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Abstract 
Selecting which explanatory variables to include in a given score is a common 
difficulty, as a balance must be found between statistical fit and practical ap-
plication. This article presents a methodology for constructing parsimonious 
event risk scores combining a stepwise selection of variables with ensemble 
scores obtained by aggregation of several scores, using several classifiers, 
bootstrap samples and various modalities of random selection of variables. 
Selection methods based on a probabilistic model can be used to achieve a 
stepwise selection for a given classifier such as logistic regression, but not di-
rectly for an ensemble classifier constructed by aggregation of several classifi-
ers. Three selection methods are proposed in this framework, two involving a 
backward selection of the variables based on their coefficients in an ensemble 
score and the third involving a forward selection of the variables maximizing 
the AUC. The stepwise selection allows constructing a succession of scores, 
with the practitioner able to choose which score best fits his needs. These 
three methods are compared in an application to construct parsimonious 
short-term event risk scores in chronic HF patients, using as event the com-
posite endpoint of death or hospitalization for worsening HF within 180 days 
of a visit. Focusing on the fastest method, four scores are constructed, yield-
ing out-of-bag AUCs ranging from 0.81 (26 variables) to 0.76 (2 variables). 
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1. Introduction 
1.1. Ensemble Scores 

In [1], we proposed a method for constructing an event risk-score based on the 
use of an ensemble method and applied the latter to construct a short-term event 
risk score in heart failure (HF) patients. The principle of an ensemble method is 
to build a collection of predictors and thereafter aggregate the predictions [2], a 
well-known example being the random forests method [3]. An ensemble pre-
dictor is expected to be better than each of the individual predictors, provided 
that 1) each single predictor is relatively good and 2) single predictors are suffi-
ciently different from each other [4]. Our goal is now to define a methodology 
for constructing a parsimonious event risk score using an already-defined en-
semble method. This methodology and the ensemble method defined in [1] are 
then used to define a short-term event risk score in chronic HF patients in order 
to provide an example of concrete application (Section 1.3). 

1.2. Selection of Variables 

The more the variables contained in a model, the more complicated its use in 
particular in clinical practice. Therefore, a balance must be found between in-
creasing the number of variables to allow for a better statistical fit and keeping 
this number sufficiently small to facilitate practical application. With the in-
creased number of potential predictors in the medical field (through the use of 
"big data" from both electronic medical records and the increasing number of 
available biomarkers), the need for the statistical selection of variables also in-
creases, particularly if the goal is to continue building parsimonious and effec-
tive models. For HF, variables can be selected using a literature review in order 
to assess which variables are the most clinically relevant [5] [6]. This often con-
stitutes a preliminary step before using various methods of statistical selection. 
Among the statistical methods, a simple method is to retain only the significant 
variables derived from univariate analyses [7] [8] [9] or from a full multivariate 
model [10] [11]. Slightly more elaborate methods such as stepwise selection can 
also be used [12] [13]. Finally, certain studies select variables with more complex 
methods, using bootstrapping [14], random forests and decision trees [15] [16] 
or other selection methods [17]. 

Since the primary goal in the present study is to construct a score using an al-
ready-defined ensemble method, some of the above selection methods are not 
applicable in this setting. For example, the likelihood ratio test based on a prob-
abilistic model can be used to achieve a stepwise selection for a given classifier 
such as logistic regression, but not directly for a classifier constructed by aggre-
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gation of several classifiers. Other selection criteria must therefore be defined in 
this framework. Given this context, this article presents in Section 2 a metho-
dology for constructing parsimonious event scores combining a stepwise selec-
tion of variables and the use of ensemble scores. In particular, we define herein 
three methods, two of which involve a backward selection based on the variables’ 
coefficients in an ensemble score, and the third involving the combination of a 
forward selection using the area under the ROC curve (AUC) as criterion and an 
ensemble score. Due to the stepwise selection, a succession of scores is con-
structed which allows the user to choose which of the latter yields the best bal-
ance between performance and the number of variables. 

