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Abstract 
Multiple objectives to be optimized simultaneously are prevalent in real-life 
problems. This paper develops a new Pareto Method for bi-objective optimi-
zation which yields analytical solutions. The Pareto optimal front is obtained 
in closed-form, enabling the derivation of various solutions in a convenient 
and efficient way. The advantage of analytical solution is the possibility of de-
riving accurate, exact and well-understood solutions, which is especially use-
ful for policy analysis. An extension of the method to include multiple objec-
tives is provided with the objectives being classified into two types. Such an 
extension expands the applicability of the developed techniques. 
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1. Introduction 

Many real life optimization problems require that two or more objectives under 
analysis be optimized simultaneously. Frequently, these objectives conflict with 
each other, and it is not possible to find a single platform that maximizes all ob-
jectives simultaneously. Among them are the cases with two conflicting objec-
tives such as: inflation and unemployment, risk and returns, environmental pre-
servation and national income, current enjoyment and future education, and 
short-term profit and future growth, etc. Studies in bi-objective optimization 
constitute a non-trivial part in multi-objective analyses. For instance, Zhou et al. 
[1], Kukkonen and Deb [2], Pinto-Varela et al. [3], Lath et al. [4], Pereyra et al. 
[5], Garg [6], Futrell et al. [7], Hirpa et al. [8], Liu et al. [9], Wang et al. [10], 
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Cheraghalipour et al. [11], Ho-Huu et al. [12], Yeh [13], Liu et al. [14], Naga-
manjula and Pethalakshmi [15], Xu et al. [16], Diao et al. [17], Mohammadi et al. 
[18], Kparib et al. [19], Kparib et al. [20], Gulben and Orhan [21], Zaninudin 
and Paputungan [22], and Stutzle and Hoos [23]. Studies proposing mul-
ti-objective optimization techniques and solution can be found in Messac [24], 
Das and Dennis [25], Deb [26], Messac et al. [27], Messac and Mattson [28], 
Kim and Weck [29], Zhang and Li [30], Chinchuluun and Pardalos [31], Muel-
ler-Gritschneder et al. [32], Pereyra et al. [5], Pérez-Fernández et al. [33], Marler 
and Arora [34], Gunantara [35], Orths et al. [36], Collette and Siarry [37], Ehr-
gott [38], Eskelinen et al. [39], Fonseca and Fleming [40], Alaa et al. [41], Sub-
hamoy and Sugata [42], Wilfried and Blum (2014) [43], Caramia and Dell’Olmo 
(2008) [44], Rohilla (2020) [45], Engau and Wiecek [46], Obayashi et al. [47], 
Lagarias et al. [48], Miettinen [49], Zhang and Li [30], Bendsoe et al. [50], and 
Chankong and Haimes [51].  

In these studies, several methods are commonly used for constructing aggre-
gation functions, they include the weighted sum, Tchebycheff inequality, the 
normal boundary intersection, the normal constraint method, the Physical Pro-
gramming method, Goal Programming, the epsilon constraints and Directed 
Search Domain to approximate the preference of the decision-maker. Often very 
lengthy computational efforts have to be invested and may end up with insuffi-
cient number of Pareto optimal points to be considered. 

A crucial goal of a multi-objective optimization problem is to construct the 
Pareto optimal front (POF), which depicts the best trade-offs among the objec-
tives to be optimized. The POF can be approximated as the solution of a series of 
scalar optimization subproblems in which the objective is an aggregation of the 
objectives. This paper presents a new Pareto Method for bi-objective optimiza-
tion yielding the POF in the form of analytical solutions. An analytical solution 
involves framing the problem in a well-understood form and deriving exact so-
lution. The analytical method is often preferred because its solution is in exact 
closed form. 

Analytical solutions have three important advantages: 
1) Transparency: Analytical solutions are presented as mathematical expres-

sions, they make the effects of variables and their interactions with each other 
explicit.  

2) Efficiency: Usually, algorithms and models expressed with analytical solu-
tions are more efficient for manipulation and analysis than numerical analysis. 
Specifically, it is often faster, more accurate, and more convenient to evaluate an 
analytical solution than to perform an equivalent numeric implementation. 

3) Mathematical Rigor: Analytical methods are rigorous and provide exact 
solutions with high tractability.  

This paper is organized as follows. Bi-objective optimization problem is for-
mulated in Section 2. Derivation of POF with equality constraints is provided in 
Section 3. Section 4 presents different analytical Pareto solutions with equality 
constraints. Section 5 derives the POF in cases with equality and inequality con-
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straints. Analytical Pareto solutions under equality and inequality constraints are 
examined in Section 6. An Illustrative example is given in Section 7. Extension 
and conclusion are provided in Section 8 concludes.  

2. Bi-Objective Optimization Problem  

Consider a bi-objective optimization in which the decision-maker faces two ob-
jectives: ( )1f x  and ( )2f x . The problem becomes  

( ) ( )1 2max ,  x
F f x f x , 

subject to  

∈ ⊆ nx X R .                         (2.1) 

where ( )1 2, , ,= ∈ ⊆

n
nx x x x X R  is a set of decision variables which values are 

to be chosen in the optimization problem. 
The feasible set of decision variables ⊆ nX R  is implicitly determined by a 

set of equality constraints and a set of inequality constraints,  

( ) 0=g x  and 0)( ≥xh ,                  (2.2) 

where ( )g x  is a m-dimensional vector of functions, and ( )h x  is a τ-dimen- 
sional vector of functions. 

The objectives ( )1f x  and ( )2f x  are functions which measures the effects 
of the decision variables x on the objectives 1f  and 2f . The function [ ]1 2,F f f  
represents the ranking preference of different combinations of 1f  and 2f . It 
can take various functional forms, contingent upon the preference or targets 
fixed by the decision-maker.  

The problem defined in (2.1)-(2.2) belongs to the class of constrained multi- 
objective optimization problems. There are a number of methods designed to 
assist the decision maker to arrive at the best compromise solution.  

