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Abstract 
In this paper, the temporal and spatial patterns of a diffusive predator-prey 
model with mutual interference under homogeneous Neumann boundary con-
ditions were studied. Specifically, first, taking the intrinsic growth rate of the 
predator as the parameter, we give a computational and theoretical analysis of 
Hopf bifurcation on the positive equilibrium for the ODE system. As well, we 
have discussed the conditions for determining the bifurcation direction and 
the stability of the bifurcating periodic solutions. 
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1. Introduction 

The interaction with predator-prey populations and their possible outcomes are 
probably the most studied topics in ecology, because of their existence and uni-
versal relevance, will continue to be one of the dominant topics in both ecology 
and mathematical ecology [1]. In spite of the predator-prey theory has under-
gone significant developments in the past several years, many long-standing ma-
thematical and ecological problems still deserve researchers’ attention [1] [2] [3] 
[4]. The functional response of predators to their prey density refers to the change 
in the density of attached prey per unit time per predator with the change in 
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prey density. It is the average number of prey killed per individual predator per 
unit of time. For the functional response functions, there are many types. The 
most commonly used functional response function, which was suggested by Hol-
ling (1959) and called Michaelis-Menten type or Holling type II functional re- 

sponse [5]. And it is takes the form: ( ) mup u
a bu

=
+

. where u represents the den-  

sity of the prey population, and the positive constants m (units: 1/times) and a 
(units: 1/prey) describe the effects of capture rate and handling time, respectively, 
on the feeding rate. 

However, Prey-dependent functional responses cannot describe the interac-
tion between predators, and have been challenged by the biology and physiology 
communities [6] [7]. Some biologists have argued that in many situations, espe-
cially when predators have to search for food (and therefore, have to share or 
compete for food), the functional response in a prey-predator model should be 
predator-dependent. There is significant evidence that predator dependence in 
functional response occurs frequently in laboratories and natural systems [8] [9]. 
Given that many experiments and observations show predators do indeed inter-
fere with each other’s activities to trigger competition effects and that prey changes 
its behavior under increased predator threat, models with a functional predator- 
dependent response are reasonable alternatives to models with prey-dependent 
functional response. 

Starting with this argument and the traditional prey-only model, to describe 
the mutual interference of a predator, Beddington (1975) and DeAngelis (1975) 
[10] [11] [12] [13] proposed that an individual from a population of over two 
predators not only allocate time in searching for and processing their prey but 
also takes time in encountering with other predator. This result in the so-called  

Beddington-DeAngelis functional response ( ), mup u v
a bu cv

=
+ +

. The Bedding- 

ton-DeAngelis is like the well-known Holling type II functional response, but  
it has an additional term cv in the denominator modelling mutual interference 
among predators and has some of the same qualitative features as the ratio-de- 
pendent form but avoids some of the singular behaviors of ratio-dependent mod-
els at low densities which have been the source of controversy. 

The Beddington-DeAngelis functional response and the analogous response 
with diffusion in a constant environment have received much attention in the li-
teratures [14] [15]. Such as Crowley and Martin [16] assumed that interference 
among predators occurs regardless of whether a particular predator is looking 
for prey or handling prey and proposed a functional response, which is called 
the Crowley-Martin-type functional response, and its takes the form: 

( ) ( )( )
,

1 1 1
mu mup u v

au bv abuv au bv
= =

+ + + + +
 

It is assumed that the predator feeding rate decreases by higher predator den-
sity even when prey density is high, and therefore the effects of predator interfe-
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rence in the feeding rate remain important all the time whether an individual 
predator is handling or searching for a prey at a time. And in [17]. The authors 
consider a Leslie-Gower predator-prey model with a functional Crowley-Martin 
response describing predator mutual interference, which its takes the form:  

( )( )
d 1 ,
d 1 1

d 1 ,
d

u u muvru
t K au bv

v vsv
t hu

  = − −  + + 


  = −   

                (1.1) 

Initially, their analysis focuses on local asymptotic stability and Hopf bifurca-
tion of the spatially homogeneous model based on ODE system for the reac-
tion-diffusion model. 

