [5] [7] [8] 
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and for ( )Un z  
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According to (2.9) the Gegenbauer polynomials with higher upper parameter 
ν  can be obtained by differentiation  
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in particular, from ( ) ( )1C Un nz z=  by  
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The case of Legendre polynomials leads to semi-integer fractional integration 
(e.g., [10]) from the Chebyshev polynomials ( ) ( )1U Cn l n lz z+ +=  and  

corresponding to 1
2

l = −  where ( )1
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 are not polynomials but functions 

which we take from (3.8)2 
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2The lower limit 0y =  of the standard fractional integral is here substituted by 1y = − . With low-
er limit 0y =  the integral would become undetermined at 0z =  and would not provide correct 
values for ( )P 0n z = . The correct integrals after transformation to trigonometric functions corres-
pond to the chosen lower limit (next Section). 
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These integrals can be transformed to a representation by trigonometric func-
tions (see next Section) but, apparently, they are not expressible in short closed 
form by well-introduced functions. 

From the argument substitutions in the Ultraspherical polynomials ( ) ( ),Pn zα α , 

in particular, the substitution 
21

zz
z

→
+

 is interesting. At first, it does not  

lead to new polynomials but after multiplication with certain powers of 21 z+  
one obtains new polynomials. In [11] we denoted with ( )Gn zα  the following 
series of (non-orthogonal) polynomials  

( ) ( ) ( )

( ) ( )
( ) ( )

,2

2

1
2 2

2

G 2 1 P
1

! 2 !
2 1 C .

2 ! ! 1

n

n n

n

n

zz z
z

n zz
n z

α αα

αα α
α α

+

 
≡ +   + 

 +
= +   + + 

        (3.12) 

Inserting this substitution one obtains immediately from (3.2) the following 
expansions  

( ) ( ) ( )
( ) ( ) ( )

( )

( )

( )

( ) ( ) ( )

2
2

0

2 2
22

0

1 !
G 2

! ! 2 !

11 !2 ! 2 1 2 .
1 ! 2 !2 ! !
2

n
k

n k
n

k

ln
n

l n l

l

n
z z

k k n k

n ln
z z

l n ln

α

α

α
α

αα

α

 
   −

=

 
 +   −

=

− +
=

+ −

 − + − − +  = +
− + − 

 

∑

∑
 (3.13) 

One may see that the first of the two expansions in (3.13) can be expressed in 
the following way  

( ) ( ) ( ) ( ) ( )
!J

! !G G 2 .
! 1

2

n
n n

n zz z z
n

z

α
α α

α

α
α
α

 ∂   ∂  ≡ =  + ∂    ∂  

         (3.14) 

Thus the polynomials ( ) ( )Gn zα  may be generated by application of an 
integral operator onto powers of z . This integral operator is built by the entire 
function formed from the Bessel functions ( )J uα  according to (see, e.g., [7] 
[9]) 

( ) ( )
( )

( )

2

0

2

!J 1 !
! ! 2

2
!1 ,

1! 1 ! 4

k k

k

u u
k ku

u

α
α

α α
α

α
α

∞

=

−  =  +   
 
 

= − +
+

∑



              (3.15) 

by the substitution u
z
∂

→
∂

 of the variable u by the differentiation operator 

z
∂
∂

. It is important that this operator is independent of index n of the generated 
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polynomials3. Making the substitution 
21

zz
z

′
=

′+
, in representations of the  

Ultraspherical polynomials ( ) ( ),Pn zα α , for example in (2.7) or in (2.2) with 
α β= , one may find expressions of the polynomials by the Hypergeometric 
function. This leads to the following possible expressions (we omit now again 
the primes)  

( ) ( )
( )

( ) ( )
( ) ( )

2 1 2

2
2

2 1 2

2
2

2 1 2

2 2 ! 1 1 1G F , ; ;1
! 2 ! 2 2 2

! 12 1 F , 2 1;1 ;
! ! 2 1

! 11 F , ;1 ; .
! ! 1

n
n

n

n

n n nz z n
n n z

n z zz n n
n z

n z zz z n n
n z z

α α
α

α

α
α α

α

α
α α

α

+ − = − − − − + +  

 + + −
 = + − + + +
 + 
 + + −
 = + + − − − + −
 + + 

 (3.16) 

We consider the simplest special cases. 
If we make the substitution of the argument of the Chebyshev polynomials of 

first kind corresponding to 1
2

α = −  we find  

( ) ( ) ( )

( ) ( ){ }
( )

( )
( )

1
22

2 2 2

2
2

0

2 !
G 2 1 T

2 ! 1
1 1!2 1 !

12 2i i 2 .
1 12! ! ! 2 ! !
2 2

n

n nn

knn

n n n k

k

n zz z
n z

n n
z z z

n k n k k

−

 
   −

=

 
= +   + 

   − − −   
   = + + − =

   − − −   
   

∑
 (3.17) 

The case to the Legendre polynomials corresponding to 0α =  cannot be 
represented in simple way in analogy to (3.7) and (3.8) or (3.17) and we write 
down the two series expansions obtained by specialization from (3.13) 

( ) ( )
( )

( )

( )

( ) ( ) ( )

2
20

2
0

2
22

0

1 !
G 2

! 2 !

11 !
2 2 1 2 .
1 ! 2 !!
2

n
k

n k
n

k

ln
n l n l

l

n
z z

k n k

n l
z z

l n l

 
   −

=

 
   −

=

−
=

−

 − − − 
 = +
− − 

 

∑

∑
      (3.18) 

With the same substitutions of the argument of the Chebyshev polynomials of 

second kind corresponding to 1
2

α =  we find  

 

 

3In analogous way the Hermite polynomials ( )Hn z  can be generated by application of the integral 

operator 
2

2

1exp
4 z
∂ − ∂ 

 onto the basic monomials ( )2 nz  according to 

( ) ( ) ( )
( ) ( )

2 2
2

2
0

1 !1H exp 2 2 ,
4 ! 2 !

n
k

n n k

n
k

n
z z z

z k n k

 
  

−

=

−∂ = − = ∂ − 
∑  that played an important role in our previous 

papers to this subject, e.g. [12]. This suggests to use also other entire functions and to substitute their 
variable by the differentiation operator and then to apply this to the sequence of basic monomials 
but this makes only sense if one may find applications or interesting aspects of the obtained sequence 
of (usually, non-orthogonal) polynomials.  
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( ) ( ) ( )
( )

( )
( ) ( ){ }
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( )

1
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1
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   −

=

 +
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 + 
 = + − −

 + − 
 

 − + 
 =
 − + 
 

∑

        (3.19) 

By specialization of the arguments in the derived sequences of polynomials 
one may obtain sequences of numbers. In certain cases one obtains only integers. 
To get sequences of positive increasing integers one has to specialize the argu-
ments by complex numbers since the considered polynomials (and also many 
here not considered polynomials) possess alternating coefficients. In particular, 
the well-known Fibonacci numbers nF  can be obtained in the following way 
from the here considered polynomials, series and functions (e.g., [13] for last 
representation)  

( ) ( ) ( )

( )
( )

12 11 2
1 1

1
2

0

i 2 ! ii U i 5 G
2 2 ! 5

1 ! 1 1 5 1 5 .
! 1 2 ! 2 25

nn
n n n

n
n n

k

nF
n

n k
k n k

−−
− −

− 
  

=

  = − = −   
   

    − − + − = = −       − −      
∑

    (3.20) 

The also well-known Lucas numbers nL  can be obtained analogously by ([13] 
for last representation) 

( ) ( ) ( )

( )
( )

12
2

2

0

i 2 ! ii 2T i 5 G
2 2 ! 5

1 ! 1 5 1 5 .
! 2 ! 2 2

nn
n n n

n
n n

k

nL
n

n k
n

k n k

−

 
  

=

  = − = −   
   

   − − + −
= = +      −    
∑

         (3.21) 

The Fibonacci numbers possess a known relation to the Golden ratio and to 
the Chebyshev polynomials of second kind ( )Un z  and the Lucas numbers a 
relation to the Chebyshev polynomials of first kind ( )Tn z . They play an im-
portant role in combinatorics due to their recurrence relations which are the 
same for both types nF  and nL  but with different initial numbers  

1 1 1 1, ,n n n n n nF F F L L L+ − + −= + = +              (3.22) 

and they are related, among others (multiplicative ones), by [13] 

( )1 1 1 1
1, .
5n n n n n nL F F F L L− + − += + = +             (3.23) 

For convenience we give a short table of the Fibonacci and the Lucas numbers 
(Table 1). 
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Table 1. Fibonacci and Lucas numbers. 

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

(3.24) Fn 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 

Ln 2 1 3 4 7 11 18 29 47 76 123 199 322 521 843 1364 

 
One may construct “similar” kinds of number sequences by changing the ar-

guments of the functions, for example, ( ) ii T
n

nN
N

 
−  

 
 and  

( ) ii U
n

nN
N

 
−  

 
 with arbitrary fixed natural numbers N which, obviously,  

provide sequences of increasing integers (sometimes under omission of a few in-
itial terms) which in some cases are reducible by divisions. Using other initial 
values in the same recurrence relations we also get new number sequences (in 
such cases the sequences are no more described by the here written formulae). 
We will give yet the following analogous examples of sequences of increasing in-
tegers constructed from the Legendre polynomials  

( ) ( )
( )

2
0

2
0

i i !i 3 P i G ,
2 ! 2 !3

n

n n
n n n

k

nP
k n k

 
  

=

   ≡ − = − =    −  
∑  

( ) ( ) ( )
2

0
2

0

i i !i 7 P i 2 G 2 ,
! 2 !7 8

n

n n k
n n n

k

nP
k n k

 
  

=

   ′ = − = − =    −   
∑  

( ) ( )
( )

2
0 2

2
0

i i !i 15 P i2 G 2 ,
4 ! 2 !15

n

n n k
n n n

k

nP
k n k

 
  

=

   ′′= − = − =    −  
∑    (3.25) 

A short table of these sequences of numbers is (Table 2). 
 
Table 2. Sequences of numbers , ,n n nP P P′ ′′ . 

n 0 1 2 3 4 5 6 7 8 9 10 

(3.26) 
Pn 1 1 3 7 19 51 141 393 1107 3139 8953 

nP′  1 1 5 13 49 161 581 2045 7393 26,689 97,285 

nP′′  1 1 9 25 145 561 2841 12,489 60,705 281,185 1,353,769 

 
The importance of such sequences of numbers rises if one finds applications, 

for example, in combinatorics. 