1.3. Application to Chronic Heart Failure Patients Scoring 

As a concrete illustration, these three methods of construction of parsimonious 
scores are compared according to AUC and processing time in an application 
aimed at constructing short-term event risk scores in chronic heart failure 
(CHF) patients. Heart failure is a global and major cause of mortality and mor-
bidity [18] [19]. The association between HF outcomes (death, hospitalization, 
device implantation, transplantation, etc.) and a large number of variables 
(whether demographic, clinical, biochemical, biomarkers, etc.) has been widely 
highlighted in the medical literature. A common approach to usefully synthesize 
the information provided by this large number of predictor variables is to create 
a risk score aimed at predicting the probability of adverse events. Many predict-
ing scores and models have already been published: in a recent literature review, 
Di Tanna et al. [20] identified 58 risk-prediction models for HF in 40 articles 
published between 2013 and 2018. Among these articles, 11 studies used logistic 
regressions (mostly binary and multivariate) and 22 Cox regressions (mostly 
multivariate and stepwise). A much larger number of these models have fur-
thermore been published over the last three decades [21] [22] [23] [24]. Scores 
using other methods, such as machine learning methods, are rarer although in-
creasingly proposed nowadays [16] [25] [26]. Some studies aiming to predict HF 
events have used various forms of ensemble methods without designating the 
latter as such, for example by constructing multiple imputed datasets, drawing 
bootstrap samples on each of these datasets, and subsequently building models 
on each sample prior to their aggregation [13] [14] [27]. 

In [1], Duarte et al. used their proposed methodology to construct a short-term 
event risk score in HF patients, using an ensemble method involving two classifi-
cation rules (logistic regression and linear discriminant analysis), bootstrap sam-
ples as well as introducing random selections of variables in the construction of 
predictors. We used herein this methodology and constructed parsimonious scores 
using the methods defined in Section 2. The application for short-term predictions 
in CHF patients is presented in Section 3, and a discussion in Section 4. 

2. Methodology 

In this section, a methodology for constructing parsimonious event risk scores 
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combining a stepwise selection of variables with ensemble scores is presented. 
Each method consists of two phases, first a preselection of variables per classifi-
er, second a stepwise construction of ensemble scores. 

2.1. Preliminary Exclusion of Variables 

Univariate tests (Wilcoxon test for continuous variables and Fisher’s exact test 
for categorical variables) are first used to test the association between the re-
sponse variable and each explanatory variable. Variables with a p-value greater 
than 0.2 are excluded. 

2.2. Construction of an Ensemble Score for a Binary Outcome 

The methodology detailed in Duarte et al. [1] is adapted to construct the scores. 
Basically, an ensemble method is used, where several models are built using var-
ious classification methods, different samples and different variable selections, 
and are subsequently aggregated in a unique score by weighted averaging. This 
method can be described in seven phases, as follows: 

1) n1 classifiers are chosen. 
2) n2 bootstrap samples are drawn from the working sample. Each bootstrap 

sample is used n1 times (each sample is used by each classifier). 
3) n3 modalities of random selection of variables are chosen, “modality” 

representing a means to select the variables. 
4) n1n2n3 models are built, each using a different combination of classifiers, 

bootstrap samples and modalities of selection of variables. 
5) A first aggregation by classifiers is performed. The coefficients of the mod-

els are averaged to yield n1 intermediate scores. 
6) The coefficients of the intermediate scores are normalized such that the 

scores themselves are between 0 and 100, using the same method as in Duarte et 
al. ([1], Subsection 4.4.2). 

7) The final score is constructed by taking a convex combination of the inter-
mediate scores maximizing the AUC OOB (AUC on out-of-bag samples). 

The AUC OOB (AUC on out-of-bag samples) is computed as follows: for a 
given statistical unit, the scores obtained from bootstrap samples that do not in-
clude this statistical unit are aggregated to obtain an OOB prediction. By apply-
ing this method for all statistical units, the OOB predictions for the entire sam-
ple are used to compute the AUC OOB. 