Based on the above discussion, and therefore. In this paper, we consider the 
following predator-prey model with mutual interference with Beddington-De 
Angelis functional response:  

2 2

d 1 ,
d
d 1 ,
d

u u muvru
t K au buv cv
v vsv
t hu

  = − −  + +  


  = −   

               (1.2) 

where ( )u t  and ( )v t  represent population densities of prey and predator at 
time t, respectively. r, K, s, m, a, b, and h are positive constants, K is the carrying 
capacity of the prey, and r and s denote to their intrinsic growth rate, respectively,  
u
h

 is a function on the prey population size (h is a measure of the food quality  

of the prey for conversion into predator growth depending on the density of the 
population). 

For the model (1.2), we mainly discuss about Hopf bifurcation on the positive 
equilibrium for the ODE system. 

The aim of this article is to show that the diffusive predator-prey model (1.2) 
shows different spatial, temporal and spatiotemporal patterns across the me-
chanisms described above. 

For simplicity, applying the following scaling:  

2 2 2 2

,  ,  ,  ,

,    ,  ,  

u hKm vu rt t m v
K r hK

shK b b s h K c c K a a
r

→ → → →

→ → → →
 

System (1.2) can be simplified by:  

( )

( ) ( ) ( ) ( )

1 2 2

2

0 0

1 , , 0,

1 , , 0,

0, , 0,

,0 , ,0 , ,

t

t

muvu d u u u x t
au buv cv

vv d v sv x t
u

u v x t

u x u x v x v x x
ν ν

 − ∆ = − − ∈Ω > + +
  − ∆ = − ∈Ω >  
 

 ∂ ∂
 = = ∈∂Ω >
∂ ∂

 = = ∈Ω

       (1.3) 
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where ( )1n nΩ ⊂ ≥  is a bounded smooth domain and ν  is the outward unit 
normal vector on ∂Ω . The constants 1 0d >  and 2 0d >  are the diffusion co- 
efficients of ( ),u x t  and ( ),v x t , which represent the natural dispersive force 
of movement of the prey and predator density, respectively. The condition of the 
homogeneous Neumann boundary means that the two species have zero-flux 
across the boundary ∂Ω . The initial conditions ( )0 0u x > , ( )0 0v x >  are smooth 
functions satisfying ( ) ( )0 0 0u x v x+ > . 

In section two of this paper, we investigate the asymptotical behaviour of the 
interior equilibrium and occurrence of Hopf bifurcation of the local ODE system 
of (1.3). 

2. Hopf Bifurcation and Stability Analysis for ODE System 

Firstly, we consider the stability of the following ODE system: 

( ) ( )2 21 ,muvu u f u v
au buv cv

− − =
+ +

, ( )1 ,vsv g u v
u

 − = 
 

, 

When ( ) ( ), , 0f u v g u v= = , we can see that the system has a boundary equi-
librium ( )0 1,0E = , two positive interior equilibrium  

( ) ( )
( )

( ) ( )
( )

1 1 1 1

2 2 2 2

, ,
2

, ,
2

a b c
E u v v

a b c

a b c
E u v v

a b c

 + + + ∆
= =   + + 

 + + − ∆
= =   + + 

 

if and only if  

( )1 4 ,H a b c m+ + >  

where 1 1 2 2,v u v u= =  and ( ) ( )2 4a b c m a b c∆ = + + − + + . 
By the simple calculations, we note that the boundary equilibrium ( )0 1,0E =  

is unstable, we will study the properties of the positive interior equilibrium. Thus, 
consider the stability of ( )1, 2iE i = . Note that the Jacobian of (1.3) at ( )1,2iE i =  
is  

