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Abstract 
This paper concerns the compactness and separability properties of the 
normed Boolean algebras (N.B.A.) with respect to topology generated by a 
distance equal to the square root of a measure of symmetric difference be-
tween two elements. The motivation arises from studying random elements 
talking values in N.B.A. Those topological properties are important assump-
tions that enable us to avoid possible difficulties when generalising concepts 
of random variable convergence, the definition of conditional law and others. 
For each N.B.A., there exists a finite measure space ( ), ,E  µ  such that the 

N.B.A. is isomorphic to ( ),� � µ  resulting from the factorisation of initial 

σ-algebra by the ideal of negligible sets. We focus on topological properties 

( ),� � µ  in general setting when μ can be an infinite measure. In case when μ 

is infinite, we also consider properties of fin ⊆� �   consisting of classes of 
measurable sets having finite measure. The compactness and separability of 
the N.B.A. are characterised using the newly defined terms of approximability 
and uniform approximability of the corresponding measure space. Finally, 
conditions on ( ), ,E  µ  are derived for separability and compactness of �  

and fin
� . 
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1. Introduction 

The motivation for studying the topological properties of normed Boolean 
algebras arises from probability theory, more precisely from its subfield of 
stochastic geometry. Nowadays, the mathematical theory of random sets is very 
popular. The books [1] and [2] provide basic definitions, notions and theoretical 
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results on closed random sets (or compact random sets) as random elements 
with values in the family of closed subsets of locally compact Hausdorff second 
countable topological space. 

An approach to defining a random set that takes values in a more general 
family of sets than closed or compact sets is presented in [3]. There, the random 
set is represented as a random element taking values in a normed Boolean 
algebra (N.B.A.), i.e. a complete Boolean algebra endowed with a strictly positive 
finite measure, see [4].) These random elements are defined using Borel subsets 
of N.B.A. generated by a distance on N.B.A. equal to the square root of a 
measure of symmetric difference between two elements. 

If we want to study different types of convergence of these random sets taking 
values in N.B.A. or generalize some other concepts related to random variables, 
it is beneficial to ensure that the space of its values is a Polish space or a locally 
compact, Hausdorff and second countable topological space (LCSH space). This 
motivated us to study the topological properties of the N.B.A.s with respect to 
topology generated by the distance equal to the square root of a measure of 
symmetric difference between two elements. 

Let us mention some conveniences we get when working with random 
elements with a separable metric space of values. In this setting, for every two 
random elements X and X', a set { }X X ′=  is an event. The distance between 
two random elements is a random variable, which allows us to introduce 
convergence in probability (see [5]). In this case, the space of simple random 
elements is a dense subspace. If the space of values of the random elements is 
complete and separable (Polish), then the conditional law can be defined and the 
Doob-Dynkin representation holds (see [6]). 

Locally compactness is also a desirable property when considering weak 
convergence of distributions of random elements (see [7]). 

It is worth mentioning that there are some other topologies that can be 
defined on N.B.A.s that can generate Borel sets (for more details see [4, Chapter 
4]). The best known is the o-topology, which in our case coincides with the 
topology generated by the distance on N.B.A. mentioned above. However, in this 
paper, we will only focus on the topological properties of N.B.A. when 
considering the o-topology, since it was the most suitable for defining the notion 
of random set in [3]. To our knowledge, these topological properties have not 
yet been studied. 

For each complete N.B.A. ( ),m  where m is finite, there exists a finite 
measure space ( ), ,E  µ  such that the N.B.A. ( ),m  and N.B.A. ( ),� � µ  
resulting from the factorisation of initial σ-algebra by the ideal of negligible sets 
are isomorphic (see [4]). Following this result, we derive that the N.B.A. is 
homeomorphic to the space of indicator functions ( ), ,pL E  µ . 

The measure space analysis approach allows us to apply some well-established 
properties of topologies on space of measurable functions to the topology on N.B.A. 

We generalise this setting allowing μ and corresponding m to obtain infinite 
values. In this case, the above-mentioned homeomorphism does not hold. 

https://doi.org/10.4236/apm.2024.145021


V. Gotovac Đogaš 
 

 

DOI: 10.4236/apm.2024.145021 369 Advances in Pure Mathematics 
 

As we mentioned before, if μ is finite, then topological properties of N.B.A. 
are equivalent to topological properties of a subset of indicators in L2 space. 
Following results concerning the separability of Lp spaces are established. If μ is 
σ-finite and   is countably generated, then ( ), ,pL E  µ  is separable for 
1 p≤ < +∞  (see [8, Proposition 3.4.5.]). Since every metric subspace of 
separable metric space is separable [9, Theorem VIII, p.~160] if these conditions 
hold the space of indicators is separable as well. 

If measure μ is not finite, then ( ),� � µ  is not homeomorphic to the space of 
indicator functions in ( ), ,pL E  µ . In this case, we also consider  

[ ] ( ){ }:fin A A= < ∞ ⊂� � µ , which is homeomorphic to the space of indicator 
functions in ( ), ,pL E  µ . In case ( ) ( )( ), ,d dE =  B  we prove the fin

�  and 
corresponding space of indicators is separable if measure μ is outer regular. 
Although ( )d�B  is countably generated, there are measures on ( )d�B  
which are outer regular but not σ-finite. 

The compactness of subsets of Lp-spaces has already been well studied, and 
some conditions for the compactness of generally bounded subsets of Lp-spaces 
can be found in [10] and ([11], Theorems 18, 20, 21 pp.297). Although these 
conditions can be verified for our case when μ is finite, we introduce conditions 
that are easier to verify, more intuitive in our setting and can be applied for 
verifying compactness of �  in case when μ is infinite. 

It is well known that a separable space is a space that is “well approximated by 
a countable subset” and a compact space is a space that is “well approximated by 
a finite subset”. We construct conditions for the corresponding measure space 
that follow this intuition. We call those conditions approximability and uniform 
approximability. We prove that if the measure can be well approximated by its 
values on a countable family or a finite family of measurable sets, then the 
corresponding N.B.A. is separable or a compact metric space, respectively. 

Verifying the conditions of approximability and uniform approximability, we 
derive conditions and in some cases characterisation for separability and 
compactness of �  and fin

�  based on properties of corresponding measure 
space ( ), ,E  µ . 

The outline of the paper is as follows. 
In the Preliminaries section, we recall basic definitions and results concerning 

separability and compactness, we also mention some results from the measure 
theory we use for deriving results. The final subsection is dedicated to the 
terminology concerning Boolean algebras. The metric spaces ( ),d� µ  and 

( ),fin d� µ  are introduced and their completeness is discussed. 
In the Main result section, we introduce properties of approximability and 

uniform approximability of measure with respect to filtration. Separability and 
compactness are characterised using these terms. Further, we discuss separability 
and compactness of ( ),d� µ  and ( ),fin d� µ  based on the properties of the 
corresponding measure space ( ), ,E  µ . 

The paper is concluded by the Discussion section where the obtained results 
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are summarised. 

2. Preliminaries 
2.1. Topological Properties 

Let us first recall definitions and the basic relation of topological properties we 
study. The definitions and the results we present can be found in [12] and [13]. 