The search of an optimal set of coefficients of the convex combination of the 
intermediate scores may be achieved in a discrete subset of the set  

( ){ }1 11 1,..., : ... 1n nA α α α α= + + = . We used this method in the application. This 
search may take too much time due to the number of elements of A. Otherwise, 
the simplest way is to use ( ) ( ){ }1 1,0,...,0 ,..., 0,0,...,1A = , thus to choose the 
classifier among the n1 classifiers which maximizes the AUC OOB. Note that in 
Super Learner ([28] among others), the coefficients iα  are determined using 
cross validation and a least square regression technique. 
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Compared to the methodology presented in Duarte et al. [1] the normaliza-
tion of the coefficients is carried out before rather than after the final aggrega-
tion. The latter change is made to balance the intermediate scores in the event 
that their raw coefficients would have different orders of magnitude. 

2.3. Preselection of Variables and Construction  
of Parsimonious Scores 

As the number p of explanatory variables after the first exclusion of variables still 
remains too large to create a parsimonious score, a second phase is added in or-
der to preselect a fewer number of variables. Three different methods with an 
additional preselection are proposed and their results compared. In Method 1, 
any adapted preselection of variables can be performed for each of the n1 clas-
sifiers and the sets of preselected variables are united in one set; then, a back-
ward construction of scores is performed. In Method 2, a backward construction 
of scores is performed with a random selection of variables at each step. In Me-
thod 3, a forward preselection of variables for one of the classifiers or for each of 
the classifiers using the AUC in resubstitution as criterion is performed followed 
by a forward construction of scores using the AUC OOB as criterion. 

2.3.1. Method 1 
Preselection of variables: For each of the n1 classifiers, any adapted preselection 
of variables can be performed. Thus, n1 sets of preselected variables are created. 
The union of these n1 sets is used as initial preselection. Let s be the number of 
preselected variables. 

Backward construction of scores: For 1,2,...,i s= , at step i: an ensemble score 
is constructed from 1j s i= − +  variables (i.e., for i = 1, j = s; for i = s, j = 1), 
using the method described in 2.2 with n1 classifiers, n2 bootstrap samples, n3 
modalities of random selection of variables. The variable with the lowest norma-
lized and standardized coefficient in absolute value in this score is excluded for 
the step i + 1 (backward selection). 

This allowed determining the evolution of the AUC OOB according to the 
number of selected variables, as well as the order of removal of the variables. 
Parsimonious scores with few variables can be chosen among this sequence of s 
scores. 

2.3.2. Method 2 
Preselection of variables: No initial preselection of variables is performed; all of 
the p explanatory variables are included. 

Backward construction of scores: For 1,2,...,i p= , at step i: an ensemble 
score is constructed from 1j p i= − +  variables (i.e., for i = 1, j = p; for i = p, j 
= 1), using the method described in 2.2 with n1 classifiers, n2 bootstrap samples, 
n3 modalities of random selection of variables. The variable with the lowest 
normalized and standardized coefficient in absolute value in this score is ex-
cluded for the step i + 1. 
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Again, this process allows determining the evolution of the AUC OOB ac-
cording to the number of selected variables, as well as the order of removal of 
the variables, and parsimonious scores with few variables can be chosen among 
this sequence of p scores. 

2.3.3. Method 3 
Forward preselection of variables: A forward preselection using AUC as criterion 
is performed for one of the classifiers or each of the classifiers. For a given clas-
sifier, let t denote a stopping time; for 1,2,...,i t= , at step i: i – 1 variables de-
noted 1 1,..., iV V −  are available from step i – 1, for every set of variables 

1 1,..., ,i jV V V−  with 1,..., 1j i≠ − , a classification is performed on the entire sam-
ple without bootstrapping; the variable, denoted Vi, yielding the maximal AUC 
in resubstitution is included, provided that the AUC significantly increases using 
DeLong’s test; otherwise, the inclusion of variables is stopped. 

Note that the AUC can be computed as long as there is a prediction for each 
statistical unit, without assumption on the manner with which this prediction 
was obtained. 

Forward construction of scores: For each classifier, for 1,2,...,i t= , at step i: 
an intermediate score using the i preselected variables for this classifier, is con-
structed, using n2 bootstrap samples (the same for all of the classifiers) and n3 
modalities of random selection of variables. The n1 intermediate scores using the 
same number of preselected variables are aggregated in a final score by combin-
ing their predictions for each statistical unit as described in 2.2. 