4. Ultraspherical and Gegenbauer Polynomials with Integer  
and Semi-Integer Parameter 

Almost all up to now written relations are true for arbitrary real and even com-
plex variable z. We now consider properties which are only true or possible for 
real variable x in the basic interval 1 1x− ≤ ≤ +  and which are related to Trigo-
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nometric functions4 and polynomials that leads to a unique property of Cheby-
shev polynomials of first kind ( )Tn x . To these properties belong also the or-
thogonality relations of the Ultraspherical and Gegenbauer polynomials with 
their special cases within the basic interval 1 1x− ≤ ≤ +  (Figure 1 and Figure 2). 
 

 

Figure 1. The first 4 Chebyshev polynomials of first and second kind ( ) ( )T ,Un nx x  and 

the first 4 Legendre polynomials ( )Pn x  and their transforms ( )( ) ( )( )T cos ,U cosn nθ θ  

and ( )( )P cosn θ . 
One may choose another normalization of the Chebyshev and Legendre polynomials according to 

( )

( )
( ) ( ) ( )

( ) ( )
1

, 2
! 2 !! !P ( ) P C

! 2 !n n n

nnx x x
n n

αα α α αα
α α

+
≡ =

+ +
 from which results ( ) ( ) ( ) ( ) ( )P 1 1 , P 1 1n

n n
α α− = − + =  

that leads to more similarity of all Figures. The polynomials ( )Tn x  and ( )Pn x  corresponding to 

1
2

α = −  and 0α =  are then directly defined by ( ) ( )Pn xα  and the amplitude of the polynomials 

( )Un x  corresponding to 1
2

α =  is reduced by the factors 1
1n +

 and we have  

( )( ) ( )( )
( ) ( )

1
2

sin 1
P cos

1 sinn

n
n

θ
θ

θ

 
 
 

+
=

+
 (see Figure 2). However, some formulae as, for example, the diffe-

rentiation of the polynomials ( ) ( )Pn xα  become then more difficult than for Gegenbauer polyno-

mials ( )Cn xν . The same factor ( )!
! !

n
n
α
α
+

 could be also excluded in the definition of (3.14). 

 

 

4Outside this basic interval they are related to corresponding Hyperbolic functions. 
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Figure 2. The first 4 modified Chebyshev polynomials of second kind ( ) ( )1
2 U

P
1

n
n

x
x

n

 
 
  ≡

+
 

and their transforms ( )( ) ( )( ) ( )( )
( ) ( )

1
2

U cos sin 1
P cos

1 1 sin
n

n

n
n n

θ θ
θ

θ

 
 
 

+
= =

+ +
. 

These graphics and those for ( ) ( )Pn xα  with higher parameter α  are more similar to the graphics 
in the first two lines in Figure 1. 
 

If we make the substitution ( )cosx θ=  in the Chebyshev polynomial of first 
kind ( )Tn x  then we find from the expansions in (3.6) 

( )( ) ( ) ( )
( ) ( )( ) ( )

2 2

0

1 1 !
T cos 2cos cos .

2 ! 2 !

n
l

n l
n

l

n ln n
l n l

θ θ θ

 
   −

=

− − −
= =

−∑      (4.1) 

This is well known and can be easily proved by complete induction. Since 
( ) ( )cos cosn nθ θ− =  one can tentatively define  

( )( ) ( )( ) ( ) ( ) ( )T cos T cos , T T , 0, 1, 2, .n n n nx x nθ θ− −≡ ⇔ ≡ = ± ±   (4.2) 

Clearly the index n, usually the degree of the polynomial within a sequence of 
polynomials, is here no more true as such. The inversion of relation (4.1) is 

( ) ( ) ( )( )

( ) ( )( )
0

2
0

1 !cos cos 2
! !2

1 ! T cos ,
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n
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n
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n

n kn
k

n n k
k n k

n
k n k

θ θ

θ

=

−
=

= −
−

=
−

∑

∑
            (4.3) 

or using variable x 

( ) ( )2
0

1 ! T .
! !2

n
n

n kn
k

nx x
k n k −

=

=
−∑                  (4.4) 

that is also easily to prove by complete induction. In the representation of this 
relation we have already taken into account the continuation of the polynomials 

( )Tn x  to negative indices n. 
For the Chebyshev polynomials of second kind ( )Un x  one obtains by the 

substitution ( )cosx θ=  in corresponding way from (3.4) the following 
well-known relations  

( )( ) ( ) ( )
( ) ( )( )

( )( )
( ) ( )( )

2 2

0

2
0
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U cos 2cos

! 2 !

sin 1
T cos .
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n l
l n l

n

θ θ
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θ

θ
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=

−
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− −
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−

+
= =

∑

∑

         (4.5) 
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Using ( )( ) ( )( ) ( )( )sin 1 sin 2 1 sin 1n n nθ θ θ− − = − − + = − +  one may contin-
ue also in this case the polynomials formally to negative indices n by defining  

( )( ) ( )( ) ( ) ( )2 2U cos U cos , U U ,n n n nx xθ θ− − − −≡ − ⇔ = −      (4.6) 

for all integer n from which immediately follows  

( ) ( )1 1U U 0.x x− −= − =                    (4.7) 

The inversion of the relation (4.5) is 

( ) ( )
( )( )

( )

( ) ( )( )
0

2
0

sin 1 21 !cos
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−
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−

∑

∑
          (4.8) 

or by variable x  

( ) ( )2
0

1 ! U .
! !2

n
n

n kn
k

nx x
k n k −

=

=
−∑                   (4.9) 

Both Formulas (4.4) and (4.9) for the inversion of the Chebyshev polynomials 
take on their simplest form with the extension of the polynomials to negative in-
dices and, astonishingly, both formula are identical after exchange of the kind of 
Chebyshev polynomials. 

We now calculate which trigonometric functions represent the Gegenbauer 
polynomials ( )2Cn x  after the substitution ( )cosx θ= . According to (2.9) we 
find the already complicated expressions  

( )( ) ( )
( )( )
( )

( ) ( )( ) ( ) ( ) ( )( )
( )

2

3

sin 21C cos
2sin sin

cos sin 2 2 sin cos 2
.

2sin

n

n

n n n

θ
θ

θ θ θ

θ θ θ θ

θ

+∂
= −

∂

+ − + +
=

 (4.10) 

This and the corresponding relations for other integer and semi-integer pa-

rameter 
2
mν =  allows to extend the Gegenbauer polynomials to negative in-

dices with 

( ) ( ) ( ) ( )12 2C 1 C , 1,2, .
m m

m
n m nx x m−

− − ≡ − =            (4.11) 

They are symmetric or antisymmetric with respect to reflection of the index at 

2
mn = −  in dependence on m an odd or an even number. However, the  

polynomials ( )Tn x  make here an exception since they are not determined by 
the Gegenbauer polynomial ( )0

,0Cn nx δ=  which themselves are only deter-
mined by a limiting transition. 

We now investigate the Gegenbauer polynomials with semi-integer upper pa-

rameters 1
2

mν = + . It is hardly possible to find a closed representation for 

them similar to ( )( ) ( )T cos cosn nθ θ=  or to ( )( ) ( )( )
( )

sin 1
U cos

sinn

n θ
θ

θ
+

= . By  
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semi-integer integration from ( )( )1C cosn θ  we obtain from the already pre-
pared intermediate result by substitution of the integration variable ( )cosy η=  
(Gradshteyn, and Ryzhik [7], 3.675, with hint to Whittaker and Watson [14])5 

( )( )
( ) ( )

1sin
22P cos ,

cos cos
n

n
d

π
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η
θ η

π θ η

  +    =
−

∫            (4.12) 

with the correct special case for 0θ = , ( )cos 1θ =  
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∫

∑∫

              (4.13) 

A closed relation similar to the kind in case of the Chebyshev polynomials is 
hardly to find for ( )( )P cosn θ  but one may write down expansions. From (3.5), 
for example, follows  
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       (4.14) 

One may transform these results into a series over Chebyshev polynomials of 
first kind as follows  

( )( ) ( ) ( )( )
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     (4.15) 

The more general relation of this kind takes on its simplest form expressed by 
Gegenbauer polynomials ( )( )C cosn

ν θ  and possesses the form  

( )( ) ( ) ( )
( ) ( )

( )( )22
0

1 ! 1 !
C cos T cos ,

! ! 1 !

n

n n j
j

j n j
j n j

ν ν ν
θ θ

ν −
=

+ − − + −
=

− −∑      (4.16) 

where it is possible to use the inverse substitution ( )cos xθ = . The basic mo-
nomials nx  can be represented by the Legendre polynomials according to 

 

 

5The presence of this integral in tables admits the conjecture that someone already went the way via 
fractional integration but there in [14] (§15.321) we find (now old) citations of Dirichlet and of 
Mehler. However, they provide no other closed result or representation than the Legendre polyno-
mials ( )Pn x  whereas we started from it, possibly in the hope, to find other representations similar 
to (4.1) and (4.5). 
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 (4.17) 

The more general formula expressed in arbitrary Gegenbauer polynomials 
( ) ( )C , 0n xν ν >  possesses the form  
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+ −∑       (4.18) 

from which (4.17) is the special case 1
2

ν = . As hint for attention we mention 

that a separated factor within the sums in (4.17) and in (4.18) is not a factorial. 
In Section 9 we derive a whole class of generating functions for the Chebyshev 

polynomials. For convenience and to be self-contained we give here the 
well-known basic generating functions for Chebyshev and Legendre polynomials 
(e.g., [2] [3] [5] [7]) 
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and, more, generally for the Gegenbauer polynomials  
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( )20

1C .
1 2

n
n

n
t x

tx t
ν

ν

∞

=

=
− +

∑                   (4.20) 

Another kind of generating functions is (e.g., [5] and [11])  

( ) ( ) ( )2

0
T exp cos 1 ,

!

n

n
n

t x tx t x
n

∞

=

= −∑  

( ) ( ) ( )2
0

0
P exp J 1 ,

!

n

n
n

t x tx t x
n

∞

=

= −∑  

( ) ( ) ( )
( )2

20

sin 1
U exp .

1 ! 1

n

n
n

t xt x tx
n t x

∞

=

−
=

+ −
∑             (4.21) 

The more general result is representable by (modified entire) Bessel functions 
as distinguishing part. 

It is sometimes favorable to consider another normalization of the Ultras-
pherical polynomials ( ) ( ),Pn xα α  or Gegenbauer polynomials ( )Cn xν  as fol-
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lows6 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
1

, 2
! 2 !! !P P C .

! 2 !n n n

nnx x x
n n

αα α α αα
α α

+
≡ =

+ +
        (4.22) 

We find then independently of the upper parameters α   
( ) ( ) ( ) ( ) ( )P 1 1, P 1 1 ,n
n n
α α= − = −              (4.23) 

that is sometimes advantageous and the graphics to different parameter α  be-
come more similar to each other (see Figure 1 and Figure 2). The recurrence 
relation becomes  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 10 1 2 P 2 1 2 P P ,n n nn x n x x n xα α αα α+ −= + + − + + +    (4.24) 

and the formula for the differentiation is  

( ) ( ) ( )
( )

( ) ( )1
1

1 2
P P .