For some A X⊂ , let { }iG=  be a class of subsets of X such that 

i iA G⊂∪ .   is called a cover of A, and an open cover if each iG  is open. 
Furthermore, if a finite subclass of A is also a cover of A, i.e. if 

1
, ,

mi iG G A∈�  
such that 

1 mi iA G G⊂ ∪ ∪�  then   contains a finite subcover. 
Definition 1 A subset A of a topological space X is compact if every open 

cover of A is reducible to a finite cover. 
In other words, if A is compact and i iA G⊂∪ , where the iG  are open sets, 

then one can select a finite number of the open sets 
1
, ,

mi iG G� , so that 

1 mi iA G G⊂ ∪ ∪� . 
If X is a topological space, a neighbourhood of x X∈  is a subset V of X that 

includes an open set U such that x U∈ . 
Definition 2 A topological space X is locally compact if every point in X has 

a compact neighbourhood. 
Definition 3 A subset S of a metric space X is called a totally bounded subset 

of X if, and only if, for each r +∈ , there is a finite collection of balls of X of 
radius r that. covers S. A metric space X is said to be totally bounded if, and only 
if, it is a totally bounded subset of itself. 

Theorem 2.1 A metric space is compact if and only if it is complete and 
totally bounded. 

Theorem 2.2 A subspace Y of a complete metric space is complete if and only 
if Y is closed. 

Theorem 2.3 Every closed subset of a compact space is compact. 
Definition 4 A topological space X is said to be separable if it contains a 

countable dense subset. 
Theorem 2.4 Every metric subspace of separable metric space is separable. 

2.2. Measure theory 

We will need the following definitions and results from measure theory. 
Theorem 2.5 ([14]) Every open subset U of d , 1d ≥ , can be written as a  

countable union of disjoint half-open cubes of form ( )
1, , 1

1,
2 2d

dn k k
i i n nk

i iA
=

+= 
∏� ,  

n∈ , 1, , di i ∈�  . 
Definition 5 Let   be a σ-algebra on d  that includes the σ-algebra 

( )dB  of Borel sets. A measure μ on ( ),d   is regular if 
(a) (locally finite) each compact subset K of d  satisfies ( )K < +∞µ , 
(b) (outer regular) Each set A in   satisfies 

( ) ( ){ }inf : is open andA U U A U= ⊆µ µ , and 
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(c) (inner regular) each open subset U of d  satisfies 

( ) ( ){ }sup : is compact and .U K K K U= ⊆µ µ  

Theorem 2.6 ([8]) Any finite measure on d  is regular. 
The Lebesgue measure on d  is a regular measure (see e.g. [8]). However, 

not all σ-finite measures on d  are regular ([15], Corollary 13.7]. Also, there 
are some outer regular measures that are not σ-finite. For example, defined  

( ) [ ]: 0,→ ∞Bµ  by ( ) ( ) , 0
, 0
A A

A
A

∉
= 

∞ ∈

λ
µ . It is easy to see that μ is a measure  

on ( )( ), B  that is not σ-finite but is outer regular. 
Definition 6 If ( ), ,E  µ  is a measure space, a set A∈  is called an atom 

of μ iff ( )0 A< < ∞µ  and for every C A⊂  with C∈ , either ( ) 0C =µ  or 
( ) ( )C A=µ µ . 
A measure without any atoms is called non-atomic. 
A measure space ( ), ,E  µ , or the measure μ, is called purely atomic if there 

is a collection   of atoms of μ such that for each A∈ , ( )Aµ  is the sum of 
the numbers ( )Cµ  for all C∈  such that ( ) ( )A C C∩ =µ µ . 

Lemma 2.1 ([16]) An atom of any finite measure μ on ( )( ),d d   is a 
singleton { }x  such that { }( ) 0x >µ . 

Lemma 2.2 ([17]) Any atom of a Borel measure on a second countable 
Hausdorff space includes a singleton of positive measure. 

In particular, a Borel measure on a second countable Hausdorff space is 
nonatomic if and only if every singleton has measure zero. 

A measure space ( ), ,E  µ  is localizable if there is a collection   of 

disjoint measurable sets of finite measure, whose union is all of X, such that for 
every set B X⊂ , B is measurable if and only if B C∩ ∈  for all C∈ , and 
then ( ) ( )CB B C

∈
= ∩∑ 

µ µ . Some examples of localisable measures are the 

σ-finite ones or counting measures on possibly uncountable sets. 
Theorem 2.7 ([18]) Let ( ), ,E  µ  be a localisable measure space. Then there 

exist measures ν  and ρ  such that = +µ ν ρ , ν  are purely atomic and ρ  
non-atomic. 

2.3. Boolean Algebra 

In this section, we present the basics concerning Boolean algebras of sets. For 
more details, see e.g. [4] or [19]. 

Definition 7 A Boolean algebra (B.A.) is a structure ( )( ), , , ,0,1c∪ ∩ ⋅  with 
two binary operations ∪  and ∩ , a unary operation ( )c⋅  and two distinguished 
elements 0 and 1 such that for all A, B and C in  , 

( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( )c c

A B C A B C, A B C A B C,
A B B A, A B B A,
A A B A, A A B A,
A B C A B A C , A B C A B A C

A A 1, A A 0.

∪ ∪ = ∪ ∪ ∩ ∩ = ∩ ∩
∪ = ∪ ∩ = ∩
∪ ∩ = ∩ ∪ =
∩ ∪ = ∩ ∪ ∩ ∪ ∩ = ∪ ∩ ∪

∪ = ∩ =
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Definition 8 Let   be a B.A. The B.A.   is normed (N.B.A.) if there 
exists a σ-additive strictly positive finite measure μ (i.e. ( )A 0=µ  implies 
A 0= ) defined on it. In this case, we use the notation ( ),m . 

On ×   we can define a relation ⊆  by setting A B⊆  if A B B∪ = . It 
is easy to verify that ⊆  is a partial order relation. 

Definition 9 B.A.   is complete if every non-empty subset ⊆   has its 
infimum and supremum. 

Let ( ), ,E  µ  be a finite measure space. We can define equivalence relation ~ 
on ×   by setting ~A B  if and only if ( ) 0A B∆ =µ , where  

( ) ( )c cA B A B A B∆ = ∩ ∪ ∩  is the symmetric difference between the sets A and 
B ( cA  and cB  denote the complements of A and B, respectively). 

Let [ ] ( ){ }: 0A B A B= ∈ ∆ = ∈ � µ . Then [ ]{ }:A A= ∈�   a quotient space 
of   by ~ is a complete N.B.A. endowed with the measure �µ  defined by 

[ ]( ) ( ):A A=�µ µ . 
The inverse result also holds. Namely, for each complete N.B.A. ( ),m , 

there exists a measure space ( ), ,E  µ  such that the N.B.A. ( ),m  is 
isomorphic to ( ),� � µ  (see [4]). Therefore, further on we focus on investigating 
properties of ( ),� � µ . We generalise the above setting, by letting measure μ be 
arbitrary, possibly non-finite. 

Define [ ]: 0,d × → ∞� � µ  by 

[ ] [ ]( ) [ ] [ ]( )( )( ) ( )( )( )1 2 1 2
, : .d A B A B A B= ∆ = ∆�µ µ µ  

It is easy to see that dµ  is a metric on �  possibly taking infinite values. We 
suppose the topology �  is generated by dµ . We are interested in the 
topological properties of ( ),d� µ . 

Remark 1 Let us mention that there are many topologies introduced in B.A.s. 
The most popular among them is the order topology. It is known that the 
topology of the metric space ( ),d� µ  coincides with the ordered topology (see 
[4]). 