2.4. Comparison Criteria between the Methods 

The area under the ROC curve (AUC) for the out-of-bag (OOB) estimations is 
used as internal validation and as the main criterion to compare the different 
scores. Several AUC OOB are studied: the AUC OOB for the intermediate scores 
and, mainly, the AUC OOB for the global score. Sensitivity (Se) and specificity 
(Sp) corresponding to the highest Youden index (Se + Sp − 1), as well as the 
number of selected variables and processing time, are also taken into account. 

3. Application for Short-Term Predictions in CHF Patients 
3.1. Choices Made for the Construction of the Ensemble Scores 

Herein, two classifiers (n1 = 2), linear discriminant analysis (LDA), which is 
equivalent to linear regression on binary outcomes, and logistic regression (LR) 
were chosen to construct the ensemble scores. The number of bootstrap samples 
was, n2 = 1000. Two modalities of random selection of variables were chosen, n3 
= 2: namely, one modality consisted in randomly drawing a defined number of 
variables; the other in randomly drawing a defined number of groups of related 
variables (correlated or linked by construction) and, for each selected group, 
randomly draw one variable. The groups of related variables used in the applica-
tion are shown in the Supplementary Material A.1. 
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Figure 1. Methodology of construction of the ensemble score. 

 
The score constructed for linear discriminant analysis is denoted LDAS  and 

the one for logistic regression LDAS . The two normalized scores are denoted 

LDAS  and LRS , and the final score ( )1LDA LRS S Sλ λ= + −  ( 0 1λ≤ ≤ ) (see 
Figure 1). The optimal value of λ was determined by testing values from 0 to 1 
using incremental 0.01 steps and selecting the value maximizing the AUC OOB. 

3.2. Choices Made for the Preselection of Variables 

For Method 1, a stepwise preselection using the Akaike Information Criterion 
(AIC) was performed on the working sample, without bootstrapping, both for 
LDA and for LR. Note that herein, the AIC can be used as criterion since both 
LDA and LR are probabilistic models. 

For Method 3, the results presented used a forward preselection with LR 
(Method 3a). Results obtained using a forward preselection using both LR and 
LDA (Method 3b) or using only LDA (Method 3c) are available as Supplemen-
tary Material (Part B). 

3.3. Description of the Data 
3.3.1. Description of the Original Data 
The data used in this study are derived from the GISSI-HF trial: a multicenter, 
randomized, double-blind, placebo-controlled trial designed to assess the effect 
of n − 3 polyunsaturated fatty acids in patients with CHF. The detailed protocol 
and main results of this trial have already been described elsewhere [29] [30]. 

Eligible patients were adult men and women with clinical evidence of HF of 
any cause, with a New York Heart Association (NYHA) class II-IV, and having 
had a left ventricular ejection fraction (LVEF) measured within 3 months prior 
to enrolment. Patients with a LVEF greater than 40% had to have been admitted 
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at least once to hospital for HF in the preceding year to meet the inclusion crite-
ria. In addition to contraindications linked to the studied treatment, exclusion 
criteria included acute coronary syndrome or revascularization procedure within 
the preceding 1 month; and planned cardiac surgery expected to be performed 
within 3 months after randomization. 

After randomization and the baseline visit, patients underwent scheduled vis-
its at 1, 3, 6, 12 months and every 6 months thereafter until the end of the trial. 
Data collected at baseline included patient description, medical history, etiology 
of HF, LVEF measurements, electrocardiogram data, clinical and cardiovascular 
examination, blood chemistry tests, pharmacological treatments and dietary ha-
bits. During the follow-up visits, collected data consisted of patient description, 
clinical and cardiovascular examination, LVEF measurement, electrocardiogram 
data, blood chemistry tests (only at 1, 3, 6, 12, 24, 36 and 48 months), pharma-
cological treatment (including the study treatment) and dietary habits. Events of 
interest were also recorded. The entire GISSI-HF trial included 7046 eligible and 
randomized patients, with the final sample analyzed in [30] and comprised of 
6975 patients. 

The present study used a subsample of the GISSI-HF data containing 1231 pa-
tients with N-terminal prohormone brain natriuretic peptide (NT-proBNP) 
measurements. The dataset included baseline and follow-up visits for these pa-
tients, as well as their associated health events. 