2 1n n

n n
x x

x
α αα

α
+

−

+ +∂
=

∂ +
            (4.25) 

This means, however, that not all formulae become very simple in the form of 
the polynomials ( ) ( )Pn xα . For example, the formula for the differentiation takes 
on the most simple form using the Gegenbauer polynomials ( )Cn xν  (see (2.9)) 
but the last fail to act for the Chebyshev polynomials of first kind ( )Tn x . The  

special cases of parameters 1 1,0,
2 2

α = −  are 

( )( ) ( )( ) ( )
1
2P cos T cos cos ,n n nθ θ θ

 − 
  ≡ =  

( ) ( )( ) ( )( )0P cos P cos ,n nθ θ≡  

( )( ) ( )( ) ( )( )
( ) ( )

1
2

U cos sin 1
P cos .

1 1 sin
n

n

n
n n

θ θ
θ

θ

 
 
 

+
≡ =

+ +
         (4.26) 

It is favorable that the normalization coefficients in ( ) ( )Pn xα  are the same as 
this would be for the favorable choice of the normalization of ( ) ( )Gn zα  such as 
proposed in (3.14). Furthermore, it is favorable that in the extension to negative  
indices the sign in the relation ( ) ( )2U Un nx x− − = −  in (4.6) changes to a posi-

tive sign for ( )
1
2Pn x

 
 
   according to 

( ) ( )2U U
1 1

n nx x
n n

− − = +
− − +

. More generally, from  

(4.11) using relations between factorials of negative and positive numbers then 
follows  

( ) ( ) ( )
1 1

2 2P P , 0,1,2, ,
m m

n m nx x m
− −   

   
   
− − = =             (4.27) 

with only positive sign on the right-hand side as advantage. This is true for the 
general case of ( ) ( )Pn xα  with integer and semi-integer parameter α . 

 

 

6We made a bracket around the upper parameter α  to distinguish them from the different Asso-
ciated Legendre polynomials ( )Pm

l x  where the upper indices m can take on only integer values (see 
also footnote in Section 2). 
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5. Unique Properties of the Chebyshev Polynomials 

We discuss in this Section unique properties of Chebyshev polynomials of first 
kind ( )Tn z  and write as variable z when the obtained relations are true for ar-
bitrary complex z. First, we consider composite indices n pq=  in Chebyshev 
polynomials of first kind. From (4.1) follows 

( )( ) ( )( ) ( )( ) ( )( )( )T cos cos T cos T T cos .pq p p qpq qθ θ θ θ= = =      (5.1) 

This means that for composite indices n pq=  the Chebyshev polynomials 
( )Tpq z  possess the nested forms  

( ) ( )( ) ( )( )T T T T T .pq p q q pz z z= =                (5.2) 

Thus the Chebyshev polynomial ( )Tn z  for composite indices n can be found 
from the Chebyshev polynomials ( )Tp z  and ( )Tq z  by the simple nested 
construction (5.2). This is very similar to the unique decomposition of a natural 
number into a product of prime numbers and, in principal, the Chebyshev po-
lynomials of first kind need only to be given for prime-number indices and one 
can build all others in simple way by the nested construction with the possibility 
of variations by the number of permutations of the prime numbers of the com-
posite index. For example, if we take ( ) 2

2T 2 1z z= −  we can represent the even 
Chebyshev polynomials ( )2T m z  in the following two ways  

( ) ( )( ) ( )( )2
2 2T T T 2 T 1,m m mz z z= = −  

( ) ( )( ) ( )2
2 2T T T T 2 1 .m m mz z z= = −                (5.3) 

It is easy to construct similar relations, for example, for ( )3T m z  and to con-
sider many other examples. 

We now consider the Chebyshev polynomials of second kind ( )Un z  for odd 
indices 1n pq= − . Then from (4.5) follows  

( )( ) ( )( )
( )

( )( )
( )

( )
( )

( )( ) ( )( )
( )( )( ) ( )( )

1

1 1

1 1

sin sin sin
U cos

sin sin sin

U cos U cos

U T cos U cos ,

pq

p q

p q q

pq pq q
q

q

θ θ θ
θ

θ θ θ

θ θ

θ θ

−

− −

− −

= =

=

=

       (5.4) 

or expressed in variable ( )cosz θ=  

( ) ( )( ) ( ) ( ) ( )( )1 1 1 1 1U U T U U U T .pq p q q p q pz z z z z− − − − −= =      (5.5) 

As example for illustration of this relation we choose 2, 1p q m= = +  and 
find by specialization of relations in (5.5) 

( ) ( ) ( )( ) ( )2
2 1 1 2U U U T 2 U 2 1 .m m mz z z z z+ = = −            (5.6) 

With notation ( ) ( )T T 2 1n nu u≡ −  and ( ) ( )U U 2 1n nu u≡ −  these polyno-
mials are sometimes separately taken into account in tables. We notice here also 
a great similarity of relations (5.3) and (5.6) to the relations (2.12) which for  

1
2

α = −  or 1
2

α = , respectively, are identical. For arbitrary α  the relations  
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(2.12) are a generalization in other direction as the here considered nested rela-
tions for the Chebyshev polynomials. 

There exist also many interesting relations between Chebyshev polynomials of 
second and first kind. An interesting relation between Ultraspherical or Gegen-
bauer polynomials with Chebyshev polynomials of first kind is given in (4.15) 
and (4.16). All these relations possess a full counterpart in trigonometric identi-
ties using (4.1) and (4.5) and this is well known. For example, for the Chebyshev 
polynomials of second kind ( )Un z  with composite indices n pq=  one may 
derive in analogous way to (5.5) plus using addition theorems for trigonometric 
functions the relation  

( ) ( )( ) ( ) ( )( )1 1U U T U T T ,pq p q q p qz z z z z− −= +           (5.7) 

and, in particular 

( ) ( )( ) ( )( ) ( )( )

( )

2 2 2 0 2 2
0 11

2

1

U T T T T 2 T T

1 2 T 2 1 .

m m

m m j k
j k

m

k
k

z z z z

z

−
= ==

=

= = +

= + −

∑ ∑

∑



      (5.8) 

Other forms of identities for ( )2U m z  are 

( ) ( )( ) ( )( )
( ) ( ) ( ) ( )
( ) ( )
( )

2 2
2 1

1 1

2 2 2
2

U U U

T U T U

T T
,

2 1

m m m

m m m m

m m

z z z

z z z z

z z
z

−

+ −

+

= −

= +

−
=

−

            (5.9) 

and for ( )2 1U m z+   

( ) ( ) ( )2 1 1U 2T U .m m mz z z+ +=                 (5.10) 

Many relations for Chebyshev polynomials of both kinds and between them 
which are connected with recurrence relations and with differentiations one may 
find in tables (e.g., [2] [3] [5] [7]). 

Another unique property of the Chebyshev polynomials which is restricted to 
the polynomials of first kind ( )Tn x  is that for a given function ( )f x  in the 
interval 1 1x− ≤ ≤ +  they provide in approximations of each degree of the po-
lynomial the best approximation by some criteria. One criterium for this is that 
within the mentioned interval the maximal modulus of the deviation of the ap-
proximation from the values of the function ( )f x  is minimal. This was in-
itiated by Chebyshev and further developed by many authors (e.g., Akhieser [15], 
Nikolski [16] in [17], Rivlin [18]). Via a substitution in the Chebyshev poly-
nomial of first kind this is related to a known similar property of Fourier series 
in the expansion of periodic functions. 

The expansion of functions in series of Chebyshev and, more generally, of Ul-
traspherical or Gegenbauer polynomials and even Jacobi polynomials is con-
nected with the completeness and orthogonality of these function sets. The 
completeness for continuous and infinitely continuously differentiable functions 
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( )f x  in the neighborhood of a considered point x  is connected with the 
presence of a polynomial of each degree ( ), 0,1, 2,n n =   within the set of po-
lynomials. The known orthogonality relations for the Ultraspherical polynomials 
within the interval 1 1x− ≤ ≤ +  are (e.g., [1] [2] [3] [5]) 

( ) ( ) ( ) ( ) ( ) ( )
( )
( )

22 11 , ,2
,1

!21 P P .
2 1 ! 2 !m n m n

n
dx x x x

n n n

αα α α α α α
δ

α α

+
+

−

+
− =

+ + +∫   (5.11) 

In next section we investigate the expansion in Chebyshev polynomials of first 
kind and consider a mapping onto 2π-periodic functions that leads to Fourier 
series with an additional symmetry. 

6. Relation of Expansions in Chebyshev Polynomials ( )Tn x   

to Fourier Series of 2π-Periodic Functions 

We consider the expansion of a sufficiently well-behaved function ( )f x  within 
the interval 1 1x− ≤ ≤ +  in a series of Chebyshev polynomials of first kind  

( ) ( ) ( ) ( ) ( )0 0 0
1

T 2 T T , T 1.n n n n
n n

f x a x a x a x x
∞ +∞

= =−∞

= + = =∑ ∑        (6.1) 

Due to orthogonality relations  

( ) ( ) ( )

( )
1

,1 2

, 0T T
, ,1, 2,1 2

m n
m n

nx x
dx

nx

π
δ π

+

−

 =
= 

− 
∫



            (6.2) 

the coefficients n na a−=  of the expansion are then determined by the formula  

( ) ( )1

1 2

T1 .
1
n

n

x
a dx f x

xπ
+

−
=

−
∫                   (6.3) 

The similarity of expansions of functions ( )f x  within the interval 
1 1x− ≤ ≤ +  in Chebyshev polynomials of first kind ( )Tn x  to Fourier series of 

2π-periodic functions ( ) ( )2f fϕ ϕ π= +   can be established by an argument 
transformation in the expansion (6.1), for example7 

( ) ( )cos , sin , 1 0, 1x dx d x xϕ ϕ ϕ ϕ ϕ π= − = = − ↔ = = ↔ =     (6.4) 

with the new interval 0 2ϕ π≤ ≤  corresponding to the primary interval 
1 1x− ≤ ≤ + . Then one obtains a 2π-periodic function  

( ) ( )( ) ( )cos 2 ,f f fϕ ϕ ϕ π≡ − = +                  (6.5) 

however, with a peculiarity. This peculiarity is the additional symmetry  

( ) ( )( ) ( )( ) ( )cos cos ,f f f fϕ ϕ ϕ ϕ− = − − = − =            (6.6) 

which is already repeated of the same kind after the half of the full 2π-period of 
the function ( )f ϕ , in our choice of the transformation (6.4), around ϕ π=  
according to  

 

 

7We choose the Minus in front of ( )cos ϕ  since we want that the interval 1 1x− ≤ ≤ +  is mapped 
onto the part 0 ϕ π≤ ≤  of the whole interval 0 2ϕ π≤ ≤  by a monotonically increasing function. 

https://doi.org/10.4236/apm.2019.912050


A. Wünsche 
 

 

DOI: 10.4236/apm.2019.912050 1011 Advances in Pure Mathematics 

 

( ) ( )( ) ( )( )
( )( ) ( )

cos cos

cos ,

f f f

f f

π ϕ π ϕ π ϕ

π ϕ π ϕ

− = − − = − − +

= − + = +





          (6.7) 

and due to 2π periodicity around ϕ π= − . In general, ( ) ( )0f f π≠   due to 
only 2π-periodicity of the whole function ( )f ϕ  but the symmetries (6.6) and 
(6.7) are repeated in each further 2π-period (Figure 3).  
 