Denote ( )2 , ,L E  µ  a Hilbert space of measurable functions that are square 
integrable with respect to the measure μ, where functions that agree μ almost 
everywhere are identified. Let  

{ } ( ){ } ( )21l , 1l : , ,A AA A L E= ∈ = < ∞ ⊂  µ µ  where 

( )
0, ,

1l
1, ,A

x A
x

x A
∉

=  ∈
 

stands for the indicator of set A or a characteristic function of set A. 
If ( )E < ∞µ , we can define : →� ι  by [ ]( ) 1l AA =ι . Since 

[ ] [ ]( ) ( )( )12 2
, 1l 1l d ,A BE

d A B = −∫µ µ  

  and   are isometric. 
Suppose that 1

nA  converges to f in ( )2 , ,L E  µ . Since, ( )2 , ,L E  µ  is 
complete, ( )2 , ,f L E∈  µ . Let us show that f is an indicator function of some  

measurable set. There exists a subsequence ( )1l
nkA

k
 such that  
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( ) ( )lim1l
nkAk

x f x= , μ-a.e. (see e.g. [20, Theorem 16.25]) Also, following 

( ) ( ) ( )
( ) ( )

liminf limsupliminf 1l ( ) 1l 1l

limsup1l , - . .,
n k n k nk k k

nk

A A Ak

A

f x x x x

x f x a e

= = ≤

= = µ
 

we conclude that   is closed. Following Theorem 2.2 we can conclude that   
is complete metric subspace of ( )2 , ,L E  µ . Therefore, we have shown that in 
case μ is finite ( ),d� µ  is complete metric space. Let us show that this holds in a 
general case when μ is not finite. 

Theorem 2.8  ( ),d� µ  is complete metric space. 
Proof. Suppose that [ ]( )n n

A
∈

 is a Cauchy sequence in � . Then for fixed,  

0>ε  there exists n ∈ε  such that for ,n m n≥ ε  [ ] [ ]( ),n md A A <µ ε . We 
define 1l 1l

n nn A Af = −
ε

, n n≥ ε . Since  

( ) [ ] [ ]( )dn n n n nf A A d A A= ∆ = ∆ ≤∫ ε µ εµ µ ε , so ( ), ,p
nf L E∈  µ . Also, ( )nf  is  

a Cauchy sequence, and since ( )1 , ,L E  µ  is complete, there exists 1f L∈  such  

that lim d 0p
nEn

f f− =∫ µ . Furthermore, there exists a subsequence ( )kn k
f  

such that ( ) ( )limk nkf x f x= , μ-a.e. It holds 

( ) ( )( ) ( )

( ) ( )( ) ( )

liminf

limsup

liminf 1l 1l 1l 1l

1l 1l limsup 1l 1l , - . .,

n n k n nk k

k n n n nk k

A A A Ak

A A A A
k

f x x x

x x f x a e

= − = −

≤ − = − =

ε ε

ε ε
µ

 

which shows that liminf limsup1l 1l
k n k nk kA A=  μ-a.e, or equivalently  

liminf limsup
k kk n k nA A   =    . Following  

[ ]( ) liminf liminf, liminf 1l 1l d 1l 1l 1l 1l d

d 0

k n k n n n n k nk kn k n A A A A A AE E

nE

d A A

f f
ε εµ µ µ

µ

  = − = − + − 

= − =

∫ ∫
∫

, 

the sequence [ ]( )n n
A  is convergent, so ( ),d� µ  is complete. 

Remark 2 In this case ( )E = ∞µ , one can also consider  
[ ] ( ){ }: ,fin A A A= ∈ < ∞�  µ . It is easy to see that ( ),fin d� µ  is isometric to 
( )2 , ,L E⊂  µ , so it is a complete metric subset of ( ),d� µ . However, fin

�  is 
not a B.A. since it is not e.g. closed under complements. 

3. Main Result 

Before we show the main result, in order to get intuition, we first start with a 
motivating example. 

Suppose that [ ] [ ]0,1 0,1K = ×  (an observation window) and consider  

( ) ( ) ( )( ), , , , KE K K=
B

B µ λ , where ( )KB  is Borel σ-algebra on K and 

( )KB
λ  Lebesgue measure. 

If we consider a ball in ( ) ( )�( ), ,d K dµ λ=� B  of radius 0>ε  it holds: 

[ ]( ) [ ] ( )� [ ] [ ]( ){ }
[ ] ( )� ( ){ }2

, : ,

, .

B A B K d A B

B K A B

λε ε

λ ε

= ∈ <

= ∈ ∆ <

B

B
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For each n∈ , we can partition K into 22 n  smaller squares  

( )
( ) ( ) ( ), 1 2 , 2 1 2 , 2n n n n n
i jA i i j j   = − × −    , , 1, ,2ni j = � . Intuitively, we 

pixelise the unit square by a 2 2n n×  net. 
We show that for each ε  we can pixelise the unit square fine enough so that 

the error of approximation of the set B would be less than ε . Denote by 

{ } { }1,2, ,2 1,2, ,2n n
nI = ×� � . 
Lemma 3.1  For an arbitrary ( )B K∈B  and an arbitrary 0>ε , there 

exists n∈  and nI I⊂  such that 

( )
( )
( )

,
,

.n
i j

i j I
A B

∈

 
∆ <  

 
∪λ ε  

This result follows directly from Lemma 3.2 which we prove later in the paper. 

Note that the family ( )
( ){ }, : , , , , 2n n
i jA i j n i j  ∈ ≤    is countable dense subset 

of ( )�( ),K dλB , so ( )�( ),K dλB  is separable. 

Following Lemma 3.1, for arbitrary 0>ε  the collection of balls 

[ ]( )
( )

( )
( )

,
,

, : such that for somen
ni j

i j I
B A n A A I I

∈

  = ∃ ∈ = ⊂ 
  

∪ε ε      (3.1) 

is an infinite (countable) open cover ( )�( ),K dλB . (Since for every 0>ε  and 

arbitrary ( )B K∈B  there exists A in form 
( )

( )
( )

,
,

n
i j

i j I
A A

∈

= ∪  for some nI I⊂  

such that [ ] [ ]( ),B B A∈ ε ) 

Suppose that ( )�( ),K dB λ  is compact, therefore the open cover (3.1) should  

have a finite subcover. It means that there exists m∈  such that the collection 
of open balls 

[ ]( )
( )

( )
( )

, ,
,

, : for somemm
fin mi j

i j I
B A A A I I

∈

  = = ⊂ 
  

∪ε ε  

covers ( )�( ),K dλB . 

However, if we take 1
2

=ε  and define a set 

( ),
, 1

,
m

m i j
i j

T T
=

= ∪                          (3.2) 

where  

( )

( ) ( ) ( ){ }
,

, : 1 2 , 2 , 1 2 , 2 , 2 2

i j

m m m m m m

T

x y K x i i y j j y x i j   = ∈ ∈ − ∈ − ≤ − +     

it is easy to see (Left plot in Figure 1 provides a visualisation of the set T2) that  

( ) 1 2mA T∆ =λ , for each A such that 
( )

( )
( )

,
,

n
i j

i j I
A A

∈

= ∪  for some nI I⊂ , n m≤ . 

Therefore [ ]mT  is not contained in any ball in 1 ,
2

m

fin
  so 1 ,

2

m

fin
  cannot be a  
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Figure 1. Left plot: Visualisation of set 
1
2

2T  (coloured in grey) defined by 

(3.2). Right plot: Visualisation of the set 2T ε  for 1
8

=ε  (coloured in 

dark grey) defined by (3.3). 

 

cover of ( )�( ),K dλB . So countable open cover 1
2

  of ( )�( ),K dλB  has no 

finite subcover. We can conclude that ( )�( ),K dλB  is not compact. 