( )
( )( ) ( )( )1 1

1 2 .
i i

i
i

a c u a c u
uJ E a b c a b c

s s

 − − − −
− + − = + + + +  − 

 

For convenience, we denote that 
( )( )1

0 1

1
: 1 2

a c u
s u

a b c
− −

= − +
+ +

 and  

( )( )11
:

a c u
a b c

σ
− −

= −
+ +

, so 0 0s >  if and only if  

( ) ( ) ( )2 2
2 12 .H a b m a b c u+ > + +  

Thus, we can obtain the following theorem. 
Theorem 2.1. Suppose that (H1). 
1-1) if 0s s> , then ( )1 1,u v  is locally asymptotically stable. 

https://doi.org/10.4236/am.2021.129053


K. A. Abbakar et al. 
 

 

DOI: 10.4236/am.2021.129053 797 Applied Mathematics 
 

1-2) if (H2) and 0s s<  hold, then ( )1 1,u v  is unstable and there exists at least 
one periodic orbit for system (1.3). 

2) ( )2 2,u v  is unstable. 
Proof 
1) The characteristic equation corresponding to ( )1 1,u v  is  

( )( ) ( )( )2
1 1tr det 0,J E J Eλ λ− + =                 (2.1) 

where ( )( )1 0tr J E s s= −  and  

( )( ) ( ) ( )2

1

4
det 0.

a b c m a b c s
J E

a b c
+ + − + +

= >
+ +

 

Therefore, 0s s>  yield that ( )( )1tr 0J E <  and combined with  
( )( )1det 0J E > , we completed the (1-1). Otherwise, if 0s s< , then ( )1 1,u v  is 

unstable. 
2) Apply the same argument to the ( )2 2,u v , we have  

( )( ) ( ) ( )2

2

4
det 0.

a b c m a b c s
J E

a b c
+ + − + +

= − <
+ +

 

thus, ( )2 2,u v  is unstable. 
In the following, we analyse the existence of Hopf bifurcation at the interior 

equilibrium ( )1 1,u v , choose s as the bifurcation parameter. 
Denote by ( ) ( ) ( )s s i sλ α β= ±  the two roots of the characteristic Equation 

(2.1) with ( ) ( )0
1
2

s s sα = −  and ( ) ( )2
0

1 4
2

s s s sβ σ= − − + . Obviously, (2.1) 

has a pair of imaginary roots ( ) ( )( )1dets J E iλ = ±  at 0s s= . Moreover,  

( )0
1 0
2

sα′ = − < . This shows that the transversality condition holds. Thus un-

dergoes Hopf bifurcation of ( )1 1,u v  as s passes through the 0s . 

Now, to make a better use of Hopf bifurcation theory, We translate the inte-
rior equilibrium ( )1 1,u v  to the origin by the transformation 1u u u= −� ,  

1v v v= −� . For the sake of convenience, we still denote u�  and v�  by u and v, 
respectively. Thus, the system (1.3) is transformed into 

( ) ( ) ( )( )
( ) ( )( ) ( )

( )

2 1 1
1 1 2 2

1 1 1 1

1
1

1

d ,
d

d 1 .
d

m u u v vu u u u u
t a u u b u u v v c v v

v vv s v v
t u u

 + +
= + − + −

+ + + + + +

  +

= + −  + 

  (2.2) 

Then, rewrite the system (2.2) as follows: 

( )
( )
( )1

d
, ,d ,
, ,d

d

u
f u v sut J E
g u v sv v

t

 
    
  = +            
 

                  (2.3) 

where 
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( )
( )