 

Figure 3. Example of mapping of function ( )f x  onto function ( )f ϕ  by  

( )cosx ϕ→ − . 

The chosen function is ( ) 211
2

f x x x= − −  corresponding to ( ) ( ) ( )211 cos cos
2

f ϕ ϕ ϕ= + − . 

 
Using now the relation  

( )( ) ( ) ( )( ) ( ) ( )T cos 1 T cos 1 cos ,n n
n n nϕ ϕ ϕ− = − = −          (6.8) 

then due to symmetry of ( )Tn x  the expansion (6.1) can be transformed ac-
cording to  

( ) ( )( ) ( ) ( )0 0
1 1

2 T cos 2 1 cos ,n
n n n

n n
f a a a a nϕ ϕ ϕ

∞ ∞

= =

= + − = + −∑ ∑      (6.9) 

with the coefficients given by integrals not over the full 2π period and with fixed 
limits 

( )( ) ( )( ) ( ) ( ) ( )
0 0

11 cos T cos cos .
n

n na d f d f n
π π
ϕ ϕ ϕ ϕ ϕ ϕ

π π
−

= − − =∫ ∫   (6.10) 

If we use the symmetry (6.6) then the formula for the coefficients (6.10) can 
be also represented by  

( ) ( ) ( )0

0

21
cos ,

2

n

na d f n
π ϕ

ϕ
ϕ ϕ ϕ

π
+−

= ∫               (6.11) 

with arbitrary 0ϕ . The expansion (6.9) together with (6.11) represents the 
Fourier decomposition of a general 2π-periodic and symmetric function togeth-
er with the formula for the coefficients with integration limits which must go 
only over an arbitrary 2π-interval (Example in Figure 3). Due to additional 
symmetry (6.6) the formula for the coefficients can be written in the special form 
(6.10) where the integration limits over a half-period cannot be arbitrarily dis-
placed but only over full 2π-periods. 
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One may displace the whole picture of ( )f ϕ  to the right by a value 0ϕ  on 
the ϕ -axis by choosing a mapping ( )0cosx ϕ ϕ→ − − , in particular with  

0 2
πϕ = −  by the mapping ( )sinx ϕ→ . The function ( )f ϕ  is then in last case 

only symmetric around the values 
2
πϕ = −  and 

2
πϕ =  but not around 0ϕ = . 

One obtains then a Fourier series instead of (6.9) including also sum terms con-
taining ( )sin nϕ  with coefficients only specialized in last case by the symmetries 

around 0 2
πϕ = ± . The mapping to arbitrary period lengths of functions  

( )f ϕ′  also does not make difficulties but in all cases we obtain only Fourier se-
ries with additional symmetries. Thus the expansion of a function ( )f x  in a 
series over Chebyshev polynomials ( )Tn x  to functions ( )f ϕ′  is not fully 
equivalent to a general expansion of an arbitrary periodic function in a Fourier 
series. 

The reason for the additional symmetry in the mapping of functions ( )f x  
onto periodic functions from the basic interval 1 1x− ≤ ≤ +  onto the basic pe-
riod of 2π is that the function ( )cosx ϕ=  (and all other similar functions but 
not Tangent-like functions) is not monotonically increasing but repeats decrea-
singly its values in the second half of the period 2π. The decomposition of func-
tions into series of the higher Ultraspherical polynomials ( ) ( ),Pn xα α  should 
provide after the transformation to ( ) ( )( ),P cosn

α α ϕ  alternative decompositions 
of periodic function in comparison to Fourier series with lower importance and, 
apparently, are not interesting enough up to now. 

7. Application of Chebyshev Polynomials of Second Kind to  
Reduction of Powers of Two-Dimensional Operators 

The Chebyshev polynomials of second kind possess an important application in 
the theory of functions of two-dimensional operators in connection with the 
Hamilton-Cayley identity. We deal with this in coordinate-invariant form and 
give the most important informations and basic formulae in Appendix A. 

In this section we consider arbitrary two-dimensional operators A  that 
means operators which satisfy the following two-dimensional Hamilton-Cayley 
identity 

[ ]

[ ]
[ ] [ ] [ ]

( )

2

2

0
1 1 1
2 2 2

0

, ,

= − +

  
  = − + ≡      

A A A A I

AA AA I I A
A A A

            (7.1) 

where A  and [ ]A  denote the trace and the determinant of the operator A  
according to 

[ ] { }2 21, ,
2

k
k≡ ≡ −A A A A A                 (7.2) 

which are two independent invariants of the operator A  with respect to simi-
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larity transformations. Our first aim is to reduce powers ( )2 , 0,1,n n+ = A  by 
means of the Hamilton-Cayley identity (7.1) to linear combinations of the oper-
ator A  and of the identity operator I  with coefficients which are functions 
(polynomials) of the invariants of the operator A . 

First we make a simplification under the supposition of nonvanishing deter-
minant ( [ ] 0≠A , non-degenerate case) and introduce a new operator B  with 
determinant equal to 1 as follows8 

[ ] [ ]
1
2, 0, 2 = , 1.t x

t t
≡ ≡ ≠ ≡ =

AAB A B B          (7.3) 

Furthermore, we introduced the abbreviations t  and x  which play the role 
of variables in the following considerations. The case of vanishing determinant 

[ ]2 0t ≡ =A  is either essentially the one-dimensional case or a Jordan normal 
form with zeros in the main diagonal and one nonvanishing number in the 
off-diagonal and can be dealt with as a limiting case. We come back to this later. 
With the introduced variable x the Hamilton-Cayley identity for the operator B  
may be written in the form  

20 2 .x= − +B B I                       (7.4) 

From this relation follows for higher powers of B   

( )2 12 , 0,1, 2, .n n nx n+ += − = B B B               (7.5) 

After making some few iterations of the elimination of higher powers of B  
from this equation by means of (7.4) one finds that 2n+B  can be represented in 
the following form of the superposition of the operators B  and I   

( ) ( ) ( )2
1 , 0,1, 2, ,n

n np x p x n+
+= − = B B I            (7.6) 

where ( )np x  is a polynomials of x  of the degree n and one sees that the po-
lynomials in front of B  and of I  are essentially the same if one first introduces 
different ones. By complete induction 1n n→ +  follows with application of 
(7.4)  

( ) ( )( )
( )( ) ( )

( ) ( )( ) ( )
( ) ( )

3
1

1

1 1

2 1

2

2

,

n
n n

n n

n n n

n n

p x p x

p x x p x

xp x p x p x

p x p x

+
+

+

+ +

+ +

= −

= − −

= − −

= −

B B I B
B I B

B I
B I

              (7.7) 

that proves (7.6) and we find the necessary recurrence relations for the polyno-
mials ( )np x   

( ) ( ) ( )2 12 .n n np x xp x p x+ += −                  (7.8) 

In the special cases 2 1 0, ,= =B B B I B  follows from (7.6) by comparison with 

 

 

8Properly speaking, we get two related operators ±B  as possible results of the substitution depend-

ing on the choice of the sign of [ ]t = A  that does not possess influence on the following consider-

ations. 
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(7.4) 

( ) ( ) ( ) ( )1 0 1 22 , 1, 0, 1.p x x p x p x p x− −= = = = −          (7.9) 

Any two neighbored pairs from these relations can be taken as the initial con-
ditions for the recurrence relations (7.8). 

The recurrence relations (7.8) are satisfied by both the Chebyshev polyno-
mials ( )Tn x  of first kind and by Chebyshev polynomials ( )Un x  of second 
kind (see 2.17) but only the Chebyshev polynomials of second kind obey the ini-
tial conditions (7.9) and, therefore, the solution is  

( ) ( ) ( ) ( )
( ) ( )

2
2

0

1 !
U 2 .

! 2 !

n
k

n k
n n

k

n k
p x x x

k n k

 
   −

=

− −
= =

−∑             (7.10) 

Graphical illustrations for the first four polynomials ( )Un x  are given in 
Figure 1. 

For an arbitrary function ( )f B  of the operator B  which can be defined by 

a Taylor series ( )
( ) ( )

0

0
!

m
m

m

f
f z z

m
∞

=
= ∑  in a neighborhood of 0z =  one ob-

tains using (7.10) together with (7.6)  

( )
( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( )
( ) ( )
( ) ( ) ( )( )

0 1 2
2

0

2
1

1
0

0 0 0
0! 1! 2 !

0
0 0 U U ,

2 !

n
n

n

n

n n
n

f f f
f

n

f
f f x x

n

+∞
+

=

+∞

+
=

= + +
+

= + + −
+

∑

∑

B I B B

I B B I
   (7.11) 

and with separation of the two parts proportional to the identity operator I  and 
the operator B   

( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( )

2

0

2
1

1
0

0
0 U

2 !

0
0 U .

2 !

n

n
n

n

n
n

f
f f x

n

f
f x

n

+∞

=

+∞

+
=

 
=  − 
 + 
 

+  + 
 + 

∑

∑

B I

B

          (7.12) 

For the same function ( )f A  of the more general operator t=A B  this 
means  

( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( )

2
2

0

2
1 1

1
0

0
0 U

2 !

0
0 U .

2 !

n
n

n
n

n
n

n
n

f
f f t f t x

n

f
f t x

n

+∞
+

=

+∞
+

+
=

 
≡ =  − 

 + 
 

+  + 
 + 

∑

∑

A B I

A

     (7.13) 

We see from this formula that for the final calculation of this reduction to a 
linear combination of the operators I  and A  for a given function ( )f z  one 
should possess the result for the corresponding sums in (7.13) containing the 
Chebyshev polynomials of second kind. They may be considered as Generating 
functions to these polynomials in a wide sense. 
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8. Solution of Eigenvalue Problem for Two-Dimensional  
Operators and Arbitrary Functions of Operators 

In this section, we calculate functions ( )f A  of two-dimensional operators A  
and represent these as superposition of the two linear independent operators A  
and 0=I A . As preparation we consider the solution of the eigenvalue problem 
of the operator A  in coordinate-invariant form. 