1) Scalarization: The most commonly used methods adopt schemes to convert 
the multiple objectives into a single scalar objective and apply standard scalar 
optimization algorithms to generate an optimal solution. Various weighted 
schemes to scalarize the multiple objectives into a scalar function are available, 
such as weighted global methods, weighted sum methods and exponential 
weighted criterion. One of the problems in scalarization is the existence of con-
flicting objectives.  

2) Utility-Based Optimization: Another solution for multi-objective optimiza-
tion is to explicitly consider the possible trade-offs between conflicting objective 
functions. Such trade-offs can be analyzed on the basis of the utility that these 
compromises have for the decision-maker. Many studies considered the utili-
ty-based optimization should be a common standard in multi-objective optimi-
zation. 

3) Axiomatic Solution: Often the decision-maker cannot concretely define 
what he prefers. Axiomatic solutions like the Nash arbitration scheme can be 
chosen. Based on predetermined axioms of fairness, the solution suggests an ar-
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bitration yielding the maximum (over a convex compact set of points) of the 
product of the players’ utilities. In this case, the utility functions always have 
non-negative values and have a value of zero in the absence of cooperation. It 
can also be generalized to become weighted product methods. Similarly, the Ka-
lai-Smorodinsky solution is another solution to bargaining problems of utility 
maximizing players. In multi-objective problems, players’ utilities are replaced 
by objectives that the decision-maker aims to maximize simultaneously. 

4) Goal Programming Method: Finally, the decision-maker may consider a 
goal programming solution. In particular, the decision-maker aims to reach or 
getting as close as possible to a goal or a vector of targets. 

In Section 4, we consider five methods with analytical solutions. Specifically, 
they are Nash arbitration and objective product method, target-attainment method, 
Kalai-Smorodinsky bargaining solution, scalarization method with weighted-sum 
and utility-based method.  

3. Derivation of POF with Equality Constraints 

We first consider the case where there are only equality constraints in the deci-
sion variables as a bench mark. (This corresponds to the case where the inequa-
lity constraints are either absent or inactive). A way to obtain Pareto efficient 
strategies in the bi-objective optimization problem is through the weighted-sum 
method. Such approach is also employed in identifying the players’ cooperative 
strategies belonging to the Pareto optimal set in non-transferrable utility games 
(see [52] [53] [54]). In particular, the POF can be traced out by identifying the 
Pareto efficient strategies through systematically changing the weights among 
the objective functions. Therefore, the decision-maker considers the problem:  

( ) ( ) ( )1 2max 1α α+ −  x
f x f x , for [ ]0,1α ∈ , 

subject to  

( ) 0=g x .                          (3.1) 

The corresponding Lagrange function can be expressed as: 

( ) ( ) ( ) ( ) ( )1 2
1

, , 1 ,λ α α α λ
=

= + − +   ∑
m

j j
j

L x f x f x g x          (3.2) 

where ( )1 2, , ,λ λ λ λ=  m  is the set of Lagrange multipliers, and α  and 1 α− , 
for [ ]0,1α ∈ , are the weight for the objective 1 and objective 2 respectively. 

First-order conditions for a maximum yield 

( ) ( ) ( ) ( )1 2

1
1 0,α α λ

=

∂∂ ∂
+ − + =

∂ ∂ ∂∑
m

j
j

ji i i

g xf x f x
x x x

 

for [ ]1,2, ,∈ i n , 

( ) 0=jg x , for [ ]1,2, ,∈ j m .                (3.3) 

If the system of +n m  first-order conditions in (3.3) satisfies the implicit 
function theorem, one can express the optimal decision variables  
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( )1 2, , ,α α α α=  nx x x x  and the corresponding Lagrange multipliers  

( )1 2, , ,α α α αλ λ λ λ=  m  as functions the exogenous parameter α , that is  

( )α αϕ α=i ix , for [ ]1,2, ,∈ i n , 

( )α αλ φ α=i i , for [ ]1,2, ,∈ j m .               (3.4)  

Substituting the optimal decision variables ( )α αϕ α=i ix  from (3.4) into the 
objectives 1f  and 2f , we can obtain the optimal objectives under α  as:  

( ) ( )( )1 1
α αϕ α=f x f  

and 

( ) ( )( )2 2
α αϕ α=f x f ,                    (3.5) 

where ( ) ( ) ( ) ( )( )1 2, , ,α α α αϕ α ϕ α ϕ α ϕ α=  n . 
In the case where 1α = , it generates the anchor point where the best of ob-

jective 1f  is obtained, that is ( )1max
x

f x . In the case where 0α = , it generates 
the anchor point where the best of objective 2f  is obtained, that is ( )2max

x
f x . 

The Pareto optimal frontier (POF) can be obtained as 

( )( ) ( )( )( )1 2,α αϕ α ϕ αf f , for [ ]0,1α ∈ ,             (3.6) 

which is analytically tractable. 
An increase in the value of α  signifies an increase in the weight for objective 

1f  and a decrease in the weight for objective 2f . Hence the POF is downward 
sloping in the ( )1 2,f f  space. 

The point ( )( ) ( )( )( )1 1
1 21 , 1ϕ ϕf f  is an anchor point at which the objective 

1f  reaches its maximum. Similarly, the point ( )( ) ( )( )( )0 0
0 20 , 0ϕ ϕf f  is an 

anchor point at which the objective 2f  reaches its maximum. The point  
( )( ) ( )( )( )1 0

1 21 , 0ϕ ϕf f  is the utopia (ideal) point at which 1f  reaches its 
maximum and 2f  reaches its maximum simultaneously.  

In addition, if there exist minimum levels of the objectives, ( )1 1≥f x f  and 
( )2 2≥f x f , that the optimal solution have to fulfilled, then the range of the POF 

has to be restricted to be above 1f  and above 2f . The corresponding restric-
tion on the weight can be obtained as ( ),α α α∈ , where 

( )( )1 1
αϕ α =f f  and ( )( )2 2

αϕ α =f f . 
The point ( )1 2,f f  is called the nadir point. The point  

( )( ) ( )( )( )1 2,α αϕ α ϕ αf f  becomes an anchor point at which the objective 2f  
reaches its maximum. The point ( )( ) ( )( )( )1 2,α αϕ α ϕ αf f  becomes an anchor 
point at which the objective 1f  reaches its maximum. The point  

( )( ) ( )( )( )1 2,α αϕ α ϕ αf f  becomes the utopia point. 
The POF is inside the rectangle bounded the nadir point, the utopia point and 

the two anchor points. 
The part inside the area bounded by the nadir point, two anchor points and 

the curve of the POF in Figure 1 are dominated points. The part inside the area 
bounded by the utopia point, two anchor points and the curve of the POF in 
Figure 1 are unreachable points. Since the decision-maker would not choose a  
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Figure 1. POF under equality constraints. 

 
dominated point and could not reach unreachable points, any optimal solution 
chosen by the decision-maker would be on the POF. 