(Patient, visit) couples were used herein as statistical units, i.e. each observa-
tion was associated to a patient for a given visit. We assumed that the short-term 
future of a patient was only dependent on the most recent measurements. Thus, 
the links between several couples pertaining to the same patient were not taken 
into account, as in [1] [31]. This yields an initial sample of 12,882 (patient, visit) 
couples. 

3.3.2. Variables Pre-Processing 
Several variables were derived from the available data, either for the follow-up 
visits (when values were available at baseline but not for the follow-up) or for all 
visits: mean blood pressure (BP) (1/3 * systolic BP + 2/3 * diastolic BP); esti-
mated plasma volume (ePVS) ((100-hematocrit)/hemoglobin as defined in [32]); 
estimated glomerular filtration rate (eGFR) (using the MDRD formula [33]); age 
and body mass index (BMI). Binary variables for the therapeutic classes of drugs 
were also derived from detailed information pertaining to pharmacological treat-
ments in order to indicate the consumption of ACE-inhibitors, beta-blockers, cal-
cium antagonists or diuretics. 

Categorical variables were recoded as binary dummy variables. In particular, 
in the case of ordinal variables (i.e. NYHA class and peripheral edema), an or-
dinal encoding was used, namely constructing the binary variables NYHA ≥ II, 
NYHA ≥ III and NYHA ≥ IV and, similarly, peripheral edema ≥ ankles, peri-
pheral edema ≥ knee, peripheral edema ≥ above. 

Since some variables were only available at baseline but were unlikely to 
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change over time (e.g. sex), their values were copied for follow-up visits. Simi-
larly, certain medical history variables available at baseline (such as previous 
acute myocardial infarction (AMI), previous stroke, angina pectoris, coronary 
artery bypass graft (CABG), previous hospitalization for worsening HF) were 
copied for follow-up visits and, when possible, updated using the information 
from the events. 

NT-proBNP values were only measured at baseline and at the 3-months fol-
low-up. Due to the importance of this variable in the literature [17] [34] [35] 
[36], it was decided to retain and interpolate its value for the other visits as fol-
lows: the value for the 1-month follow-up visit was computed as 2/3 * (baseline 
value) + 1/3 * (3-months value). Value of the 3-months visit was copied for the 
subsequent visits. 

Lastly, the response variable was defined as the occurrence of a composite 
event (death for worsening HF or hospitalization for worsening HF) within 180 
days of a visit. 

3.3.3. Exclusion of Variables and Observations 
Since the laboratory tests for measuring blood parameters were performed only 
at baseline, 1, 3, 6, 12, 24, 36 and 48 months, only the observations correspond-
ing to these visits were retained. Incomplete observations (with missing values) 
were also excluded. 

Several variables not relevant to this study were excluded (e.g. “technical va-
riables”, such as identification numbers or dates, or “intermediary variables” 
used to build other variables, such as the cause of death or drug doses), as well as 
variables with more than 1000 missing values. The remaining variables and the 
groups of related variables are shown in the Supplementary Material A.1. 

Six binary variables with univariate p-value greater than 0.2 (Fisher’s exact 
test) were excluded: gender being “female”, main cause of HF being “hyperten-
sion” or “other”, history of coronary angioplasty, left ventricular hypertrophy, 
pathological Q waves. 

3.4. Winsorization and Transformation of the Variables 

In order to eliminate outliers without excluding the associated observations, all 
continuous variables were winsorized: all values lower than the 1st percentile 
(respectively greater than the 99th percentile) were set to the value of the 1st per-
centile (resp. the 99th percentile). This method was used to avoid excluding more 
observations, since the number of cases was already small compared to the con-
trols and to avoid reducing the number of patients with event. 