The solution of the eigenvalue problem of two-dimensional operators A   

, ,α α= = a a a aA A                      (8.1) 

consists of the determination of the eigenvalues α  by means of the secular eq-
uation  

[ ] [ ]20 ,α α α= − = − +I A A A                 (8.2) 

and the determination of right-hand eigenvectors a  and left-hand eigenvectors 
a  to the eigenvalues α . Instead of the eigenvectors, we determine below pro-
jection operators to these eigenvectors. We denote the two, in general, different 
solutions of the eigenvalue Equation (8.2) by α±  according to 

[ ]( ) ( )2 21 4 1 ,
2

t x xα± = ± − = ± −A A A            (8.3) 

where the substitutions (7.3) are used. It does not make a restriction of the ge-
nerality to suppose nondegeneracy of the eigenvalues α α+ −≠  because the de-
generate case α α+ −=  can be dealt with by a limiting procedure that, however, 
is not necessary to this moment for our purpose. 

Using the Hamilton-Cayley identity (7.1) we now define the complementary 
operator A  to an arbitrary two-dimensional operator A  by  

[ ] [ ], , , . ≡ − ⇒ = = = = A A I A AA AA A I A A A A     (8.4) 

First of all, the complementary operator serves for the determination of the 
inverse operator to A  according to 

[ ]
1 .− =

AA
A

                         (8.5) 

Then one may determine projection operators +Π  and −Π  to the eigenva-
lues α+  and α−  by 

( ) ( )
= .

2 2
αα αα

α αα
±± ±±

±
± ±±

− +− − −−
≡ =

− −−

A I AI A I I AI A
A AI A

Π       (8.6) 

It is easy to see that ±Π  are projection operators for the determination of ei-
genvectors to the eigenvalues α±  and that they satisfy the relations  

2 , 0, 1,± ± + − − + ±= = = =Π Π Π Π Π Π Π  

( ) ( ), ,α α± ± ± ±− = − =0 0x xI A I AΠ Π               (8.7) 

for arbitrary vectors x  and x . This means that ± xΠ  is either a right-hand 
eigenvector ±e  of A  to eigenvalue α±  or is vanishing and ±xΠ  is either 
proportional to ±e  or is vanishing, correspondingly. The identity operator I , 
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the operator A  and arbitrary operator functions ( )f A  can now be represented 
by means of the projection operators +Π  and −Π  in the following way  

,+ −= +I Π Π  
,α α+ + − −= +A Π Π  

( ) ( ) ( ) .f f fα α+ + − −= +A Π Π                 (8.8) 

By inserting in (8.6) the explicit form of the eigenvalues α±  given in (8.3), 
we find the following representation of ±Π   

[ ]2 2 2

21 1 11 ,
2 2 1 2 14

x

x t x
±

   − = ± = ±     − − − 



A A I
I I A

A A
Π     (8.9) 

where again the substitutions (7.3) are used. In the same way, we find  

[ ]
[ ]2 2 2

21 1 1 .
2 2 1 2 14

x t

x x
α± ±

   − = ± = ±     − − − 



A A A I
A A I

A A
Π  (8.10) 

According to (8.8), an arbitrary operator function ( )f A  can be represented 
in the following way by a linear combination of the operators A  and I   

( ) ( ) ( )

( )( ) ( )( ){
( )( ) ( )( )}

2 2

2

2 2

1 1 1
2 1

1 1 ,

f f f

f t x x t x x
t x

f t x x t x x

α α− − + += +

= − − + − −
−

− + − − − −

A

I A

I A

Π Π

     8.11) 

where t  and x  are defined in (7.3) as parameters from the invariants of the 
operator A . This has the same form as the representation in (7.13) and the 
identification of the functions in front of I  and A  provides Generating func-
tions for the Chebyshev polynomials of second kind ( )Un x . We discuss this in 
the next section. 

As first example for the reduction of a function of the operator A  to a su-
perposition of the operators I  and A  we find from (8.11)  

( ) ( )
[ ]2

11 21 .
11 2

tx
tx t

− +− +
= =

− − +− +

A I AI A
I A A A

             (8.12) 

The case of ( )1 ν−A  with arbitrary ν  is similar but with few possibilities 
for simplifications in comparison to the general Formulae (8.11). 

Another interesting example is the function ( )Arth A  for which we find 
from (8.11) 

( )
2

2 22

2

22

1 2 2 1Arth Arth Arth
2 1 11

1 2 1 1Arth log
211

tx x t x
t tx

t x
tt x

  −    = −     + −  −   
 − +   + =    −−  −   

A I

I AA
I A

     (8.13) 

where we used the identity 

( ) ( )Arth Arth Arth , 1 1 .
1 1
a b a ba b

ab ab
+ +   + = − < <   + +   

       (8.14) 
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The important case of an exponential function ( )exp A  is separately dis-
cussed in Section 10. 

9. A Whole Class of Generating Functions for the Chebyshev  
Polynomials of Both Kinds 

With (7.13) and (8.11) we derived in Sections 7 and 8 two different representations 
of functions ( )f A  of an arbitrary two-dimensional operator A  expressed by 
the two independent basic operators I  and A . These two representations have to 
be equal. If we separate the parts proportional to the identity operator I  and to 
the operator A  we obtain first from terms proportional to I  the identity  

( )
( ) ( )
( ) ( )

( ) ( )( ) ( ) ( )( )

2
2

0

2 2 2 2

2

0
0 U

2 !

1 1 1 1
,

2 1

n
n

n
n

f
f t x

n

x x f t x x x x f t x x

x

+∞
+

=

−
+

+ − − − − − − + −
=

−

∑
 (9.1) 

and second from terms proportional to A  the identity  

( ) ( )
( ) ( )
( ) ( )

( )( ) ( )( )

2
1 1

1
0

2 2

2

0
0 U

2 !

1 1
.

2 1

n
n

n
n

f
f t x

n

f t x x f t x x

t x

+∞
+

+
=

+
+

+ − − − −
=

−

∑
            (9.2) 

Both identities possess the form of generating functions for the Chebyshev 
polynomials of second kind ( )Un x . They have a very general form for arbitrary 
functions ( )f z  for which the derivatives ( ) ( )0nf  at 0z =  are well defined 
and thus the function can be expanded in a Taylor series around this point. By a 
certain linear combination of these identities of a kind which can be seen from 
the separated initial terms one obtains the identity  

( ) ( ) ( )
( ) ( )
( ) ( )

( )( ) ( )( )

2
1 2

2
0

2 2

0
0 0 T

2 !

1 1
,

2

n
n

n
n

f
f txf t x

n

f t x x f t x x

+∞
+

+
=

+ +
+

+ − + − −
=

∑
            (9.3) 

where we used the relation (provable by complete induction or by trigonometric 
equivalent) 

( ) ( ) ( )1 2U U T .n n nx x x x+ +− =                 (9.4) 

Using ( )0T 1x =  and ( )1T x x=  the identity (9.3) can be written  

( ) ( ) ( )
( )( ) ( )( )2 2

0

1 10
T ,

! 2

n
n

n
n

f t x x f t x xf
t x

n

∞

=

+ − + − −
=∑     (9.5) 

and the identity (9.2) using ( )0U 1x =   

( ) ( )
( ) ( )

( )( ) ( )( )2 21

20

1 10
U .

1 ! 2 1

n
n

n
n

f t x x f t x xf
t x

n t x

+∞

=

+ − − − −
=

+ −
∑     (9.6) 

Apart from the monomials nz  in the Taylor series of ( )f tz  itself we do not 
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know other complete sets of polynomials for which Generating functions are de-
rived up to now in such generality. 

We may check for the functions ( ) mf z z=  that the Formulas (9.5) and (9.6) 
lead directly to (known) representations of the Chebyshev polynomials of 
second and first kind (see (3.7) and (3.8)). As a first other function we consider  

( ) ( ) ( )
0

1 , 0 !.
1

nn

n
f z z f n

z

∞

=

= = ⇒ =
− ∑             (9.7) 

Then from (9.5) and (9.6) easily follows  

( )

( )

2
0

2
0

1T ,
1 2

1U .
1 2

n
n

n

n
n

n

txt x
tx t

t x
tx t

∞

=

∞

=

−
=

− +

=
− +

∑

∑
                  (9.8) 

The relation which follows from (9.1) is a linear combination of these identities. 
Next we consider an exponential function  

( ) ( ) ( ) ( )
0

exp , 0 1.
!

n
n

n

zf z z f
n

∞

=

= = ⇒ =∑             (9.9) 

Then from (9.5) and (9.6) follows (compare with (4.21)) 

( ) ( ) ( )

( ) ( ) ( )
( )

2

0

2

20

T exp ch 1 ,
!

sh 1
U exp .

1 ! 1

n

n
n

n

n
n

t x tx t x
n

t xt x tx
n t x

∞

=

∞

=

= −

−
=

+ −

∑

∑
            (9.10) 

These generating function are also known and are affirmed by program “Ma-
thematica”. 

We consider a third example with analytic modified Bessel functions at 0z =  
and with the parameter α  (compare with similar function (3.15))  

( )
( )

( ) ( )
( ) ( ) ( )0

!I 2 ! !, 0 .
! ! !

nn

n

z
f z z f

n n nz

α

α

α α α
α α

∞

=

= = ⇒ =
+ +∑  (9.11) 

For this function follows from (9.5) and (9.6) 

( ) ( )

( )
( )

( )
( )

0

2 2

2 2

! T
! !

I 2 1 I 2 1
! ,

2
1 1

n

n
n

t x
n n

t x x t x x

t x x t x x

α α

α α

α
α

α

∞

= +

    + − − −        = + 
    + − − −        

∑

 

( ) ( ) ( )

( )
( )

( )
( )

0

2 2

2
2 2

! U
1 ! 1 !

I 2 1 I 2 1
! .

2 1 1 1

n

n
n

t x
n n

t x x t x x

t x t x x t x x

α α

α α

α
α

α

∞

= + + +

    + − − −        = − 
−     + − − −        

∑

   (9.12) 
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Another interesting example is related to the function 

( ) ( )
( ) ( ) ( ) ( ) ( )

2 1

0

2 2 1

1 1Arth log ,
2 1 2 1

0 = 0, 0 2 !.

m

m

m m

z zf z z
z m

f f m

+∞

=

+

+ = = = − + 

⇒ =

∑
           (9.13) 

For this example one finds  

( )
( )( ) ( )( )2 2

2 1

2 1
0

2

2 2

Arth 1 Arth 1
T

2 1 2
1 1 2 1 2log Arth ,
4 21 2 1

m

m
m

t x x t x xt x
m

tx t tx
tx t t

+∞

+
=

+ − + − −
=

+

 + +  = =   − + +  

∑
 

( )
( )( ) ( )( )2 2

2

2 20

2 2

2 2 2

2

22

Arth 1 Arth 1
U

2 1 2 1

1 1 2 1log
4 1 1 2 1

1 2 1Arth .
12 1

m

m
m

t x x t x xt x
m t x

t x t

t x t x t

t x
tt x

∞

=

+ − − − −
=

+ −
 + − −
 =
 − − − − 
 −
 =
 −−  

∑

  (9.14) 

By separation of the even and odd parts with respect to variable t one may 
gain further Generating functions. 