In order to show that ( )�( ),K dλB  is not locally compact, we will prove that 

closed ball with the centre in [ ]∅  and radius 1
2

<ε  denoted by  

[ ]( ) [ ] ( )� ( ){ }2, :B A B K A B= ∈ ∆ ≤Bε λ ε  is not compact. 

Since ε  covers ( )�KB  it also covers [ ]( ),B ∅ ε  We will show that open 
cover ε  cannot be reduced to a finite subcover. For that purpose, for  

2 10
2

< ≤ε  we define a set 

( )

( )
( )
( )
,

,
,

m

m i j
i j I

T T
∈

= ∪ε ε                        (3.3) 

where 

( )
( ) ( ) ( ) ( ){ ( )2
, , : 1 2 1 2 2 , 2 , 1 2 , 2 ,m m m m m

i jT x y K x i i y j jε ε   = ∈ ∈ − + − ∈ −     

}2 2m my x i j≤ − +  of 22 m  disjoint triangles whose union has Lebesgue 

measure equal to 2ε , so [ ] [ ]( ),mT B∈ ∅ ε  for each m∈ . The right plot in 

Figure 1 provides a visualisation of the set 2T ε  for 1
8

=ε . For each A such that 

( )
( )
( )

,
,

m
i j

i j I
A A

∈

= ∪  for some mI I⊂ , it holds 

( )( ) ( )( ) ( )( )

( )
( )

( )( )
( )

( )
( )( )

( )

, ,
, ,

2 2

2 2

2

1
2 2

,

m

m m m

m mi j i j
i j I i j I I

mm m

A T A T T A

A T T A

I I I

∈ ∈

∆ = +

= +

 
= − + − 
 

≥

∑ ∑


 

 

ε ε ε

ε ε

µ µ µ

µ µ

ε ε

ε

     (3.4) 
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where the last inequality follows from the fact that from 2 10
2

< ≤ε  follows  

2 21− >ε ε . So ( ) [ ]( ),mT B ∈ ∅ 
ε ε  but it is not in any ball in ,

m
finε . We 

conclude ,
m

finε  cannot be a cover of [ ]( ),B ∅ ε . Since the countable open 
cover ε  of [ ]( ),B ∅ ε  has no finite subcover, [ ]( ),B ∅ ε  is not compact. 
We conclude that [ ]∅  does not have a compact neighbourhood, so ( )�KB  is 
not locally compact. 

In order to generalise these ideas on arbitrary measure space ( ), ,E  µ  we 
introduce the following definitions. 

Definition 10 Let ( ), ,E  µ  be a measure space and ( )n n∈
=    a 

filtration, i.e. n ⊆   is σ-algebra such that 1n n+⊆  . Let ′  be an arbitrary 
subset of  . 

Measure μ is approximable on ′  with respect to   if for each A ′∈  
and each 0>ε  there exists n ∈ε  and nA′∈

ε
 such that 

( ) .A A′∆ <µ ε  

Measure μ is uniformly approximable on ′  with respect to   if for each 
0ε >  there exists nε ∈  such that for every A ′∈  there exists nA

ε
′∈  so 

that 
( ) .A Aµ ε′∆ <  

For arbitrary ′ ⊆   denote by � [ ]{ }:A A′ ′= ∈  . 
Theorem 3.1  �′  is separable in ( ),dµ

�  if and only if there exists 
( )n n∈

=    a filtration for which n  is finite for each n∈  such that μ is 
approximable on ′  with respect to  . 

Proof. Suppose that μ is approximable on ′  wih respect to  . Denote by  
� [ ]{ }:c n nB B ∈′ = ∈∪    Since n n∈∪   is countable, � c′  is also countable.  

Let us show that � c′  is dense in �′ . For arbitrary 0ε >  and arbitrary A ′∈  
there exists n nA ∈′∈∪   such that ( ) 2A Aµ ε′∆ < , so [ ] [ ]( ),A B A ε′∈ , and 
therefore � c′  is countable dense subset of �′  and �′  is separable. 

If �′  is separable, then there exists a countable dense subset of �′ , denote it 
by � c′ . W can represent � c′  as [ ]{ }:B B∈  for some countable  

{ }:nB n ′= ∈ ⊂  . Take ( )1n nB Bσ= � . Then for each 0ε >  and each, 
A ′∈  there exists nB ∈  such that [ ] [ ]( ),nA B B ε∈  so that ( ) 2

nA Bµ ε∆ < .  
Therefore, μ is aproximable on ′  with respect to ( )n n

F
∈ .              □ 

Theorem 3.2  �′  is totally bounded in ( ),dµ
�  if and only if there exist  

exists a filtration ( )n n∈
=    such that μ is uniformly approximable on ′   

with respect to   and n  is finite for each n∈ . 
Proof. Suppose that �′  is totally bounded. Then for each 0ε >  there exists  

a finite family of sets ( ) ( ){ }1 , , mA A
ε

ε ε
ε = �  such that � ( )( )1 ,m

i iB A ε ε=
 ′ ⊆ ∪   . For 

arbitrary B ′∈ , [ ] ( )( )1 ,n
i iB B A ε ε=

 ∈∪   , so there exists ( )
iA ε  such that 

( )( ) 2
iA Bεµ ε∆ < . If we consider 1

n n
ε =  and take 1 1

n
n i

n

σ =

 
= ∪  

 
   we get that 
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μ is uniformly approximable on ′  with respect to ( )n .                □ 

Conversely, if there exists ( )n  where n  is finite for each n∈  and μ 
is uniformly approximable on ′  with respect to ( )n . For each 0ε >  there 
exists n such that for each B ′∈  there exists n nA ∈ , ( ) 2

nA Bµ ε∆ < . So  

[ ] [ ]( ),nB B A ε∈  and therefore � [ ]( ),
nA B A ε∈′ ⊆ ∪  , which shows that �′  is 

totally bounded. 
Corollary 3.2.1. 
(a) ( ),d� µ  is separable if and only if there exists ( )n n∈

=    a filtration 
for which n  is finite for each n∈  such that μ is approximable on   
with respect to  . 

(b) ( ),d� µ  is compact if and only if there exists ( )n n∈
=    a filtration 

for which n  is finite for each n∈  such that μ is approximable on   
with respect to  . 

Proof. The (a) part follows directly from Theorem 3.1. The (b) part follows 
from Theorem 2.1, Theorem 2.8 and Theorem 3.2.                       □ 

Intuitively speaking, we can imagine a finite filtration ( )n  as a way to 
pixelise E that in each step (as n grows) we get a finer “grid”. Following Theorem 
3.1 and Theorem 3.2, ( ),d� µ  is separable if for each measurable set we can 
find a level of pixelization such that the error is smaller than arbitrary 0ε >  
and ( ),d� µ  is compact if for each 0ε >  we can find a level of pixelisation 
such that all measurable sets are well approximated on this level, i.e. the error of 
pixelisation is smaller than ε  for each measurable set. 

Let us now classify measures μ on ( )( ),d d B  based on topological 

properties of corresponding ( )�( ),d dµB . 

Further on, denote by ( )
( )
1, ,

1
( 1) 2 , 2

d

d
n n n

j ji i
j

A i i
=

= −∏� ,  1, , di i ∈�  ,  a  

d-dimensional half-open interval in d . We prove that an arbitrary Borel set in 
d  can be approximated by the finite union of disjoint half-open d-intervals in 

a sense that the measure of symmetric difference between the Borel set and the 
union is arbitrary small. 