4. Analytical Pareto Solutions with Equality Constraints  

In this section, we consider various solution methods via the analytical solution 
of the POF derived in Equation (3.6) under equality constraints only.  

4.1. Nash Arbitration and Objective Product Method 

The Nash objective Product maximization seeks a solution which yields the 
maximum of the product of the objectives in the feasible decision region. The 
idea is derived from Nash [55] and applied by Davis [56] in multi-objective op-
timization. Consider Figure 1, the feasible decision region is the POF bounded 
by the vertical line 1 1=f f  and the horizontal line 2 2=f f . The maximization 
of the product of the relevant objectives can be expressed as: 

( )( ) ( )( )1 1 2 2max α α

α
ϕ α ϕ α   − −   f f f f .           (4.1) 

Performing the maximization operator in (4.1) we obtain the condition 

( )( ) ( )( )

( )( ) ( )( )

1
2 2

1

2
1 1

1
0.

α α
α

α

α α
α

α

ϕ α ϕ
ϕ α

αϕ

ϕ α ϕ
ϕ α

αϕ

=

=

∂ ∂ −  ∂∂

∂ ∂ + − =  ∂∂

∑

∑

n
i

i i

n
i

i i

f
f f

f
f f

         (4.2) 

The weight *α  that satisfies (4.2) yields the solution to the objective product 
maximization method can be obtained as ( )( ) ( )( )( )* ** *

1 2,α αϕ α ϕ αf f .  

4.2. Target-Attainment Method 

In the target-attainment method, the decision-maker aims to reach a target or a 
vector of targets. For instance, the target for ( )1f x  is to reach 1T  and the tar-
get for ( )2f x  to is reach 2T . The objective is to minimize the deviation of the 
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solution from the targets. One can depict the explicitly derived POF and com-
pared to the target ( )1 2,T T . 

If the target point ( )1 2,T T  is outside the POF, the problem becomes mini-
mizing the distance between the POF and the point ( )1 2,T T  indicated by the 
dotted line in Figure 2, that is 

 

 
Figure 2. Target-attainment solution. 

 

( )( )( ) ( )( )( )
1

2 2 2
1 1 2 2min α α

α
ϕ α ϕ α 

 
− +


−T f T f .          (4.3) 

The solution to (4.3) will be characterized by the condition 

( )( )( ) ( )( )( )

( )( )( ) ( )( )( )

1
2 2 2

1 1 2 2

1 2
1 1 2 2

1 1

10
2

2 2 .

α α

α α
α α

α α

ϕ α ϕ α

ϕ ϕ
ϕ α ϕ α

α αϕ ϕ

−

= =

= − + −

 ∂ ∂∂ ∂
× − − + − − ∂ ∂∂ ∂

 


 

 

∑ ∑
n n

i i

i ii i

T f T f

f fT f T f

(4.4) 

We can derive the weight *α  that satisfies (4.4), and obtain the solution  

( )( ) ( )( )( )* ** *
1 2,α αϕ α ϕ αf f . 
Consider the case that the target is 1 1=f z  must be attained. We first identify 

the weight *α  such that  

( ) ( )( )* * *
1 1 1

α αϕ α= =f x f z .                   (4.5) 

The solution is then ( )( ) ( )( )( )* ** *
1 2,α αϕ α ϕ αf f . 

4.3. Kalai-Smorodinsky Bargaining Solution 

Aboulaich et al. [57] and Oukennou et al. [58] applied the Kalai-Smorodinsky 
Bargaining Solution [59] for solving multi-objective optimization problems. The 
Kalai-Smorodinsky solution is a solution to bargaining problems of utility max-
imizing players. In multi-objective problems, players’ utilities are replaced by 
objectives that the decision-maker aims to maximize simultaneously. The main 
advantage of the solution is that it yields a concrete criterion to select one and 
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only one unique point along the POF. Mathematically, it is the intersection of 
the POF and the line segment connecting the nadir point and the utopia point.  

The nadir point is ( )1 2,f f . To obtain the utopia point, we first identify the 
α  that satisfies ( )( )1 1

αϕ α =f f , and denote it by 1α . The point  

( )( ) ( )( )( )1 11 1
1 2,α αϕ α ϕ αf f  is the top anchor point of the POF. Similarly, we 

identify the α  that satisfies ( )( )2 2
αϕ α =f f  and denote it by 2α . The point 

( )( ) ( )( )( )2 22 2
1 2,α αϕ α ϕ αf f  is the bottom anchor point of the POF. Using the 

top anchor point and the bottom anchor point of the POF, we can obtain the 
utopia point as ( )( ) ( )( )( )2 12 1

1 2,α αϕ α ϕ αf f .  
The slope of the line segment connecting the nadir point and the utopia point 

can be obtained as ( )( ) ( )( )1 21 2
2 2 1 1
α αϕ α ϕ α  − ÷ −    

f f f f , which denote by 
θ . To obtain the Kalai-Smorodinsky solution, we trace the α  satisfying  

( )( )
( )( )

2 2

1 1

α

α

ϕ α
θ

ϕ α

−
=

−

f f

f f
.                     (4.6) 

Let *α  denote the α  that satisfies (4.6). The Kalai-Smorodinsky solution 
can be obtained as ( )( ) ( )( )( )* ** *

1 2,α αϕ α ϕ αf f . Graphically, the Kalai-Smoro- 
dinsky bargaining solution is the point of intersection of the POF and the line 
joining the Nadir point and the Utopia point in Figure 3. 