10. Exponential Function of a General Two-Dimensional  
Operator 

In this section we consider in detail the exponential function ( )exp A  of a 
two-dimensional operator A . It is important for applications, for example, in 
group theory. From general case (8.11) we specialize  

( ) ( ) ( ) ( ) ( )2 2

2

2 2

sh 1 sh 1
exp exp ch 1

1 1

exp exp , 0.
2 2 2

t x t x
tx t x tx

t x t x

  − −  = − − +  
− −  

  
     = − − =    
     

A I A

A A A
I A I A I

 (10.1) 

The operator ( )exp A  is here decomposed into a product of two commuting 
operators. The first operator  

exp exp ,
2 2

   
=   

   

A A
I I  

( )exp 2exp , exp exp ,
2 2 2

      
= =      

       

A A A
I I A    (10.2) 

is proportional to the identity operator I  and its determinant is the exponential 
of the trace A  of the operator A . The last is a general property for the de-
terminant of an exponential function of an arbitrary operator and follows almost 
immediately from the eigenvalue decomposition of the operator A . The second 
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operator in braces  

( )exp exp , 0,
2 2

 
≡ − ≡ − = 


′ ′



A A
A A I A A I  

( ) [ ] ( ) ( )21exp 2ch 4 , exp exp 1,
2

 = − = =     
′ ′ ′A A A A A   (10.3) 

is the exponential of an operator here abbreviated ′A  with vanishing trace. Its 
determinant is therefore equal to 1. If we denote in analogy to (7.3) the parame-
ters of the operator ′A  by t′  and x′  where x′  is vanishing due to vanishing 
trace then we find for the reduction of the exponential of the operator ′A  

( ) ( ) ( ) [ ]sin
exp cos , , 0,

t
t I t x

t
′

′ ′ ′ ′ ′ ′= + ≡ =
′

A A A  

( ) ( ) ( )exp 2cos , exp 1.t′ ′ ′= =  A A             (10.4) 

This is identical to the more specialized representation of the operator 
( )exp ′A  with vanishing trace 0′ =A  of the operator in the exponent in 

braces in (10.1). 
A vanishing trace of an operator is usually obtained from the assumption of 

its antisymmetry according to  

, 0.= − ⇒ =TA A A                   (10.5) 

where the superscript ' T ' means the transposition. The problem is that in a gen-
eral linear or in an affine space this cannot be defined and that it requires an 
Euclidean or Pseudo-Euclidean space with definition of a symmetrical scalar 
product and thus of a symmetrical metric tensor9. 

We mention that a two-dimensional operator ( )2exp A  can be reduced to a 
superposition of the operators I  and A  using the Hamilton-Cayley identity 
for 2A  in the exponent according to  

( ) [ ]( ) [ ]( ) ( )2exp exp exp exp ,= − = −A A A A I A A A       (10.6) 

where ( )exp A A  can be dealt with as the operator ( )exp A  by correspond-
ing substitution.  

11. Degenerate Cases 

The two-dimensional case of operators does not admit many degenerate cases. 
We now make some short remarks about the case of degeneracy of the eigen-

values α±  that means about the coincidence α α+ −= . A necessary and suffi-
cient condition is the vanishing of the root in (8.3) that is the condition  

[ ]2 14 0, .
2

xtα α α+ −− = ⇔ ≡ = = =A A A         (11.1) 

Substituting [ ] 21
4

=A A  in the Hamilton-Cayley identity (1), we find  

 

 

9By means of a symmetrical metric tensor ij jig g=  one may define using covariant and contrava-

riant indices a tensor j
ik ij kA g A≡  from which follows j j

ki kj i i jkA g A A g= =  having used the symme-

try of ijg  and now the antisymmetry of A  means ik kiA A= − . 
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( )
2

21 .
2

0α − = − = 
 
A A I A I                (11.2) 

This shows that α−A I  is a quadratic nilpotent operator in case of degene-
racy of the eigenvalues. We have to distinguish two subcases of different volume 

0α− ≠A I  and 0α− =A I . 
In case of 0α− ≠A I , the projection operators ±I  in (9) are no more defined. 

It can immediately be seen from (11.2) that ( )α= −a xA I  for arbitrary vectors 
x  is either a right-hand eigenvector of A  or is vanishing and analogously for 

( )α= − a x A I  with regard to left-hand eigenvectors of A . Due to  
( )2 0α= − = aa x xA I , the left-hand and right-hand eigenvectors are orthogonal 

to each other. This is the case where the matrix to the whole operator A  forms 
a two-dimensional cell in the Jordan normal form and where it cannot be di-
agonalized by means of a similarity transformation. 

In case of 0α− =A I , the operator A  is proportional to the identity operator 
I  with the eigenvalue α  as proportionality factor. 

We consider now the special case if the determinant [ ]A  of the operator A  
is vanishing. Then the operator has a vanishing eigenvalue and due to Hamil-
ton-Cayley identity we have  

[ ] 22 2 20, , .t ≡ = ⇒ = =A A A A A A           (11.3) 

This means that the operator A
A

 is idempotent in this case with trace equal 
to 1 if 0≠A   

( )
2

, 1, 0 .
 

= = ≠  
 

A A A A
A A A

           (11.4) 

The second eigenvalue is equal to A  and the operator A
A

 is projection  

operator for the determination of right-hand and left-hand eigenvectors to the 
eigenvalue A  according to  

,=x xA AA A
A A

                     (11.5) 

that results from the Hamilton-Cayley identity (7.1) under the supposition 
[ ] 0=A . For this case follows from (11.3) 

( ) ( )
( ) ( ) ( ) ( ) ( )

1

00
0 0 .

!

n
n

n

f ff
f f f

n

∞

=

−
= + = +∑

A
A I A I A

A
    (11.6) 

If in addition to [ ]A  also the trace A  is vanishing then due to the Ham-
ilton-Cayley identity (7.1) 2A  is vanishing (nilpotent)  

[ ] 20, 0, 0,= = ⇒ =A A A                (11.7) 

and either A  itself is vanishing and  

( ) ( ) ( )20 , 0, 0 ,f f= = =A I A A                (11.8) 
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or it is non-vanishing and from (11.6) follows  

( ) ( ) ( ) ( ) ( )1 20 0 , 0, 0 .f f f= + = ≠A I A A A           (11.9) 

The operator belongs in case of 0≠A  then to a Jordan normal form with 
only one non-vanishing element in one of the off-diagonals and is quadratically 
nilpotent. 

12. Conclusions 

A main result of this article was to show that the Chebyshev polynomials in 
connection with the two-dimensional Hamilton-Cayley identity can solve the 
problem of reduction of functions of two-dimensional operators to superposi-
tions of this operator itself and of the identity operator in coordinate-invariant 
form. In Appendix C this is applied to an interesting problem of relativistic ki-
nematics of a step-wise accelerated space-ship with final transition to a un-
iformly accelerated space-ship seen from the inertial systems of earth and of the 
space-ship. The solution of this problem uses in an intermediate step Chebyshev 
polynomials of first and of second kind. An aim was to generalize the application 
to functions of three-dimensional operators which need a generalization of the 
Chebyshev polynomials to polynomials which essentially depend on two conti-
nuous variables. The derived recurrence relations are 4-term relations instead of 
3-term relation for the usual Chebyshev polynomials. The solution of this pro-
gramme seems to be interesting for three-dimensional operators, in particular, 
in group theory. This programme is a difficult one and is not yet accomplished 
with present article. However, we could explicitly obtain the (here not presented) 
necessary polynomials but some properties and interesting relations, in particu-
lar, the desirable Generating functions for these polynomials are not obtained up 
to now. 

In the introductory sections we discussed some properties of the Chebyshev 
polynomials, and tried to consider them within the more general sets of the Ul-
traspherical and of the widely equivalent Gegenbauer polynomials and included 
also the Legendre polynomials which take on an intermediate place between the 
Chebyshev polynomials of first and of second kind. We compiled mainly the 
formulae which are connected with explicit representation in form of expansions 
in power series and discussed trigonometric forms. Clearly, much is known but 
we obtained also here some new shades. For example, after a variable transfor-
mation within the Ultraspherical polynomials we obtained in Section 3 a set of 
polynomials which could be generated from the basic monomials by an operator 
which essentially uses the Bessel functions with the variable substituted by the 
operator of differentiation, and which does not depend on the degree of the po-
lynomial and which was earlier applied in analogous form with success to Her-
mite polynomials. We mentioned the connection of Chebyshev polynomials to 
Fibonacci and Lucas members and showed possibilities to obtain other increas-
ing sequences of integers from Ultraspherical polynomials. In many ways the 
Chebyshev polynomials of fist kind take on a peculiar position which does not fit 
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to the general classes of Ultraspherical or Gegenbauer polynomials. At the end of 
Section 4 it is shown that this can be removed by another normalization of the 
Ultraspherical polynomials with some attractive properties but also with some 
less attractive properties. The exceptional position of the Chebyshev polynomials 
of first kind within the family of Ultraspherical polynomials is underlined by the 
short discussion of two properties. Similar to the role of prime numbers for all 
(composite) numbers the Chebyshev polynomials of first kind need only those 
with prime degree as building stones which allow the construction of all other 
Chebyshev polynomials of first kind by nested inclusions. The second excep-
tional property of Chebyshev polynomials of first kind is that in power series 
expansions within a given finite interval (which can be managed by transforma-
tions) in each degree they provide the best approximation by some criteria 
compared with the other sequences of Ultraspherical polynomials. This is in 
analogy to Fourier series in comparison to expansions of periodic functions in 
other complete sets of basic periodic functions. In Section 6 we mentioned 
shortly the mapping of the expansion in Chebyshev polynomials of first kind 
onto Fourier series and show that the obtained Fourier series possess an addi-
tional symmetry in comparison to general Fourier series. 
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Appendix A: Hamilton-Cayley Identity in General  
N-Dimensional Case 

Let A  be a linear operator in an N-dimensional linear space. This operator sa-
tisfies the Hamilton-Cayley identity (e.g., [19] [20] [21]) 

( ) ( ) ( )11 0
1 11 1 0, ,N NN N

N NA A A−−
−− + + − + − = ≡A A A I I A     (A.1) 

with identity operator I  and with the coefficients 0 1 11, , , ,N NA A A A−=   which 
appear also as coefficients in the following eigenvalue equation of the operator 
A  to eigenvalues α   

( ) ( )11
1 11 1 0.N NN N

N NA A Aα α α α−−
−− ≡ − + + − + − =I A      (A.2) 

The determinant ( )Det A  of an arbitrary N-dimensional operator A  is here 
denoted by NA ≡ A  and later its trace by ( )1 TrA ≡ ≡A A  for arbitrary di-
mension. 