Lemma 3.2  If μ is a outer regular measure on d  then for an arbitrary 
( )dB∈ B  such that ( )Bµ < ∞  and an arbitrary 0ε > , there exists 0n ∈  

and finite { }0 0
0 02 1, ,0, , 2

dn nI n n⊆ − + � �  such that 

( )
( )
( )0

1
1

, ,
, ,

.
d

d

n
i i

i i I
A Bµ ε

∈

 
∆ <  

 
�

�
∪  

Proof. Let us take an arbitrary ( )dB∈ B , ( )Bµ < ∞  and an arbitrary 
0ε > . 

Space d  can be represented as a decreasing union of the half-open 
d-intervals [ , dn n− , n∈ . It holds that 

( ) ( ) [( )
[( ) [( )

,

, lim , .

dd
n

d d
n n

B B B n n

B n n B n n

µ µ µ

µ µ

∈

∈ →∞

= ∩ = ∩∪ −

= ∪ ∩ − = ∩ −
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The last equality follows from continuity of the measure μ form below with  

respect to the increasing sequence [{ }, d

n
B n n∩ − . 

Since ( )Bµ < ∞  for given ε  there exists 1n ∈  such that for each 1n n≥  

[( ) ( ) [( ), , .
3

d dB n n B B n n εµ µ µ∆ − = − ∩ − ≤               (3.5) 

Since μ is outer regular, for [ 1 1,B B n n′ = ∩ −  and arbitrary 0ε >  there 
exist an open set O such that B O⊆  and 

( ) ( ) .
3

B O O B εµ µ′ ′∆ = <  

Following Theorem 2.5, O can be represented as a countable union of almost 
disjoint half-open cubes ( )k k

A
∈ . Since 

( ) ( ) ,k
k

O Aµ µ
∈

= < ∞∑
�

 

for chosen ε  there exists N ∈  such that 

( ) ( ) ( )1
1

,
3

N
N
k k k

k
A A O εµ µ µ=

=

∪ = ≥ −∑  

so since 1
N
k kA O=∪ ⊆  

( )1 .
3

N
k kA O εµ =∪ ∆ ≤  

Set ( ) ( ){ }12 1, ,max : , 1, , , , ,
d

n d
k di in n A A k N i i= ∈ = = ∈�� � � � . Note that if  

1 2m m< , each ( )
( )1

1, , d

m
j jA �  can be represented as finite union of disjointed 

d-intervals ( )
( )2

1, , d

m
j jA ′ ′� . 

We take { }0 1 2max ,n n n=  and define  

( ) { } ( )
( ){ }00 0
11 0 0 , ,, , 2 , , 2 : , 1, ,

d

d nn n
d ki iI i i n n A A k N= ∈ − ⊂ =�� � � . 

Note that ( ) ( )
( )0

1 11 , , , ,d d

nN
k i i I i iA= ∈∪ = ∪ � �  

Therefore, 

( ) ( )
( )( ) ( ) ( ) ( )0

1 1 1, , , , .
d d

n N
k ki i I i iA B A O O B B Bµ µ µ µ ε=∈

′∪ ∆ ≤ ∪ ∆ + ∆ + ∆ <� �  

Theorem 3.3  Let ( ) ( )( ), , , ,d dE =  B µ µ  where μ is an outer regular 
measure. Then ( ),fin d� µ  is separable.                                □ 

Proof. For each, n∈  the family  
( ) ( ) { }{ } [
1 1, , : , , 2 1, 2 ,

d

dn n n d
n di iA i i n n n n= ∈ − + ∪ −� �    is finite (see Figure 2 

for visualization). Denote by 

( ){ } { }: can be written as a union of sets from .d
n nA A= ∈ ∪ ∅    

Note that since n  forms a finite partition of d , ( )n n= σ . It holds 
that n < ∞ . Also note that 1n n+⊂  . Let n n∈= ∪   , and note that   is 
countable. Note that from Lemma 3.2 it follows that the μ is approximable on 

fin  with respect to n ), and from Theorem 3.1 it follows that ( ),fin d� µ  is 
separable.                                                        □ 
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Figure 2. Visualisation of sets in family ( ) ( ) { }{ }1 , , 1: , , 2 1, 2
d

n n n
i i dA i i n n∈ − +� �  

for 1n =  (black), 2n =  (blue) and 3n =  (light blue). 

 

Corollary 3.3.1 For any outer regular Borel measure μ on ( )( ),d d B ,  

( )�( ),d

fin
dB µ  is a Polish space (i.e. complete separable metric space). 

Remark 3 Since ( )�( ),d

fin
dB µ  is isometric to set of indicators in  

( )( )2 , ,d dL  B µ , we can also conclude that in case of outer regular measure μ 
set of indicators in ( )( )2 , ,d dL  B µ  is a Polish space. 

Corollary 3.3.2  For any finite Borel measure μ on ( )( ),d d B ,  

( )�( ),d dB µ  is a Polish space (i.e. complete separable metric space). 

Note that Corollary 3.3.2 could be proven using separability of set indicators 
in ( )( )2 , ,d dL  B µ . 

As it has been already mentioned in Introduction, if   is countably 
generated and μ is a σ-finite measure then ( )2 , ,L E  µ  and set of indicators in 

( )2 , ,L E  µ  are separable. For a finite μ, since ( ) ( ), ,fin d d=� � µ µ  and 

( ),fin d� µ  is homeomorfic to set of indicators, we can conclude ( ),d� µ  is 
separable. We provide an alternative proof of this fact using the notion of 
approximability. 

Theorem 3.4  Suppose that there exists   a countable family of subsets of 
E such that ( )= σ  and ( ), ,E  µ  is a finite measure space. Then ( ),d� µ  
is separable. 

Proof. Without loss of generality, we can suppose that the family   is a 
family of disjointed sets that cover E and { }:nC n= ∈ . We define  

( )1, ,n nC C= � σ . For an arbitrary A∈  there exists { }:kC k I∈  such that 

kC ∈  and I is at most countable and k I kA C∈= ∪ . It holds  
( ) ( ) ( )k I k k

k I
A C C∈

∈

= ∪ = < ∞∑µ µ µ . If I is finite, we can take maxn I=ε  and 

for k I k nA A C∈′ = = ∪ ∈
ε

 it holds ( ) 0A A′∆ = <µ ε . If I is countable, we can 

suppose { }:nI k n= ∈ . Since ( ) ( )nk
n

A C
∈

= < ∞∑
�

µ µ , for 0>ε  there exists 
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n′∈  such that ( )
1

nk
n n

C
∞

′= +

<∑ µ ε . If we take nn k ′=ε  and 1 n

n
n k nA C′
=′ = ∪ ∈

ε
, 

it holds ( ) ( )
1

nk
n n

A A C
∞

′= +

′∆ = <∑µ µ ε . So, μ is approximable on   with respect  

to finite ( )n  and therefore ( ),d� µ  is separable.                      □ 
Theorem 3.5  Suppose 1 2= +µ µ µ  and suppose that 2µ  is not (uniformly) 

approximable on ′  with respect to a finite filtration, then μ is not (uniformly) 
approximable on ′  with respect to any finite filtration. 

Proof. We prove the result for uniformity approximability since the proof in a 
case of approximability is similar. 