2 2 3 2 2 3
1 2 3 4 5 6 7

2 2 3 2 2
1 2 3 4 5 6

, , ,

, ,

f u v s a u a uv a v a u a u v a uv a v

g u v s b u b uv b v b u b u v b uv

= + + + + + + +

= + + + + + +

�

�
 

and 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2 2 2

1 23 32 2
1 1

2 3 2 2 2

3 43 42 3
1 1

3 2 2 2 2 2

5 4 3
1

2 2 2 2 2

6

3 6
1 ,   ,

3 6 4
,   ,

2 14 4 9 2
,

2 9 4 14 2

m ac bc a m a ab ac bc c
a a

a b c u a b c u

m ab ac c m a a c abc ac b c
a a

a b c u a b c u

m a a b a c abc ac b c bc
a

a b c u

m a b a c ab abc ac bc
a

+ − − − − +
= − + =

+ + + +

+ − − − + −
= =

+ + + +

− − − + − +
= −

+ +

+ − − − − +
= −

( )
( )

( )
( )

3

4 3
1

2 2 2 3

7 1 24 3
1 11

3 4 5 62 2 2
1 1 1 1

,

4 6 2,   ,   ,

2,   ,   ,   .

c

a b c u

m a c ab abc ac c s sa b b
u ua b c u

s s s sb b b b
u u u u

+ +

− − − +
= = − =

+ +

= − = = − =

 

By setting the matrix 

1
: ,

0
N

P
M
 

=  
 

 

where sM
β

= −  and 0

2
s s

N
β
+

= − . It is easy to obtain that  

( ) ( ) ( ) ( )
( ) ( )

1
1 : .

s s
P J E P s

s s
α β
β α

−  − 
= Φ =  

 
 

When 0s s= , we have  

( ) ( )( )
0 0

0 0
0 0 0 0 1

0 0

: ,  : ,  : det .s s s s

s s
M M N N s J Eβ β

β β= =
= = − = = − = =   (2.4) 

By the transformation ( ) ( ), ,u v P x yΤ Τ= , system (2.3) becomes  

( ) ( )
( )

d
, ,d ,
, ,d

d

x
f x y sxt s
g x y sy y

t

 
  ′  
  = Φ +    ′      
 

                  (2.5) 

where 

( ) ( )
2

2 21
1 2 3 1 2

3 2
2 3 2

4 5 6 4 5 6

2 34
4 5

1, , , ,

2

3 2

3 ,

f x y s g Nx y Mx s
M

bN Nb Nb Mb x b b xy y
M M M

N Nb N b NMb x b Nb Mb x y
M M

bN b b xy y
M M

′ = +

   = + + + + +   
  

   
+ + + + + +   
   
 + + + + 
 

�
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( ) ( ) ( )
4

3 2 2 3 3 2 3
4 5 6 7 4 5 6

3
2 2 2 2

4 5 6 4 5 6

3
2 2 2 2

1 2 3 1 2 3

2
2

4 5 4 5 1 1

, , , , , ,

33 2 2

33

Ng x y s f Nx y Mx s g Nx y Mx s
M

NN a N Ma NM a M a b N b N Mb x
M

NN a NMa M a b N b NMb x y
M

NN a NMa M a b N b NMb x
M

N NNa Ma b Nb xy a b
M M

′ = + − +

 
= + + + − − − 
 

 
+ + + − − − 
 

 
+ + + − − − 
 

  + + − − + − 
 

2

2
3

1 2 1 2 4 4
22

y

N NNa Ma b Nb xy a b y
M M


 



   + + − − + − +   
  

�

 

Rewrite the system (2.5) in the following polar coordinate form:  

( ) ( )
( ) ( )

3

2

,

,

s a s

s c s

τ α τ τ

θ β τ τ

= + +

= + +

� �

� �
                    (2.6) 

And then, from the Taylor expansion of (2.6) at 0s s=  we have:  

( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( )

23 3 5
0 0 0 0 0

22 2 4
0 0 0 0 0 0

, , ,

, , .

s s s a s o s s s s

s s s s c s o s s s s

τ α τ τ τ τ τ

θ β τ β τ τ τ

′= − + + − −

′= + − + + − −

�

�
   (2.7) 

Now, to determine the stability of the Hopf bifurcation periodic solution, So, 
we need to calculate the sign of the coefficient ( )0a s , which is given by the fol-
lowing formula:  