The eigenvalues ( )1, 2, ,k k Nα =   and the related coefficients  

0 11, , , NA A A=   are invariants of the operator A  with respect to similarity 
transformations ′↔A A  by arbitrary nonsingular operators S   

( )1, 0 .−′ = ≠A SAS S                    (A.3) 

The relation between the coefficients ( )1 2, , , NA A A  and the eigenvalues 
( ); 1, 2, ,k k Nα =   up to their order is reversibly unique and is simple for the 

traces 1 1
N

kkA α
=

= ∑  and for the determinants 1
N

N kkA α
=

=∏  and is more 
complicated for the other invariants. 

The determinant A  arises primarily as the coefficient of the transformation 
of the completely antisymmetric volume product [ ]1 2, , , Nx x x   

[ ] ( ) ( ) ( ) ( )1 2 1 2, , , , , , ,N s s s Nsε  =  x x x x x x   

( ) ( ) ( ) ( )
( )
( )
( )

1, even perm.
1 2

, 0, not a perm.
1 2

1, odd perm.

s
N

s s s
s s s N

s
ε

+
  = =  
  −





  (A.4) 

where s is an arbitrary permutation of N elements and ( )sε  the sign of the 
permutation (perm.), when transforming the N linearly independent vectors 
( )1 2, , , Nx x x  into N other vectors ( )1 2, , , Nx x xA A A  by the linear operator 
operator A  according to 

[ ] [ ]1 2 1 2, , , , , , .N N= x x x x x xA A A A             (A.5) 

If ( ), 1, 2, ,k k N= e  is a set of N basis vectors [ ]( )1 2, , , 0N ≠e e e  then an 
arbitrary vector x  and ′ =x xA  may be represented by (sum convention)  

, , , , .k l l k l k l l k
k l k l k k l k kx x A x A x x A x′ ′ ′= = = = = ⇒ =x e x e e e x e eA A A  (A.6) 

Using now the fully antisymmetric unit pseudo-tensor 1 2 Nk k kε


 (or Le-
vi-Civita symbol) for the representation of the volume product V by the vector 
components in the basis ( ), 1, 2, ,k k N= e  we find  
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[ ]
[ ]

1 2
1 2

1 2
1 2

0

1 2 1 2

1 2 1 2

, , , , , ,

, , , ,

N
N

N
N

kk k
N k k k N

kk k
N k k k N

V

V x x x

x x xε
=

 ≡ =  
=

x x x e e e

e e e


  

 



       (A.7) 

where 0V  is the volume product of the basis vectors (volume of elementary cell) 
and the Levi-Civita symbol is defined by  

( ) ( ) ( ) ( )12 121 21, ,N Ns s s N sε ε ε ε= =
 



             (A.8) 

with s an arbitrary permutation according to (A.4). For the determinant accord-
ing to definition (A.5) one finds then  

1 2 1 2 1 2
1 2 1 2 1 21 2 1 2

1, ,
!

N N N
N N NN N

k kk k k k l l l
k k k l l l k k kl l l l l lA A A A A A

N
ε ε ε ε= = 

  

 A A  (A.9) 

where 1 2 Nl l lε   is defined in fully equal way to 1 2 Nk k kε


 in (A.8) only written 
with upper indices. The determinant tensor 1 2

1 2
N

N

l l l
k k kε ε 



 can be represented 
by the Kronecker symbol l

kδ  according to  
1 2

1 1 1

1 2
2 2 21 2

1 2

2

.

N

N
N

N

N N
N N N

ll l
k k k

ll l
k k kl l l

k k k

l ll
k k k

δ δ δ

δ δ δ
ε ε

δ δ δ

=







   



           (A.10) 

Clearly, all this is well known in one or the other form and serves here for the 
introduction of some of our notations. 

To our experience, in coordinate-invariant calculations up to four-dimensional 
cases (in particular, three-dimensional case in optics of anisotropic media) it is 
very favorable to possess a notation which distinguishes the invariants from 
vectors and operators and is easily to recognize as such. We introduced the no-
tation A  for the trace of an operator A  in arbitrary dimension and denote 
the other invariants with respect to similarity transformations as follows 

( )Tr ,k
kA A≡ ≡A  

[ ] { }2 21 ,
2

≡ −A A A  

{ }3 2 31 3 2 ,
6

≡ − +A A A A A  

{ }24 2 2 2 3 41 6 3 8 6 .
24

= − + + −A A A A A A A A     (A.11) 

These notations are compatible concerning the dimension. For three-dimensional 
operators A  we have 0=A  and | |A  is the determinant and for  
two-dimensional operators A  we have 0=A  and 0=A  together and 
[ ]A  is the determinant but all other relations remain the same. The Hamil-
ton-Cayley identity in four-, three- and two-dimensional case are ( 0≡I A )  

[ ]4 3 20 ,= − + − +A A A A A A A A I  

[ ]3 20 ,= − + −A A A A A A I  
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[ ]20 .= − +A A A A I                      (A.12) 

Formally, the descent by one dimension is the division of the Hamil-
ton-Cayley identity by the operator A . The inverse operator 1−A  to a given 
operator A  can easily be calculated in coordinate-invariant way using the 
Hamilton-Cayley identity of the corresponding dimension. 

The great initiator of coordinate-invariant methods in optics of anisotropic 
media, in the theory of the Lorentz group and in elasticity theory was F.I. Fyo-
dorov from Minsk [21] (he called this Covariant methods) and also we published 
in the seventies some papers to the optics of anisotropic media with application 
of coordinate-invariant methods (approximately 10 in “Ann. d. Physik”) which 
we do not cite here. However, we hope that we find opportunity to represent 
much more about the very favorable coordinate-invariant methods in future. 

Appendix B: Eigenvalue and Eigenvector Problem in  
Three-Dimensional Case in Coordinate-Invariant Form 

We consider here the case of three-dimensional operators and sketch the solu-
tion of the problem to determine eigenvectors to eigenvalues in coordi-
nate-invariant form. 

An operator A  is three-dimensional if it satisfies the three-dimensional 
Hamilton-Cayley identity  

[ ] ( )3 2 00, , 3 .− + − = ≡ =A A A A A A I A I I           (B.1) 

The meaning of the invariants is given in (A.11) where 0=A  and all high-
er invariants are also vanishing in three-dimensional case. Due to the Hamil-
ton-Cayley identity (B.1) all powers nA  and functions ( )f A  can be reduced 
to superpositions of the operators ,I A  and 2A . 

The complementary operator A  to the operator A  is defined in 
three-dimensional case as follows  

[ ] 2 , , ,≡ − + ⇒ = = =A A I A A A AA AA A I AB BA  

[ ] 2, , . = = = A A A A A A A              (B.2) 

The inverse operator can be expressed by the complementary operator as fol-
lows  

1 ,− =
AA
A

                        (B.3) 

For the complementary operator A  using the three-dimensional Hamil-
ton-Caylex identity (B.1) for the reduction of 2A  follows generally  

[ ] ( )2 .= − −A A A A A I A                     (B.4) 

We consider first the special case of an eigenvalue 0α =  of A  and then the 
general case. For eigenvalue 0α =  it is necessary that the determinant of A  is 
vanishing that means 0=A  and according to (B.4) we have then  
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( ) [ ] ( ) ( ) ( ) ( )20 , 0 0 , 0 1, 0 .≡ = ⇒ = = =
A A A

AA
Π Π Π Π    (B.5) 

An arbitrary vector ( )0∝ ≠ 0e aΠ  is right-hand eigenvector and an arbi-
trary vector ( )0∝ ≠ 0 e aΠ  is left-hand eigenvector of A  to eigenvalue 0α =  
if 0=A   

( ) [ ] ( ) [ ]
0 , 0 .= = = =a a a a 0 0

A A
A A

A A
Π Π              (B.6) 

Therefore, the operator ( )0Π  is projection operator to the determination of 
right-hand and left-hand eigenvectors of the operator A  to eigenvalue 0α = . 
We consider here only the non-degenerate cases [ ] 0≠A  and 0≠A  and do 
not normalize the eigenvectors. All this can be managed. 

We consider now an arbitrary eigenvalue α  of a three-dimensional operator 
A  that means  

= , .α α=e e e e A A                      (B.7) 

It has to satisfy the eigenvalue equation  

[ ]3 20 .α α α α= − = − + −I A A A A               (B.8) 

For the complementary operator α −I A  to the operator α −I A  we find  

[ ] ( ) ( )
[ ]( ) ( )

2

2 2 ,

α α α α α

α α α

− = − − − − + −

= − + − − +

I A I A I I A I A I A

A A I A A A
           (B.9) 

and its trace is  

[ ] [ ]22 3 .α α α α− = − + = −I A A A I A             (B.10) 

Therefore, the projection operator ( )αΠ  for the determination of eigenvec-
tors to the (non-degenerate) eigenvalue α  of the operator A  is  

( )
[ ]( ) ( )

[ ]

2 2

2 ,
2 3

α α α
α

α α

− + − − +
=

− +

A A I A A A
A A

Π  

( ) ( ) ( )2 , 1.α α α= =Π Π Π                (B.11) 

With the three, in general, different eigenvalues ( )1 2 3, ,α α α   
(non-degenerate case) of a three-dimensional operator A  one may represent 
functions of this operator in the following form 

( )( )
3

,
1

, ,k k l k l l k k
k

δ α
=

= = ≡∑I Π Π Π Π Π Π  

( )
3 3

1 1
, , 0,1, 2, ,n n

k k k k
k k

nα α
= =

= = =∑ ∑ A AΠ Π  

( ) ( )
3

1
.k k

k
f f α

=

= ∑A Π                   (B.12) 

In this way, the functions ( )f A  of the operator A  are reduced to superpo-
sitions of the three operators ( )0 1 2, ,= =A I A A A  with coefficients which are 
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functions of the invariants [ ]( ), ,A A A . Mainly for lack of place we do not 
consider here degenerate cases. Clearly, it is difficult to write all this explicitly 
together with the solutions of the eigenvalue Equation (B.8) by the Cardano 
formulae. On the other side, one may make the reduction of powers nA  also by 
introduction of two new sets of polynomials of two variables leading to new 
identities similar to the case of two-dimensional operators which leads to Che-
byshev polynomials of second kind and to a general kind of Generating func-
tions as demonstrated. 

Appendix C: An Application of Chebyshev Polynomials to  
Powers of Special Lorentz Transformations 

Notation: Vectors , ,a b  bold types, ab  scalar product, [ ],a b  vector prod-
uct, ⋅b a  dyadic product of two vectors a  and b  with trace ⋅ =b a ab . 