Since 2µ  is not uniformly approximable on ′  with respect to any finite 
filtration, for arbitrary ( )nF  and 0>ε  there exists B ′∈  such that 

( )2 A B∆ ≥µ ε  for all n nA ∈∈∪  . But then 

( ) ( ) ( )1 2 ,A B A B A B∆ = ∆ + ∆ ≥µ µ µ ε  

from which follows that μ is not uniformly approximable approximable on ′  
with respect to finite filtration.                                       □ 

Localizable measures can be decomposed into a non-atomic part and a purely 
atomic part (Theorem 2.7). Following Theorem 3.5, measure μ is (uniformly) 
approximable if its non-atomic and purely atomic parts are (uniformly) 
approximable. In other words, ( ),d� µ  is separable (compact) if non-atomic 
and purely atomic part of μ are (uniformly) approximable. Therefore, we focus 
on separability and compactness properties of ( ),d� µ , first in a case when μ is 
non-atomic and then in a case of purely atomic μ. 

Theorem 3.6  If μ is non-atomic measure and ( )E = ∞µ , then ( ),� µ  is 
not separable. 

Proof. Suppose that ( ),� µ  is separable. Then there exists a filtration ( )n , 

n < ∞  on ( ), ,E  µ  such that μ is approximable on   with respect to  

( )n . We can suppose that ( ) ( )( )1 , ,
n

n n
n mA A= � σ , where ( )n

iA ∈  are disjoint 

and ( )

1

nm
n

i
i

A E
=

=∪ . Since ( ) ( )( )
1

nm
n

i
i

E A
=

∞ = =∑µ µ , for each n we can find ni , 

1 n ni m≤ ≤  such that ( )( )n

n
iA = ∞µ  and since 1n n+⊆   we can choose ( )n n

i  

in a way that ( ) ( )
1

1
n n

n n
i iA A
+

+ ⊆ , n∈ . Since μ is non-atomic, we can construct 

inductively a sequence of measurable sets ( )
n

n
n iB A⊂  in a following way: 

( ) 2 n
nB −=µ  and ( )

1

1
1 n

n
n niB A B

+

+
+ ⊂  . Note that nB  are disjointed. Let 

1n nB B∞
== ∪ . For each n∈ , and an arbitrary nA′∈ , 

( )
( ) ( ) ( )

( )( ) ( )

1 ,

, .
n

n n

n
i

n n
i i

B A A A
B A

A B A A

 ′ ′+ ≥ ∩ =∅′∆ = 
′= ∞ ⊆ 

µ µ
µ

µ
 

So, ( ) 1B A′∆ ≥µ  for each n∈  which contradicts the assumption of 
approximability.                                                  □ 

Theorem 3.7  If measure μ on ( ),E   is non-atomic than ( ),d� µ  is not 
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compact or locally compact. 
Proof. Suppose that μ is non-atomic, then for each B∈  such that 
( ) 0B >µ , there exists A∈  such that A B⊆  and ( ) ( )0 A B< <µ µ . So for 

each B∈  and for each r∈ , ( )0 r B≤ < µ  there exists a measurable set 
A B⊂  such that ( )A r=µ . 

Let ( )n n∈  be an arbitrary filtration on  , such that n  is finite for each 

n∈ . In this case, we can assume that ( ){ },n
n i nA i I= ∈ σ  where ( )n

iA  are 

disjoint, ( )
n

n d
i I iA∈∪ =   and nI  is a finite set of indices. 

Suppose first that μ is finite. Let 
( )0
2
E

< <
µ

ε  and 
( )E

=
εα

µ
. Note that 

10
2

< <α . For each ( )n
iA  we can find Borel set ( )n

iC  such that  

( )( ) ( )( )n n
i iC A=µ αµ . If we define set ( )

n

n
n i iC C∈= ∪  , calculation similar to (3.4)  

yields ( )nC =µ ε  ( )nC A∆ ≥µ ε  for each nA∈ . This shows that μ is not 
uniformly approximable ( )nF , so ( ),d� µ  is not compact. 

Let ( )E = ∞µ . If ( )( )n
iA = ∞µ  for all ni I∈ , we can take nC =∅ . Then  

( ) 0nC = ≤µ ε  and ( )nC A∆ = ∞ ≥µ ε . 

Otherwise, let ( )( ){ }: n
n n iI i I A′ = ∈ < ∞µ . Let 

( )( )
0

2
n

n
i I iA′∈∪

< <
µ

ε  and  

( )( )n

n
i I iA′∈

=
∪

εα
µ

. For each ( ) ,n
i nA i I ′∈  we take measurable set ( )n

iC  such that 

( )( ) ( )( )n n
i iC A=µ αµ . If we define set ( )

n

n
n i iC C′∈= ∪  , again we have ( )nC =µ ε   

and ( )nC A∆ ≥µ ε . 
Let ( ){ }:A A′ = ∈ ≤ ε µ ε  Previous discussion show that μ is not uniformly 

approximable on ′ ⊂ ε  with respect to any filtration containing finite 
σ-algebras. We conclude that ( ),d� µ  is not compact, and each closed ball  

[ ]( ) [ ]{ }, :B B B ′∅ = ∈εε  is not totally bounded, but it is also not compact 

since [ ]( ),B ∅ ε  is closed. So, [ ]∅  has no compact neighbourhood. We  

conclude that ( ),d� µ  is not locally compact.                          □ 
From Theorems 3.6 and 3.7 we see that in the case of non-atomic measure μ, 

( ),d� µ  is not separable if μ is an infinite measure and also not compact when μ 
is an arbitrary measure. 

Further on, let μ be a purely atomic measure on ( ),E  . Suppose that atoms 
of the μ are singletons. If E is second countable Hausdorff and   is a Borel 
σ-algebra on E, following Lemma 2.2, every measure μ on ( ),E   satisfies the 
condition. 

We define set { }( ){ }: 0finE x E x= ∈ < < ∞µ  of all atoms with a finite 
measure and set { }( ){ }:E x E x∞ = ∈ = ∞µ  of all atoms with an infinite 
measure. To prove that corresponding ( ),fin d� µ  is separable if and only if finE  
is countable we need the following result. 
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Lemma 3.3  Let ( ),E   be a measurable space. Let ( )n  be a filtration on  
  such that n  can be represented as ( ) ( )( )1 , ,

n

n n
mA A�σ  where nm ∈  and 

( ) ( )
1 , ,

n

n n
mA A�  is a finite partition of E. If finE  is a uncountable subset of E, there 

exists a decreasing sequence ( )( )n

n
j n

A , { }1, ,n nj m∈ �  such that ( )
n

n
finjA E∩  is 

infinite for each n∈  and ( )
n

n
finj

n
A E

∈

∩ ≠ ∅∩


. 

Proof. It holds ( )

( ) { }

( )

11 1, ,

n

n n
n n nnn

m
n n

j j
n n j n Nj m

E E A A
∞
=

∈ ∈ = ∈∈∏

= = =
� � �
∩ ∩ ∪ ∪ ∩ . It follows that 

( ) { }

( )

1 1, ,
n

n nnn

n
fin fin finj

nj m

E E E A E
∞
=

∈∈∏

= ∩ = ∩
��

∪ ∩ . Note that partition  

( ) ( )
1

1 1
1 , ,

n

n n
mA A

+

+ +�  refines partition ( ) ( )
1 , ,

n

n n
mA A� , so if ( )

n

n
j

n N
A

∈

≠ ∅∩  then 

( ) ( )
1

1
n n

n n
j jA A
+

+ ⊆ . 

Suppose conversely, that for each ( )( )n

n
j n

A , { }1, ,n nj m∈ �  such that  

( )
n

n
finjA E∩  is infinite for each n∈ , ( )

n

n
finj

n
A E

∈

∩ =∅∩


. Then  

( )

( )
n

n n

n
fin finj

j J n
E A E

′∈ ∈

= ∩∪ ∩


, where  

( ) { } ( ){ }1 1, , : there exists such that < ,
k

k
n n j j fin jnn

J j j m m A E k m∞

=
′ = = ∈ ∈ ∩ ∞ ≥∏ �  . 