 

 
Figure 3. Kalai-Smorodinsky bargaining solution. 

4.4. Scalarization Method with Weighted-Sum  

The scalarization method makes the multi-objective function create a single so-
lution and the weight is determined before the optimization process. The scala-
rization method incorporates multi-objective functions into scalar fitness func-
tion as in the following equation [60]. 

( ) ( ) ( ) ( )1 2 1 1 2 2max , = +  x
F f x f x w f x w f x .         (4.7) 

The weight of an objective function determines the solution and reveals the 
performance priority [61]. A large weight that is given to an objective function 
that has a higher priority compared to the ones with a smaller weight. Normalizing  
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the weights 1w  and 2w , we can obtain * 1

1 2

α =
+
w

w w
 and ( )* 2

1 2

1 α− =
+
w

w w
. 

The solution can be obtained as ( )( ) ( )( )( )* * ** *
1 2,α α αϕ α ϕ αf f .  

4.5. Utility-Based Method  

Rădulescu et al. [62] considered utility-based analysis to be the standard para-
digm for studying multi-objective problems. In particular, they argued that 
compromises between competing objectives in MOMAS should be analyzed on 
the basis of the utility that these compromises have for the users of a system, 
where an agent’s utility function maps their payoff vectors to scalar utility values. 
The utility of different combinations of objectives is given by the utility function 
( )1 2,U f f . It represents a scalarization of the objectives into a preference rank-

ing index. It can be linear or nonlinear. If the utility function is linear, it resem-
bles a scalarization of the objectives with weighted-sum of the objectives. Very 
often, nonlinear utility function ( )1 2,U f f  yields a set of indifference (level) 
curves of preferences which are convex, showing diminishing marginal rate of 
substitution between the objectives. Such utility functions represent a nonlinear 
scalarization of the objectives. 

Consider the case where the utility function ( )1 2 1 2, =U f f f f . It yields in dif-
ference (level) curves which are convex and showing diminishing marginal rate 
of substitution between the objectives. 

The maximization of the utility function ( )1 2 1 2, =U f f f f  can be expressed 
as: 

( )( ) ( )( )1 2max α α

α
ϕ α ϕ α 

 f f .                    (4.8) 

Perform the maximization operator in (4.8) we obtain the condition 

( )( ) ( )( )
( )( ) ( )( )1 2

2 1
1 1

0.
α αα α

α α
α α

ϕ α ϕ αϕ ϕ
ϕ α ϕ α

α αϕ ϕ= =

∂ ∂∂ ∂
+ =

∂ ∂∂ ∂∑ ∑
n n

i i

i ii i

f f
f f   (4.9) 

 

 
Figure 4. Utility-based solution. 

https://doi.org/10.4236/am.2023.141004


D. W. K. Yeung, Y. X. Zhang 
 

 

DOI: 10.4236/am.2023.141004 66 Applied Mathematics 
 

The weight *α  that satisfies (4.9) yields the solution of maximizing  
( )1 2 1 2, =U f f sf f  with ( )( )* *

1 1
αϕ α=f f  and ( )( )* *

2 2
αϕ α=f f . The point 

where the POF and the indifference curve are tangent to each other demon-
strates the utility-based solution Figure 4. 

4.6. Performance of Pareto Method with Analytical Solution 

In general, multi-objective optimization requires huge computational effort. 
Frequently an insufficient number of Pareto optimal points will be found. Pareto 
methods usually require less complicated mathematical equations. The solution 
using the Pareto method is a performance indicators component that produces a 
compromise solution and can be displayed on the Pareto optimal front. Obtain-
ing a Pareto optimal solution set is preferable to a single solution. It provides a 
basis upon which to make value judgment’s in order to settle on a final solution.  

Pareto method with analytical solution involves the framing the problem in a 
well-understood form and deriving exact solution. The method is often more 
preferred because its solution is in exact closed form. A wide range of the POF 
can be traced out analytically with relevant mathematical expressions. The me-
thod is efficient for manipulation and analysis than numerical analysis. Specifi-
cally, it is often faster, more accurate, and more convenient to evaluate an ana-
lytical solution than to perform an equivalent numeric implementation. In addi-
tion, the effects of variables and their interactions with each other and parameter 
changes are highly tractable. Finally, the availability of the POF (or its relevant 
parts) in closed form allows the decision-maker to compare solutions under dif-
ferent criteria for multi-objective optimization.  

5. POF with Equality and Inequality Constraints  

To complete the analysis, we consider the case where there are equality and in-
equality constraints in the decision variables.  

5.1. Pareto Efficient Strategies 

Again, we identify the Pareto efficient strategies by systematically changing the 
weights among the objective functions. Specifically, the decision-maker consid-
ers the problem:  

( ) ( ) ( )1 2max 1α α+ −  x
f x f x , for [ ]0,1α ∈ ,            (5.1)   

subject to  

( ) 0=g x  and ( ) 0≥h x .                   (5.2) 

To solve the optimization with equality and inequality constraints, we invoke the 
Karush-Kuhn-Tucker conditions and use the Lagrange multipliers approach 
with the corresponding Lagrange function: 

( ) ( ) ( ) ( ) ( ) ( )( )1 2
1 1

, , , 1 ,
τ

λ γ α α α λ γ
= =

= + − + +   ∑ ∑
m

j j k k
j k

L x f x f x g x h x  (5.3) 
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where ( )1 2, , ,λ λ λ λ=  m  and ( )1 2, , , τγ γ γ γ=   are the sets of Lagrange mul-
tipliers. Necessary conditions for a maximum include:  

( ) ( ) ( ) ( ) ( )1 2

1 1
1 0,

τ

α α λ γ
= =

∂∂ ∂ ∂
+ − + + ≤

∂ ∂ ∂ ∂∑ ∑
m

j k
j j

j ki i i k

g xf x f x h x
x x x x

 

for [ ]1,2, ,∈ i n ,  

( ) 0=jg x , for [ ]1,2, ,∈ j m , 

( ) 0γ =k kh x , for [ ]1,2, ,τ∈ k ;                (5.4) 

( ) 0≥kh x , for [ ]1,2, ,τ∈ k , and 0γ ≥k , for [ ]1,2, ,τ∈ k .   (5.5) 

In the case where 0γ ≠k , the inequality constraint is binding with ( ) 0=kh x  
being held and acts as an active constraint. In the case where 0γ =k , the condi-
tion ( ) 0=kh x  does not have to hold and the constraint is inactive. 