Continuous variables were then transformed to satisfy the linearity assump-
tion of logistic regression. For each continuous variable, a similar method to that 
described in Duarte et al. [1] was used. First, the restricted cubic splines method 
with 3 knots was used to test the linearity assumption for each variable under the 
univariate logistic model: using a likelihood ratio test, the nullity of the coeffi-
cient associated with the cubic component of the spline was tested [14] [17]. 
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Then, for each variable with a significantly non-null coefficient with a 5% thre-
shold, a graphical representation of the links between the variable and the logit 
was performed. If the relationship was monotonous, simple monotonic trans-
formations of the form ( ) af x x=  with { }2, 1, 1 2,1 2,1,2a∈ − − −  or  
( ) ( )lnf x x=  were tested. If the relationship was not monotonous, quadratic 

transformations of the form ( ) ( )2f x x k= −  were tested, with k situated be-
tween the minimum and the maximum of the variable by incremental 0.1 steps. 
To determine the values of a or k, all possible values were tested and the trans-
formation which yielded a non-significant p-value for the linearity test and a 
minimal p-value for the test of nullity of the coefficient in univariate logistic re-
gression was retained. Eleven of 23 continuous variables had a significantly 
non-null coefficient associated with the cubic component of the restricted cubic 
spline when tested. Among these eleven variables, six (mean blood pressure, 
eGFR, triglycerides, cholesterol HDL, total cholesterol and NT-proBNP) had a 
monotonic relationship with the logit. All except eGFR and NT-proBNP had x−2 
for optimal transformation, while the optimal transformation for eGFR and 
NT-proBNP was 1/x and ln(x) respectively. The remaining five variables (BMI, 
systolic blood pressure, hematocrit, uricemia and LVEF) had a quadratic rela-
tionship with the logit and were transformed accordingly. After the transforma-
tion, the coefficient associated with the cubic component of the spline was 
non-significantly different from 0 for each of the transformed variables. 

This transformed dataset was used for Methods 1, 2 and the LR intermediate 
score of Method 3a. A similar technique was used on a duplicate dataset for the 
LDA intermediate score of Method 3a, but with transformation of the variables 
in order to satisfy the linearity assumption for linear regression; fifteen variables 
were transformed: ten were transformed using a quadratic (x – k)2 transforma-
tion (BMI, systolic blood pressure, diastolic blood pressure, mean blood pres-
sure, hematocrit, hemoglobin, ePVS, serum sodium, uricemia, total cholesterol 
and LVEF); three using an inverse square x−2 transformation (eGFR, triglyce-
rides, cholesterol HDL); one using a square transformation (serum creatinine); 
and one using a square root transformation (NT-proBNP). 

The p-values of the tests, before and after transformation, as well as the trans-
formation functions applied to the variables both for the LR and for the LDA are 
available as Supplementary Material (Part C). 

3.5. Working Sample 

Given the large imbalance between cases and controls, the sample was balanced 
by duplicating each case 15 times. This is equivalent to giving each case fifteen 
times more weight than a control. Preliminary analyses (not shown) showed that 
using a sample that was rebalanced in this manner resulted in better perfor-
mance compared to using the unbalanced sample. 

After the exclusions, the working sample consisted in 11,411 observations of 
62 explanatory variables, with 5595 (duplicated) events and 5816 non-events. 
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Summary statistics of the sample prior to data management (winsorization, 
transformation of the variables and sample balancing) are available in Supple-
mentary Material A.2. Summary statistics of the sample after winsorization and 
sample balancing, but before the transformation of the variables, are provided in 
Supplementary Material A.1. 

3.6. Results for the Preselections of Variables  
by the Three Methods 

The detailed preselections with their corresponding AUC are given in Table 1. 
The numbers of variables needed to obtain a given AUC OOB for each of the 
three methods are provided in Table 2. 

For Method 1, 50 variables were preselected during the stepwise selection 
phase, after which the maximum AUC OOB was obtained for the score using 49 
variables. The total runtime for the first method was approximately 1h30 (5 min 
for the two stepwise preselections and 1h25 for the backward selection using 
scores). 

Comparatively, for Method 2, the maximum AUC OOB corresponded to the 
score using 58 variables. The total runtime of the second method was approx-
imately 1h35 (exclusively for the backward selection using scores). 

For Method 3a, the logistic forward preselection yielded 26 variables, mostly 
clinical or biological, after which the AUC no longer increased significantly. The 
total runtime of the third method was approximately 1h05 minutes if all the 
scores were constructed (less than 5 min for the preselection and 30 min for each 
of the successions of scores). However, unlike the other two methods, it is not 
mandatory to construct all of the scores with Method 3a and one could construct 
only one score after the preselection of variables. In this case, the total runtime 
would be reduced to less than 10 min (less than 5 min for the preselection and 2 
- 5 min to construct one score). 