We deal with here an interesting example where the application of Chebyshev 
polynomials of first and of second kind plays a role. It is connected with powers 
of Special Lorentz transformation which are, essentially, two-dimensional oper-
ators although we calculate with four-dimensional operators and the results are 
interesting for a uniformly accelerated space-ship. 

We consider two inertial systems I and I'. In the inertial system I which we 
consider as resting (say earth) a body (say space-ship) starts with a velocity V  
and remains with this velocity in the inertial system 1I ′  meaning that it rests 
there and after a certain time starts from this inertial system 1I ′  again with the 
same velocity V  to a new inertial system and moves there with a new velocity 

2V  considered in the primary system I. We repeat this in n steps and ask for the 
velocity nV  with which the space-ship moves in nI  relatively to I. It does not 
play a role that in each new inertial system the velocity is enlarged by a finite ve-
locity V  in comparison to the preceding inertial system that is not really mak-
able since at the end we make a limiting transition to a constant acceleration by 
smaller steps in smaller times and go to the limit of infinitely small steps. This is 
a problem of kinematics of Special Relativity theory where one has to calculate 
the product of n Special Lorentz transformations and may consider then the li-
miting case n →∞ . 

It is well known that the Special Lorentz transformation from of a space vec-
tor r  and a time t from inertial system I to inertial system I' moving with ve-
locity V  in I possesses the form  

( ) 2 21 , ,t t t
c

γ γ γ   ′ ′= + − − = −   
   

Vr Vrr r V
V

            (C.1) 

with the abbreviations (c is light velocity) 
2 2

2 2 2
2 2 22

1 1 1, , , .
11 c

γγ β γ β
β γβ

−
≡ ≡ ⇒ = =

−−

V
     (C.2) 

The inversion of (C.1) to ( ), tr  in dependence on ( ), t′ ′r  can be made by 
the substitution → −V V  in (C.1). In separation of the space vector r  in parts 
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parallel and perpendicular to V  the Lorentz transformation (C.1) takes on the 
form  

( ) ( ), , , 0 ,tγ ⊥ ⊥ ⊥ ⊥′ ′= − = = + =r r V r r r r r r r
   

 

( )2 , , 0 .t t
c

γ ⊥

 ′ = − = = 
 

Vr
Vr Vr Vr



            (C.3) 

The Special Lorentz transformations of wave vectors k  and frequencies ω  
is  

( ) ( )2 21 , ,
c
ωγ γ ω γ ω ′ ′= + − − = − 

 

kVk k V kV
V

         (C.4) 

or by separation of the wave vector ⊥= +k k k


 in analogy to (C.3)  

2 , ,
c
ωγ ⊥ ⊥

 ′ ′= − = 
 

 

k k V k k  

( ).ω γ ω′ = − k V


                     (C.5) 

In four-dimensional wave-vector-frequencies k and space-time vectors r ac-
cording to 

, i , , , i , ,
i i

k r k r
ct ctc c

ω ω ′′      ′ ′ ′= = = =       ′      

r r
k k         (C.6) 

one has to require the invariance  
.k r t t krω ω′ ′ ′ ′ ′ ′= − = − =k r kr                (C.7) 

The Special Lorentz transformation ( )Λ Λ≡V  can be represented then in 
four-dimensional coordinate-invariant form as, e.g. [22] (§16)10 

2 2 i
.

i

c

c

γ γ
Λ

γ γ

⋅ ⋅ − + 
 =
 − 
 

V V V V V
V V

V

I
               (C.8) 

It is now evident that according to  
1, , , , ,r r k k I k r k r krΛ Λ Λ Λ Λ Λ Λ Λ−′ ′ ′ ′= = = = = =T T T T   (C.9) 

the required invariance (C.7) is satisfied. 
The transformation from inertial system I after n described steps to nI ′  is 

made by the n-th power nΛ  of Λ . It is clear that it must possess the same 
structure as (C.8) that means  

2 2 i
,

i

n n n n n
n n

n n n

n
n n

c

c

γ γ
Λ

γ γ

⋅ ⋅ − + 
 =
 

− 
 

V V V V V
V V

V

I
             (C.10) 

and due to the same direction of the velocity V  in each step we have  

2 2 , .n n n

nn

⋅ ⋅
= =

V V VV V V
V VV V

                 (C.11) 

 

 

10The transformation of space and time for the part parallel to the velocity V  is essentially a 
two-dimensional one. 
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The general result is  

( ) ( ) ( )
( )
1

1

U
T , U , .

T
n

n n n n n n
n

γ γ
γ γ γ γ γ

γ
−

−= = ⇒ =V V V V     (C.12) 

Therefore the n-th power (C.10) of the Lorentz transformation Λ  can be 
written explicitly  

( ) ( )

( ) ( )

12 2

1

T , i U
.

i U , T

n n
n

n n

c

c

γ γ γ
Λ

γ γ γ

−

−

⋅ ⋅ − + 
 =
 − 
 

V V V V V
V V

V

I
         (C.13) 

With ( ) ( )1 0T Uγ γ γ γ= =  one easily finds that 1Λ  leads to Λ  given in 
(C.8) and also the case 0n =  using ( )0T 1γ =  and ( )1U 0γ− =  leads to the 
identity operator I according to  

0 ,
1

IΛ
 

= ≡ 
 

0
0
I

                     (C.14) 

as the correct result. 
With the two identities (see also (3.7) and (3.8))  

( ) ( ) ( )( )2

2

1 11 T 1 1 ,
21

n n n
nx x x

x

 
− = + + −  − 

 

( ) ( ) ( )( )1
2

1 2

1 11 U 1 1 ,
21

n n n
nx x x

xx

−

−

 
− = + − −  − 

       (C.15) 

and using it in (C.12) with the substitution 
2

1

1
γ

β
=

−
 (see (C.2)) one finds 

for the velocity nV  expressed by V  in relation to the light velocity c 

( )
( )

( ) ( )
( ) ( )

1 2
1

2

2

1

1U
1U

T 11 T
1

1 1
, ,

1 1

n

nn

n
n

n n

nn n

c c c
βγ γ

γ
β

β

β β
β

β β

−

−

 
 
 − = =
 
 −
 − 

 + − −
 = ≡ =
 + + − 

V V V

V V V V
V V

       (C.16) 

where we used 
c

β ≡
V

 (see (C.2)) and introduced coefficients n
n c

β ≡
V

 and 
obtain  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 2

1
2 2

1 1

1 1

1 1
1, .

1 1

n n

n n n

n n

n n

β β
β

β β

γ γ γ γ
β β

γ γ γ γ

+ − −
=

+ + −

+ − − − −
= < =

+ − + − −

      (C.17) 

The coefficients nβ  are factors which characterize how near the modulus of 
the velocity after n described steps in inertial system nI I′ ′=  comes in compar-

https://doi.org/10.4236/apm.2019.912050


A. Wünsche 
 

 

DOI: 10.4236/apm.2019.912050 1032 Advances in Pure Mathematics 

 

ison to the primary inertial system I of the earth. 
We now make the limiting transition from discrete steps of addition of a ve-

locity 1V  in every step in inertial systems nI ′  to a continuous function under 
the assumption that this increase happens to constant time intervals τ  and in-
troduce a constant acceleration G  by definition 

11 , , .t nτ
τ τ

′≡ = ≡
VVG G                (C.18) 

In the system I ′  connected with the space-ship the last is to every time t′  
in its coordinate origin ′ =r 0  if it was at time 0t =  in the coordinate origin 
of the inertial system I that means at =r 0  to the time 0t = . We now consider 
a time t nτ′ =  in the systems nI ′  of the space-ship and make with  

1
1 c

β β≡ =
V

 in Formula (C.17) the following limiting transition  

( )
1 1

lim

1 1

exp exp
th 1,

exp exp

n n

n n nn

t t
nc nc

t
t t

nc nc

t t
c c

t
c

t t
c c

β β
→∞

′ ′   
+ − −   

   ′→ =
′ ′   

+ + −   
   
   

′ ′− −   
     ′= = < 

     ′ ′+   
   

G G

G G

G G
G

G G

   (C.19) 

where we used the well-known limiting transition lim 1 e
n

x
n

x
n→∞

 + = 
 

. With  

the meaning of ( )tβ ′  one obtains then the velocity ( )t′V  of the space-ship in 
the inertial system I expressed by the time t′  in the space-ship or what is the 
same the negatively taken velocity of the earth in the proper time of the 
space-ship with simple result  

( )
th .

t
t

c c
′  

′=  
 

GV G
G

                  (C.20) 

The limiting transition for 
2

1

1
γ

β
=

−
 provides  

( )
( )2

1 ch 1,
1

n t t
ct

γ γ
β

 
′ ′→ = = > 

′−  

G
          (C.21) 

in proper time t′  in the system of the spaceship. 
The transformation of the time T' from system of the space-ship to corres-

ponding T of the system I of earth can be made by using the inversion of (C.1) to 
( ), tr  in dependence on ( ), t′ ′r  and setting ′ = 0r  in the space ship (time di-
latation) and due to dependence of ′V  on time t′  we have to start from the 
differential form of this relation  
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( )2

2

1 ch .

1

dt dt dt t
ct

c

 
′ ′ ′= =  

′  
−

G

V
             (C.22) 

The integration of both sides provides  

0 0

sh
ch ,

T T
T

c
T dt dt t T T

c
T

c

′

 
′ 

   ′ ′ ′ ′= = = ≥ 
  ′

∫ ∫

G
G

G
        (C.23) 

with the inversion 

Arsh
.

T
c

T T T
T

c

 
 
 ′ = <

G

G
                 (C.24) 

This is the transition of the time T' from the space-ship to the corresponding 
time T in the system of earth and means that the time up to arrival to an object is 
for the space-ship travelers smaller than for the earth residents. 

The way ( )t′r  which the space-ship travels in the inertial system I expressed 
by the time t′  of the space-ship or negatively taken the way of the earth seen 
from the space-ship in its proper time can be found by integration of  

( ) ( ) th .d t dt t cdt t
c

 
′ ′ ′ ′ ′= =  
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           (C.25) 

The integration from 0t′ =  up to a time T' provides  

( ) ( )
log ch

,   .
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        (C.26) 

To find the way which takes the space-ship to the proper time T in the system 
I of earth one has to substitute T' according to (C.24) by T but this is not directly 
controllable since we cannot have an instant connection with the system of the 
space-ship and the times in each of the two systems are synchronized before. 
With the Formulae (C.4) one may discuss the change of wave vectors ′k  and 
frequency ω′  of signals sent from the system of space-ship to earth or inversely 
that we will not do here. 

We do not discuss the formulae here more in detail and mention that the 
transition to a continuous acceleration (no more an inertial system) is also not 
without problems11. 
 

 

 

 

11In addition, we are also not sure what is already calculated and discussed in the literature of astro-
physics and space travels and bring this as an application of Chebyshev polynomials. 
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