Equation system (5.4) gives rise to τ+ +n m  equations for n decision variables 
( )1 2, , , nx x x , m Lagrange multipliers ( )1 2, , ,λ λ λ m , and τ  Lagrange mul-
tipliers ( )1 2, , , τγ γ γ . 

Moreover, any admissible solution has to satisfy (5.5). If (5.5) is not satisfied, 
it means that the solution satisfying the first order conditions is either not in the 
region fulfilling the constraints, or has a negative Lagrange multiplier, which is 
not allowed for a maximum.  

If condition (5.5) fulfilled and the first order conditions (5.4) for an interior 
solution satisfy the implicit theorem, one can express the optimal decision va-
riables ( )1 2, , ,α α α α=  nx x x x  and the corresponding Lagrange multipliers  

( )1 2, , ,α α α αλ λ λ λ=  m  and ( )1 2, , ,α α α α
τγ γ γ γ=   as functions the exogenous 

parameter α , that is  

( )ˆˆα αϕ α=i ix , for [ ]1,2, ,∈ i n , 

( )α αλ φ α=i i , for [ ]1,2, ,∈ j m , 

( )α αγ ψ α=k k , for [ ]1,2, ,τ∈ k .                (5.6)  

5.2. The Corresponding POF  

Substituting the optimal decision variables ( )ˆˆα αϕ α=i ix  from (5.6) into the ob-
jectives 1f  and 2f , we obtain the optimal objectives under α  as:  

( ) ( )( )1 1 ˆˆα αϕ α=f x f  and ( ) ( )( )2 2 ˆˆα αϕ α=f x f .          (5.7) 

The Pareto optimal frontier (POF) at the point which corresponds to the adop-
tion of objective weight α  can be obtained as 

   ( )( ) ( )( )( )1 2ˆ ˆ,α αϕ α ϕ αf f , for [ ]0,1α ∈ ,               (5.8) 

which is again analytically tractable. 
Theoretically, the frame of the POF with both equality and inequality constraints 

can be delineated by computing the Pareto strategies for different values of α  
between 0 and 1. Note that the Pareto optimal point ( )( ) ( )( )( )1 2ˆ ˆ,α αϕ α ϕ αf f  
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may have to be calculated point by point for different values of α , because the 
set of active inequality constraints may vary as α  changes. The POF with both 
equality and inequality constraints is bounded by the POF with equality con-
straint only. Unlike the case with equality constraints, we have to track down the 
corresponding point of the POF with individual values of α , and there exists 
the possibility that the solution satisfying the first order conditions is not in a 
feasible region bounded by the constraints. Therefore, the POF may have broken 
ranges as shown in Figure 5. 

 

 
Figure 5. Broken POF. 

6. Analytical Pareto Solutions under Equality and Inequality  
Constraints  

Note that various solution methods via the analytical solution of the POF de-
rived in Section 4 yield a unique solution *α . If the solution is in an area where 
all inequality constraints are inactive, the solution would be the same as that in 
section 4.1. If the solution is in an area where some inequality constraints are ac-
tive, we first solve the first-order conditions in (5.4) for α  in an area near *α  
identified in Section 4. Specifically, we obtain 

( )ˆˆα αϕ α=i ix , for [ ]1,2, ,∈ i n , 

( )α αλ φ α=i i , for [ ]1,2, ,∈ j m , 

( )α αγ ψ α=k k , for [ ]1,2, ,τ∈ k , for * *,α α ε α ε ∈ − +  .      (6.1)  

The corresponding point of the POF can be expressed as  

  ( )( ) ( )( )( )1 2ˆ ˆ,α αϕ α ϕ αf f , for * *,α α ε α ε ∈ − +  .       (6.2) 

Then, we check whether the point derived in (6.2) with active inequality con-
straints still fulfills the optimality condition. If not, we have to identify some 
points on the POF in the adjacent area and search for the optimal solution.  

For instance, consider the target-attainment method in Section 4.2 in which 
the target for ( )1f x  is to reach 1T  and the target for ( )2f x  to is reach 2T . 
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The decision maker seeks to minimize the deviation of the solution from the 
target ( )1 2,T T . We first identify the POF points for *α  under equality con-
straint only given in Section given in Section 4.2. Then we verify whether there 
exist active inequality constraints. If some inequality constraints are active in the 
solution point *α , we have to consider some POF points at α  in a neighbor-
hood near *α . We follow (5.3)-(5.5) and solve the problem with equality and 
inequality constraints under the weight * *,α α ε α ε ∈ − +   to obtain the Pa-
reto efficient strategies and the corresponding POF. We let  

( )ˆˆα αϕ α=i ix , for [ ]1,2, ,∈ i n  and * *,α α ε α ε ∈ − +          (6.3) 

denote the optimal decision variables with the presence of active inequality con-
straints. We then calculate the distance between the target ( )1 2,T T  and  

( )( ) ( )( )( )1 2ˆ ˆ,α αϕ α ϕ αf f , that is 

 ( )( )( ) ( )( )( )
1

2 2 2
1 1 2 2ˆ ˆα αϕ α ϕ α − + −  

T f T f , for * *,α α ε α ε ∈ − +  .  (6.4) 

Finally, the point ( )( ) ( )( )( )** **** **
1 2ˆ ˆ,α αϕ α ϕ αf f  which yields the shortest 

distance in (6.4) is the solution for the target-attainment method. 