If we denote by ( ){ }1, , : ,fin M jJ j j j J M m′= ∈ ≥� , in this case it holds 

( )

( )

( )

11 , , 1
.

j

n n
M fin

m M
n n

fin fin finj j
j J n j j J n

E A E A E
′∈ = ∈ =

⊆ ∩ ⊆ ∩
�

∪ ∩ ∪ ∩  

Since finJ  is at most countable (as a subset of all finite sequences ( )1, , Mj j� ,  

M ∈ , 1, ,n nj m∈ � ) and ( )

1
n

M
n

finj
n

A E
=

∩ < ∞∩ , it follows that finE  is at most  

countable, which is contradicts the assumption that finE  is uncountable.    □ 
Theorem 3.8  Let μ be a purely atomic measure on ( ),E   where all the 

atoms are singletons. 
(a) ( ),d� µ  is separable if and only if { }( )

finx E
x

∈

< ∞∑ µ  and E∞  is finite. 

(b) ( ),fin d� µ  is separable if and only if finE  is countable. 
Proof. Suppose finE  is countable, so it can be written in a form 

{ },fin nE x E n= ∈ ∈ . We first prove that ( ),fin d� µ  is separable. Denote by 
( ){ }:fin B B= ∈ < ∞  µ . We set { } { }( )1 , ,n nx x= � σ , n∈ . 

For finB∈  it holds  

( ) ( ) { }( ) { }( )
1 Bfin n ii I

n
B B E B x x

∞

∈
=

= ∩ = ∩ = < ∞∑ ∑µ µ µ µ , where 

{ }:B nI n x B= ∈ ∈ . For arbitrary 0>ε  and arbitrary finB∈  there exists  

finite BI I⊂ε  such that { }( ) { }
B

i i
i I I i I

x B x
∈ ∈

 
= ∆ <  

 
∑ ∪
 ε ε

µ µ ε . If we choose 

maxn I=ε ε , { }i n
i I

x
∈

∈∪ 
ε

ε

. We conclude that μ is approximable on fin  with 
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respect to ( )n , so ( ),fin d� µ  is separable. 

Further on, suppose { }( )
finx E

x
∈

< ∞∑ µ  and E∞  is finite, i.e. { }1, , mE y y∞ = �   

for fixed m N∈  and let { } { } { } { }( )1 1, , , , ,n m ny y x x∞ = � � σ , n∈ . For 
B∈  such that ( )B = ∞µ  it holds B E∞∩ ≠ ∅  and ( )B E∞ < ∞µ . For 

finB B E∞′ = ∈   we have already proven that for 0>ε  there exists n and 

nA′∈  such that ( )B A′ ′∆ <µ ε . If we take ( ) nA B E A ∞
∞′′ ′= ∩ ∪ ∈  it holds 

( ) ( )B A B A′′ ′ ′∆ = ∆ <µ µ ε , so μ is approximable on   with respect to ( )n
∞  

and we conclude ( ),d� µ  is separable. 
To prove the separability of ( ),fin d� µ  implies finE  is countable, we suppose 

conversely that ( ),fin d� µ  is separable and finE  is uncountable. Since 

( ),fin d� µ  is separable, there exists filtration ( )n  such that n  is finite and μ 
is approximable on   with respect to ( )n . Each n  can be represented as  

( ) ( )( )1 , ,
n

n n
mA A�σ  where nm ∈  and ( ) ( )

1 , ,
n

n n
mA A�  is a finite partition of E. 

Since finE E⊆  is uncountable, following Lemma 3.3 there exists  

( ) { }1 1, ,n nnj m∞

=
∈∏ �  such that ( )

n

n
fin j

n N
E A

∈

 
∩ 
 
∩  is uncountable. In other 

words, there exists a decreasing sequence ( )( )n

n
j n

A  such that ( )
n

n
fin jE A∩  is 

infinite for each n∈  and the intersection ( )
n

n
n finjA E∈∩ ∩  is non-empty. 

We take ( )
n

n
n finjx A E∈∈∩ ∩ , set { }B x=  and take ε  such that 

{ }( )0 < x≤ε µ . For arbitrary n∈ , if nA∈  such ( )
n

n
jA A⊆  then  

( ) ( )( )
( )

{ }( )n
n

fin jn

n
j

y E A

B A A B y
∈ ∩

∆ ≥ ≥ = ∞∑µ µ µ , since the sum is the uncountable 

sum of non-negative numbers. If ( )
n

n
jA A∩ =∅  then ( ) { }( )B A x∆ ≥ =µ µ ε . So, 

for each n∈  and each nA∈  it holds 

( ) .B A∆ ≥µ ε  

This is a contradiction to the fact that μ is approximable on fin  with respect 
to ( )n  and therefore ( ),fin d� µ  is not separable. 

Let us now prove that if ( ),d� µ  is separable then finE  is countable and 
E∞  is finite. We suppose, conversely, ( ),d� µ  is separable and finE  is 
uncountable or E∞  infinite. If finE  is uncountable then ( ),fin d� µ  is not 
separable. Since ( ),fin d� µ  is a subspace of ( ),d� µ , using Theorem [9, 
Theorem VIII, p.~160] we can conclude ( ),d� µ  is not separable. 

If E∞  is infinite, its partitive set is also infinite. So, for an arbitrary filtration 
( )n    with n < ∞  we can find B E∞⊂  such that nB∉ , n∈ . It 
holds ( )B A′∆ = ∞µ  for all nA′∈ , n∈ . So, μ is not approximable on   
with respect to any ( )n  where n < ∞  and therefore ( ),d� µ  is not 
separable.                                                        □ 

Theorem 3.9  Let μ be purely atomic measure on ( ),E   where all the 
atoms are singletons. 
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(a) ( ),d� µ  is compact if and only if { }( )
finx E

x
∈
∑ µ  is finite and E∞  is finite. 

(b) ( ),fin d� µ  is compact if and only if { }( )
finx E

x
∈
∑ µ  is finite. 

Proof. First, let us prove that { }( )
finx E

x
∈

< ∞∑ µ  implies that ( ),fin d� µ  is 

compact. Since { }( )
finx E

x
∈
∑ µ  implies that finE  is countable (see e.g. ([21]  

Theorem 3.12.6., p. 131)). We can assume that { },fin nE x n= ∈ . We denote 
( ){ }:fin B B= ∈ < ∞  µ . It holds 

{ }( )
1

.n
n

x
∞

=

< ∞∑µ  

So, for every 0>ε  there exists n ∈ε  such that { }( )n
n n

x
∞

=

<∑
ε

µ ε . Define  

{ } { }( )1 , ,n nx x= � σ . Let us show that μ is uniformly approximable on fin  
with respect to n . If we take arbitrary finB∈  and set  

{ }1, , n nA B x x= ∩ ∈� 
ε ε

 it holds that 

( ) { }( )
=

,n
n n

A B x
∞

∆ ≤ <∑
ε

µ µ ε  

so following Theorem 3.2, [ ]{ }:fin finB B= ∈�   is compact. 
Suppose { }1, , mE y y∞ = � , for fixed m∈ . To prove ( ),d� µ  is compact, 

we set { } { } { } { }( )1 1, , , , ,n m ny y x x∞ = � � σ , m∈ . For B∈  such that 
( )B = ∞µ  it holds B E∞∩ ≠ ∅  and ( )B E∞ < ∞µ . We have shown that 

0>ε  there exists n such that for every finB′∈  there exists nA′∈  such that 
( )B A′ ′∆ <µ ε . If we take ( ) nA B E A ∞

∞′′ ′= ∩ ∪ ∈  it holds  
( ) ( )B A B A′′ ′ ′∆ = ∆ <µ µ ε , so μ is uniformly approximable on   with respect 

to ( )n
∞  and we conclude ( ),d� µ  is compact. 