( ) ( )

( ) ( )

1 1 1 1
0

1 1 1 1 1 1 1 1 1 1

0

1
16

1 ,
16

xxx xyy xxy yyy

xy xx yy xy xx yy xx xx yy yy

a s f f g g

f f f g g g f g f g
β

= + + +

 + + − + − + 

    (2.8) 

where all partial derivatives are evaluated at the bifurcation point  
( ) ( )0, , 0,0,x y s s= , and  

( )

( )

( )

( )

( ) ( )

3
1 20

0 4 0 5 0 0 6
0

1 0
0 4 5

0

3
1 2 2 20

0 4 0 0 5 0 6 4 0 5 0 0 6
0

1 0
0 4 4

0

1 1
0 0

0,0, 6 ,

3
0,0, 2 ,

3
0,0, 2 3 2 2 ,

0,0, 6 ,

0,0, 0,0, 0,

xxx

xyy

xxy

yyy

xx xy

N
f s b N b N M b

M

N
f s b b

M

N
g s N a N M a M a b N b N M b

M

N
g s a b

M

f s f s

 
= + + 

 

 
= + 

 

 
= + + − − − 

 

 
= − 

 

= =
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( )

( )

( )

( )

1
0

3
2 2 2 10 1
0 1 0 0 2 0 3 1 0 2 0 0 3 0

0 0

1 0
0 1 1

0

2
1 0

0 0 1 0 2 1 0 2
0

0,0,

22 0,0, ,

0,0, 2 ,

0,0, 2 2 .

xx

yy

yy

xy

g s

N bN a N M a M a b N b N M b f s
M M

N
g s a b

M

N
g s N a M a b N b

M

 
= + + − − − = 

 
 

= − 
 

 
= + − − 
 

 

Noting that 0 0 1 3 5 6 2 1, , 2 , 2N M b b b b b b= = = − = − , thus we can calculate that  

( )
( ) ( )

( )

2 2 2 2 3 2 2
0 0 0 0 0 02 0 0 0

0 1 1 2 1 3 1 34 4 4 2
0 0 0 0

2 23 3
0 020 0 0

2 2 3 2 3 4 64 4 2 2
0 0 0 0

2 2
20 0

5 6 32 2
00 0

3

4 8 4 4

3 1
48 8 8 8

1 .
44 8

s s s s s s
a s a a a a a a b

s

ss s s
a a a a b a b

s s
a a b

s

β β β
β β β β

β

β β β β

β β

+ + +
= + + −

+
+ + − + −

+ + +

 

Now by calculation, we can determine the value and sign of ( )0 0a s <  in (2.8). 

Recall that 
( )
( )

0
0

0

a s
s

µ
α

=
′

 and ( )0 0sα′ < , by Poincaré-Andronov-Hopf Bifur-

cation Theorem, we have the following result. 
Theorem 2.2. 
Assume that (H1) and (H2) hold. The system (1.3) undergoes a Hopf bifurca-

tion at the coexistence equilibrium ( )1 1,u v  when 0s s= . Furthermore: 
1) ( )0a s  determines the stability of the bifurcated periodic solutions: if 
( ) ( )0 0 0a s < >  then the bifurcating periodic solutions are stable (unstable). 
2) 0µ  determines the directions of the Hopf bifurcation: if ( )0 0 0µ > <  

then the Hopf bifurcation is supercritical (subcritical). 

3. Conclusion 

In this article, we showed that the predator-prey model with mutual interference 
exhibits a rich and interesting dynamic behavior. We first studied the local sta-
bility and Hopf bifurcation in the corresponding ODE system. Then we studied 
the existence and direction of Hopf bifurcation and the stability of the bifurcat-
ing periodic solution in the reaction-diffusion system. The system (1.3) under-
goes a Hopf bifurcation at the interior equilibrium ( )1 1,u v  when 0s s= . 
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