7. An Illustrative Example 

Consider a bi-objective optimization in which the decision-maker faces two ob-
jectives:  

  ( ) ( ) ( )22
1 1 1 2 3 3

1 1
2 2

β= + − − + −f x Y x x wx Cx x ,           (7.1) 

and  

( ) ( )2
2 2 2 1 3

1
2

π µ= + − − −f x P qx x x x .              (7.2) 

There is an equality constraint  

1 1 2 0χ − − =x x ,                        (7.3) 

and an inequality constraint 

2 2 0χ − ≥x .                          (7.4) 

7.1. POF with Equality Constraint Only 

We first consider as a bench mark the case with the equality constraint only. To 
obtain Pareto efficient strategies in the bi-objective optimization problem (7.1)- 
(7.4), the decision-maker considers the problem:  

( ) ( )

( ) ( ) [ ]

1 2

22
1 1 2 3 3,

2
2 2 1 3

1 1max
2 2

11 , f 0,1 ,or
2

α β

α π µ α

  + − − + −   
 
  

+ − +


− − − ∈

x x
Y x x wx Cx x

P qx x x x
         (7.5) 

subject to (7.3). 
The corresponding Lagrange function can be expressed as: 
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( ) ( ) ( )

( ) ( ) ( )

22
1 1 2 3 3

2
2 2 1 3 1 1 2

1 1, ,
2 2

11 .
2

λ α α β

α π µ λ χ

= + − − + −

+ − + − − −



+ − −


  

 
  

L x Y x x wx Cx x

P qx x x x x x
  (7.6) 

The Pareto efficient strategies of the problem of maximizing (7.5) subject to 
equality constraint (7.3) can be solved as: 

Proposition 7.1.  
The Pareto efficient strategies of the problem of maximizing (7.5) subject to 

equality constraint (7.3) are:  
( )

( )

( ) ( ) [ ]

1 1 1

2 1

3

1
; f .

,

or 0 1

,

,

α

α

α

αβ π απ α α χ αχ

α α αβ π απ αχ
α

µ α
α

= − + − + + + −

= − − − + − +

−
= − ∈

x q q w

x q q w

x C

               (7.7) 

Proof: See Appendix A.                                               
The relationship between the Pareto efficient strategies ( )

1
αx , ( )

2
αx  and ( )

3
αx  

can be obtained as follows. 
Proposition 7.2. 

( )
1

1 0
α

β π χ
α

∂
= + + + − >

∂
x q w , 

( )
2

1 0
α

β π χ
α

∂
= − − − − + <

∂
x q w , 

( )
3

2

1 0
α

µ
α α

∂
= >

∂
x

. 

Proof: See Appendix B.                                            
Substituting the Pareto efficient strategies into the objective functions (7.1)- 

(7.2) yields the POF as:  

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) [ ]

2 2

1 1 2 3 3

2

2 2 1 3

1 1 ,
2 2

1 , 0,1 .
2

for

α α α α α

α α α α

β

π µ α

+ − − + −

 + − − − ∈ 

 
 
 

 





Y x x wx Cx x

P qx x x x
        (7.8)  

In addition, if there exist minimum levels of the objectives, ( )1 1≥f x f  and 
( )2 2≥f x f , that the optimal solution have to fulfilled, then the range of the POF 

has to be restricted to be above 1f  and above 2f . We denote the correspond-
ing restriction on the weight as ( ),α α α∈ . The values of α  can be obtained 
by solving  

  ( ) ( )( ) ( ) ( ) ( )( )2 2

1 1 2 3 3 1
1 1
2 2

α α α α αβ+ − − + − =Y x x wx Cx x f .         (7.9)  

The values of α  can be obtained by solving  

  ( ) ( )( ) ( ) ( )2

2 2 1 3 2
1
2

α α α απ µ+ − − − =P qx x x x f .            (7.10) 
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The point  

 

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

2 2

1 1 2 3 3

2

2 2 1 3

1 1 ,
2 2

1
2

α α α α α

α α α α

β

π µ

 + − − + − 
 

 + − − −  
 

Y x x wx Cx x

P qx x x x
        (7.11) 

becomes an anchor point at which the objective 2f  reaches its maximum.  
The point  

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

2 2

1 1 2 3 3

2

2 2 1 3

1 1 ,
2 2

1
2

α α α α α

α α α α

β

π µ

 + − − + − 
 

 + − − −  
 

Y x x wx Cx x

P qx x x x
        (7.12) 

becomes an anchor point at which the objective 1f  reaches its maximum.  
The point  

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

2 2

1 1 2 3 3

2

2 2 1 3

1 1 ,
2 2

1
2

α α α α α

α α α α

β

π µ

 + − − + − 
 

 + − − −  
 

Y x x wx Cx x

P qx x x x
        (7.13) 

becomes the utopia point. 

7.2. POF with Equality and Inequality Constraints 

Now, we consider the case under both the equality constraint and the inequality 
constraint. Invoking (7.4), one can observe that the inequality constraint will be 
active if 2 2χ>x . To depict the POF, we first check whether the inequality con-
straint is active at α  and α . If ( )

2 1 2
α α α αβ π απ α χ χ= − − − + − + >x q q w , 

then the inequality constraint is active at α . Similarly, if  
( )
2 1 2
α α α αβ π απ αχ χ= − − − + − + >x q q w , then the inequality constraint is ac-

tive at α . Since ( )
2
αx  is monotonically decreasing in α , the inequality con-

straint is active in the entire POF.  
To obtain the Pareto efficient strategies, the decision-maker considers the 

problem:  

( ) ( )

( ) ( )

1 2

22
1 1 2 3 3,

2
2 2 1 3

1 1max
2 2

11
2

α β

α π µ

  + − − + −   
 + − + − − −   

x x
Y x x wx Cx x

P qx x x x
         (7.14) 

subject to (7.3) and (7.4). 
The corresponding Lagrange function can be expressed as: 

( ) ( ) ( )

( ) ( )

( ) ( )

22
1 1 2 3 3

2
2 2 1 3

1 1 2 2 2

1 1, ,
2 2

11
2

.

λ α α β

α π µ

λ χ γ χ

 
 = + − − + −

+

 
 
  

− + − − −

+ − − + −

L x Y x x wx Cx x

P qx x x x

x x x

      (7.15) 

https://doi.org/10.4236/am.2023.141004


D. W. K. Yeung, Y. X. Zhang 
 

 

DOI: 10.4236/am.2023.141004 72 Applied Mathematics 
 

The Pareto efficient strategies of the problem of maximizing (7.14) subject to 
equality constraint (7.3) and inequality constraint (7.4) can be solved as: 

Proposition 7.3.  
The Pareto efficient strategies of the problem of maximizing (7.14) subject to 

the constraints (7.3)-(7.4) are:  
( )

( )

( ) ( )

1 1 2

2 2

3

ˆ ,

1
.