Let us prove that if ( ),fin d� µ  is compact then { }( )
finx E

x
∈

< ∞∑ µ . Suppose 

conversely, that ( ),fin d� µ  is compact and { }( )
finx E

x
∈

= ∞∑ µ . If finE  is 

uncountable, then following Theorem 3.8 ( ),fin d� µ  is not separable, so it cannot 

be compact. Suppose now that ( ),fin d� µ  is compact and { },fin nE x n= ∈  is 

countable and { }( ) { }( )
fin

n
x E n

x x
∈ ∈

= = ∞∑ ∑


µ µ . Since ( ),fin d� µ  is compact there  

exists a filtration ( )n  such that n  is finite for each n∈  and μ is 

uniformly approximable on ( ){ }:fin B B= ∈ < ∞  µ  with respect to ( )n .  

For each,  n  i t  holds that ( ) ( )( )1 , ,
n

n n
n mA A= � σ  where nm ∈  and 

( ) ( )
1 , ,

n

n n
mA A�  is a finite partition of E. We take an arbitrary 0>ε . For each n  

there exists ( )
n

n
jA  such that ( )

n

n
finjA E∩  is infinite, ( ) { }:

n

n
fin njA E x n′∩ = ∈�  

and { }( )n
n

x
∈

′ = ∞∑

µ . We an find m∈  such that { }( )

1

m

n
n

x
=

′ ≥∑µ ε . If we take 
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{ } ( )
1, ,

n

n
m finjA x x A E′ ′= ⊆ ∩� , then it is easy to see that ( )A A′∆ ≥µ ε  for each 

nA′∈  since if ( )
n

n
jA A′∩ =∅  ( ) ( )A A A′∆ ≥ ≥µ µ ε  and if ( )

n

n
jA A′⊆ ,  

( ) ( )( ) { }( )
1

n

n
nj

n m
A A A A x

∞

= +

′ ′∆ ≥ = = ∞ ≥∑µ µ µ ε . So, ( ),fin d� µ  cannot be 

uniformly approximable on fin  with respect to ( )n  and ( ),fin d� µ  is not 

compact. 

Let us now prove that if ( ),d� µ  is compact then { }( )
finx E

x
∈

< ∞∑ µ  and E∞  

is finite. We suppose, conversely, ( ),d� µ  is compact and { }( )
finx E

x
∈

= ∞∑ µ  or 

E∞  is infinite. If { }( )
finx E

x
∈

= ∞∑ µ  then ( ),fin d� µ  is not compact. Since  

( ),fin d� µ  is a closed subspace of ( ),d� µ , using Theorem [9, Theorem VIII, 
p.~160] we can conclude ( ),d� µ  is not compact. 

If E∞  is infinite, ( ),d� µ  is not separable, so it cannot be compact.      □ 
We conclude the main part of the paper with a few examples. 
Example 1 Let μ be a counting measure on ( ),2 , i.e. ( )A A=µ  where 

A  stands for the cardinal number of A if A is finite and ∞  otherwise. Since 

finE  is countable, ( ),fin d� µ  is separable, but it is not compact since  

{ }( )
finx E

x
∈

= ∞∑ µ . Also ( ),d� µ  is not separable. For arbitrary finite B and  

arbitrary 0 1< <ε , [ ]( ) [ ]( ) [ ]{ }, ,B B B B B= =ε ε . So, the closed ball with a 
radius of less than 1 around each element ( ),fin d� µ  and ( ),d� µ  is compact 
since it is finite. Therefore, they are both locally compact. 

Example 2 Let μ be a counting measure on ( ),2
dd  , ( )A A=µ  where 

A  stands for the cardinal number of A if A is finite and ∞  otherwise. Since 

finE  is uncountable, the corresponding ( ),fin d� µ  is not separable and not 
compact. However, ( ),d� µ  and ( ),fin d� µ  are locally compact. Similarly to 
the previous example, for arbitrary finite B and arbitrary 0 1< <ε ,  

[ ]( ) [ ]( ) [ ]{ }, ,B B B B B= =ε ε . So, the closed ball with a radius less than 1 around 
each element of ( ),d� µ  is compact since it is finite. 

Example 3 Let μ be a counting measure and λ  a Lebesgue measure on 

( )( ),d d B . Let ( ) ( )( ) ( )0,1A A B A= ∩ +ν µ λ , ( )dA∈ B , where ( )0,1B  
stands for a unit ball with centre at the origin. It is easy to see ( ),fin d� µ  and 

( ),d� µ  are not separable not compact (since for ν , finE  is uncountable) and 
not locally compact. 

4. Discussion 

Using newly defined terms of approximability and uniformly approximability, 
the conditions for separability and compactness of ( ),d� µ  and ( ),fin d� µ  can 
be summarised in Table 1. Table 2 provides the topological properties of 

( ),d� µ  and ( ),fin d� µ  based on finiteness and atomicity properties of the 
corresponding measure space ( ), ,E  µ . 
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Table 1. Condition on ( ), ,E  µ  for separability and compactness of ( ),d� µ  and ( ),fin d� µ . 

 ( ), d� µ  ( ),fin d� µ  

Separable 
for   countably generated if and only if μ is finite 

(Theorem 3.4 and Theorem 3.7). 

• for ( )�d
fin fin
=� B , if μ is outer regular (Theorem 3.3), 

• for μ purely atomic measure where all the atoms are 
singletons, if and only if the set of atoms with finite 
measure finE  is countable (Theorem 3.8). 

Compact 

if and only if μ is purely atomic with all atoms singletons 
and { }( )

finx E
x

∈

< ∞∑ µ  and and E∞  is finite (Theorem 

3.7 and Theorem 3.8 (a)). 

for μ is purely atomic measure where all atoms are single-
tons if and only if { }( )

finx E
x

∈

< ∞∑ µ  (Theorem 3.9). 

 

Table 2. Separability and compactness of ( ),d� µ  and ( ),fin d� µ  depending on whether μ is finite or infinite, purely atomic or 

non-atomic. 

 μ non-atomic μ purely atomic 

μ finite 

( ) ( ), ,fin=� �� � µ µ  is: 

• not compact (Theorem 3.7), 
• is separable if   is countably generated 

(Theorem 3.4). 

( ) ( ), ,fin=� �� � µ µ  is: 

• separable and compact (Theorem 3.8 and Theorem 
3.9).

 

μ infinite 

( ),� � µ  is: 

• not separable (Theorem 3.6), 
• not compact (Theorem 3.7). 

( ),fin
� � µ  is: 

• is separable if μ is outer regular and  
( ) ( )( ), ,d dE =  B . 

( ),� � µ  is: 

• separable and compact if and only if { }( )
finx E

x
∈
∑ µ  is 

finite and E∞  is finite ((Theorem 3.8 (a) and 
Theorem 3.9 (a)). 

( ),fin
� � µ  is: 

• separable if and only if finE  is countable (Theorem 
3.8 (b)), 

• compact if and only if { }( )
finx E

x
∈
∑ µ  is finite (Theo-

rem 3.9 (b)).
 

 
Future research will involve using the results from this paper to generalise the 

notions of different types of convergence of random sets as random elements 
taking values in N.B.A. and exploring their properties. 
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