ˆ ,

ˆ

α

α

α

χ χ

χ
α

µ
α

= −

=

−
= −C

x

x

x

                     (7.16) 

Proof: See Appendix C.                                            
The values of α  can be obtained by solving  

  ( ) ( )( ) ( ) ( ) ( )( )2 2

1 1 2 2 3 1ˆ ˆ ˆ ˆ1 ˆ1
2 2

α α α α αβ+ − − + − =Y x xCxw x fx .         (7.17)  

The values of α  can be obtained by solving  

  ( ) ( )( ) ( ) ( )2

2 2 1 3 2ˆ ˆ ˆ1
2

ˆα α α απ µ+ − − − =x x xP xq f .              (7.18) 

Substituting the Pareto efficient strategies from (7.13) into the objectives ( )1f x  
and ( )2f x , we can obtain the POF as  

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) [ ]

2 2

1 1 2 3 3

2

2 2 1 3

1 1 ,
2 2

1 , ,

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ for .
2

α α α α α

α α α α

β

π µ α α α

 
 


+ − − + −


 + − − − ∈











Y w C

P

x x x x x

xqx x x
       (7.19) 

The corresponding anchor points and utopia point can be derived accordingly. 
Finally, consider the case where ( )

2 2
α χ>x  and ( )

2 2
α χ<x , we search the point 

at which the inequality constraint turns active, that is  

  ( )
2 1 2
α α α αβ π απ αχ χ= − − − + − + =x q q w .           (7.20) 

Solving (7.20) yields 

2

1

π χ
α α

β π χ
+ −

= ≡
+ + + −



q
q w

.                 (7.21) 

 

 
Figure 6. POF in solid line. 
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Therefore, the POF will be the same as that without inequality constraint in the 
range of ( ),α α α∈  , and be the same as that with inequality constraint in the 
range of ( ),α α α∈  . The actual POF is the solid line in Figure 6. 

7.3. The Case of Kalai-Smorodinsky Solution 

With the analytical solution of POF completely depicted, we can solve the solu-
tions in Section 4. Consider the case of using the Kalai-Smorodinsky solution for 
solving multi-objective optimization problems. The solution is the intersection 
of the POF and the line segment connecting the nadir point and the utopia point. 
We first obtain the bench-mark POF with equality constraint only. Then, when 
check the anchor points in (7.11) and (7.12). If ( )

2 2
α χ<x  in both anchor points, 

then the POF will be the same as that with equality constraint only. If ( )
2 2
α χ>x  

in both anchor points, then the POF will be the same as that with equality con-
straint and active inequality constraint. If ( )

2 2
α χ>x  in the anchor point (7.11) and 

( )
2 2
α χ<x  in the anchor point (7.12) the inequality constraint is active, then the  

point ( )
2 2
α χ=x  has to be identified as 2

1

π χ
α α

β π χ
+ −

= ≡
+ + + −



q
q w

 (see (7.21)). 

Given the above information, the relevant utopia point can be identified 

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

2 2

1 1 2 3 3

2

2 2 1 3

1 1 ,
2 2

ˆ ˆ ˆ1
2

ˆ

α α α α α

α α α α

β

π µ

 + − − + − 
 

 + − − −  
 

Y x x wx Cx x

x xP qx x
 

and the nadir point is ( )1 2,f f . The slope of the line segment linking the nadir 
point and the utopia point in the area bounded by the nadir point and the utopia 
point is 

  

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( )

2

2 2 1 3 2

2 2

1 1 2 3 3 1

1
2

1 1
2 2

ˆ ˆ ˆ ˆα α α α

α α α α α

π µ
θ

β

 
 
 

 

+ − − − −
=

+ − − + −

− 



x x x xP q f

Y x x wx Cx x f
.     (7.22) 

If there exist a *α  that satisfies  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

* * * *

* * * * *

2

2 2 1 3 2

2 2

1 1 2 3 3 1

1
2

1 1
2 2

α α α α

α α α α α

π µ

θ

β

+ − − − −

=

+ − − + −

  
     

    
      

−
  

P qx x x x f

Y x x wx Cx x f

, and ( )*

2 2
α

χ<x , (7.23) 

then, the Kalai-Smorodinsky solution is given by 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

* * * * *

* * * *

2 2

1 1 2 3 3

2

2 2 1 3

1 1 ,
2 2

1
2

α α α α α

α α α α

β

π µ

     + − − + −          
   + − − −     

Y x x wx Cx x

P qx x x x

       (7.24) 
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If there exist a **α  that satisfies  

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

** ** ** **

** ** ** ** **

2

2 2 1 3 2

2 2

1 1 2 3 3 1

1
2

1 1
2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ
2

α α α α

α α α α α

π µ

θ

β

+ − − − −

=

+ −

       
         −    

+ − −


x x x x

x x x

P q f

Y w fxC x

, and ( )**

2 2ˆ α
χ=x . (7.25) 

then the Kalai-Smorodinsky solution is given by 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

** ** ** ** **

** ** ** **

2 2

1 1 2 3 3

2

2 2 1 3

1 1ˆ ˆ ˆ ˆ ˆ

ˆ ˆ
2

ˆ

,
2

1 .ˆ

2
α α α α α

α α α α

β

π µ

    
         


 + − − + −



   + − − −     

Y w Cx x x x x

x x xP q x

     (7.26) 

Remark 7.1.  
Note that with the part of POF under equality constraint and the part under 

inequality constraint as indicated explicitly in (7.17)-(7.21), we can characterize 
the solutions to the Nash arbitration, target-attainment method, scalarization 
method with weighted-sum and utility-based method in a similar way as that for 
the characterization of the Kalai-Smorodinsky bargaining solution.           

8. Extension and Conclusion 

The analysis can be extended to the case with more than two objectives sepa-
rated into two competing/conflicting types of objectives. In particular, the type A 
objectives include ( ) ( ) ( )1 2, , ,

A

A A A
nf x f x f x , and the type B objectives include 

( ) ( ) ( )1 2, , , ,

B

B B B
nf x f x f x . A normalized weight is attached to each objective 

within a type, reflecting the relative importance of the objective in that group of 
objectives. The weighted sum of objectives within a type signifies the scalarized 
preference of the decision-maker for that type of objectives. The problem be-
comes 

( ) ( )
1 1

max , ,
= =

 
 
 
∑ ∑

A Bn n
A A B B
i i j jx i j

F w f x w f x                 (8.1) 

subject to  

( ) 0=g x  and ( ) 0≥h x ,                    (8.2) 

where 0>A
iw , 0>B

jw , 1 1
=

=∑ An A
ii w  and 

1 1
=

=∑ Bn B
jj w .  

We identify the Pareto efficient strategies by systematically changing the weights 
among the objective functions ( )1=∑ An A A

i ii w f x  and ( )1=∑ Bn B B
j jj w f x . Specifically, 

the decision-maker considers the problem:  

( ) ( ) ( )
1 1

max 1α α
= =

 
+ − 

 
∑ ∑

A Bn n
A A B B
i i j jx i j

w f x w f x , for [ ]0,1α ∈ ,       (8.3)   

subject to (8.2).  
Invoking Karush-Kuhn-Tucker conditions, we can express the corresponding 

Lagrange function as: 
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( ) ( ) ( ) ( )

( ) ( )( )

1 1

1 1

, , , 1

.
τ

λ γ α α α

λ γ

= =

= =

 
= + − 
 

+ +

∑ ∑

∑ ∑

A Bn n
A A B B
i i j j

i j

m

j j k k
j k

L x w f x w f x

g x h x
        (8.4)  

Following the analysis in Section 5, we attempt to establish an analytical path of 
the POF which would be used for obtaining the solution under different me-
thods that are mentioned in Section 4. 

Finally, this paper presents a new Pareto Method for bi-objective optimization 
yielding the POF in the form of analytical solutions. Analytical methods enjoy 
the advantages of being transparent, efficient and rigorous. These advantages are 
extremely useful in deriving accurate, exact and well-understood solutions, espe-
cially for policy design. The possibility to provide an extension for multi-objective 
optimization by separating the objectives into two types allows wider applicabil-
ity of the developed results. This paper does not claim superiority of the analyti-
cal Pareto method over other methods of multi-objective optimization, rather 
the method is a novel addition to the growing pursuit of Pareto generators, with 
potential advantages of being handy for analysis. Further theoretical develop-
ment and applications are expected. 
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Appendix 
Appendix A: Proof of Proposition 7.1 

First-order conditions for a maximum from the Lagrange function (7.6) yield 

( )1 1 0αβ α α π λ− − − − =x , 

( )( )21 0α α λ− − − − =q x w , 

( )3 1 0α α α µ− − − =C x , 

1 1 2 0χ − − =x x                        (A.1) 

Solving (A.1) yields the Pareto efficient strategies and the Lagrange multiplier 
with equality constraint only 

( )
( )

1
1 α

α α λβ π
α α
−

= − −x , 

( )
( )

2 1 1

α
α α λ

α α
= − −

− −
x q w , 

( )
3

1α α µ
α
−

= −x C , 

( ) ( ) 1
11

1
α α αλ α α β π χ

α α
 −    = − − + − −    −    

q w .        (A.2) 

Hence, 

( ) ( )1 1

1 1

1

,

1 1
1

α α α αβ π α β π χ
α α α
α α χ αχ

−  −    = − − − − + − −    −    
− + + + −

x q w

q q w
 and 

( )
2 1

1

1
1 1

.

α α α αα β π χ
α α α

α α αβ π απ αχ

 −    = − − − + − −    − −    
= − − − + − +

x q w q w

q q w
      (A.3) 

 

Appendix B: Proof of Proposition 7.2. 

Differentiating ( )
1
αx  in Proposition 7.1 with respect to α  yields 

( )
1

1

α

β π χ
α

∂
= + + + −

∂
x q w .                    (B.1) 

Invoking the constraint 1 1 2χ = +x x  in (7.3) and the first two equations in (A.2), 
we have 

( ) ( )

1
1

2 1 1

α αα λ α λβ π χ
α α α α

   −
− − + − − =      − −   

q w ,           (B.2) 

which shows that 1β π χ+ + + >q w . 
Hence,  

( )
1

1 0
α

β π χ
α

∂
= + + + − >

∂
x q w .                 (B.3) 
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In a similar manner, we can show that  
( )
2

1 0
α

β π χ
α

∂
= − − − − + <

∂
x q w .                 (B.4) 

Finally,  
( )
3

2

1 0
α

µ
α α

∂
= >

∂
x

.                      (B.5)  

 

Appendix C: Proof of Proposition 7.3 

First-order conditions for a maximum for the problem of maximizing (7.11) 
subject to (7.3)-(7.4) yield 

( )1 1 0αβ α α π λ− − − − =x , 

( )( )21 0α α λ γ− − − − − =q x w , 

( )3 1 0α α α µ− − − =C x , 

1 1 2 0χ − − =x x , 

( )2 2 0γ χ − =x , 

0γ ≥  and 2 2 0χ − ≥x .                    (C.1) 

Solving (C.1) yields the Pareto efficient strategies and Lagrange multipliers: 
( )

( )
1

1 α
α α λβ π

α α
−

= − −x , 

( )
( ) ( )

2 1 1 1

α α
α α λ γ

α α α
= − − −

− − −
x q w , 

( )
3

1α α µ
α
−

= −x C , 

( ) ( ) 1 21αλ αβ α π αχ αχ= − − − + , 

( ) ( ) ( ) 1 21 1αγ α α αβ α π αχ χ= − − − + + + −q w .          (C.2) 

Substituting ( )αλ  and ( )αγ  into ( )
1
αx  and ( )

2
αx  in (C.2) yields: 

( )
1 1 2
α χ χ= −x  and  

( )
2 2
α χ=x .                         (C.3)  
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