Preselected variables were extremely similar between all 3 methods. For Me-
thods 1 and 2, three variables were needed to obtain an AUC OOB greater than 
0.75 (for Method 3a, only two were needed). Among these variables, two were 
common to all methods: NT-proBNP and NYHA ≥ III. In order to obtain an 
AUC OOB above 0.78, all methods necessitated eight variables, seven of which 
were common to the three methods: NT-proBNP, NYHA ≥ III, Glycemia, sys-
tolic blood pressure, beta-blockers, peripheral edema ≥ “above” and NYHA ≥ II. 
Lastly, for an AUC OOB threshold of 0.80, Methods 1 and 2 necessitated 17 va-
riables, while Method 3a necessitated 15. In this case, 13 variables were common 
to the three methods: added to the six aforementioned variables were cholesterol 
HDL, heart rate, uricemia, third heart sound, bilirubin and paroxystic atrial fi-
brillation. Globally, the three selections were very similar. 

For a fixed number of variables, the three methods yielded extremely similar 
AUC OOB, even when the selections of variables themselves were different. 
Since Method 3a generally yielded the best AUC OOB for a given number of se-
lected variables and with a faster runtime, only the results for parsimonious  
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Table 1. Preselections of variables obtained with the three methods and corresponding AUC OOB of the associated scores. 

 

Method 1 Method 2 Method 3a 

Variables 
AUC 
OOB* 

Variables 
AUC 
OOB* 

Variables 

AUC 
OOB** 

(LR  
part) 

AUC  
OOB**  
(LDA  
part) 

AUC  
OOB***  

(all) 

1 NT-proBNP 0.7246 NT-proBNP 0.7246 NT-proBNP 0.7246 0.7246 0.7246 

2 NYHA ≥ III 0.7482 NYHA ≥ III 0.7482 NYHA ≥ III 0.7482 0.7523 0.7523 

3 Periph. edema ≥ “above” 0.7547 Heart rate 0.7529 NYHA ≥ II 0.7550 0.7579 0.7579 

4 Glycemia 0.7620 Systolic BP 0.7591 Glycemia 0.7621 0.7642 0.7642 

5 Systolic BP 0.7671 NYHA ≥ II 0.7647 Periph. edema ≥ “above” 0.7687 0.7688 0.7694 

6 Beta-blockers 0.7730 Beta-blockers 0.7696 Beta-blockers 0.7731 0.7714 0.7736 

7 NYHA ≥ II 0.7787 Glycemia 0.7764 Systolic BP 0.7791 0.7761 0.7792 

8 Cholesterol HDL 0.7829 Periph. edema ≥ “above” 0.7810 Cholesterol HDL 0.7835 0.7796 0.7835 

9 Mean BP 0.7827 Cholesterol HDL 0.7852 Paroxystic AF 0.7864 0.7831 0.7867 

10 Diastolic BP 0.7840 Uricemia 0.7885 Uricemia 0.7902 0.7866 0.7904 

11 Heart rate 0.7861 Bilirubin 0.7912 Bilirubin 0.7925 0.7876 0.7926 

12 Uricemia 0.7897 Diuretics 0.7913 Implantable defibrillator 0.7948 0.7908 0.7950 

13 Third heart sound 0.7922 Previous AMI 0.7932 Neoplasia 0.7966 0.7924 0.7968 

14 Bilirubin 0.7950 Paroxystic AF 0.7953 Third heart sound 0.7984 0.7947 0.7985 

15 Previous AMI 0.7967 Third heart sound 0.7982 Heart rate 0.8001 0.7963 0.8002 

16 Paroxystic AF 0.7988 LVEF 0.7990 Previous AMI 0.8020 0.7977 0.8020 

17 Implantable defibrillator 0.8010 Triglycerides 0.8006 Triglycerides 0.8038 0.7993 0.8038 

18 Neoplasia 0.8027 Neoplasia 0.8028 LVEF 0.8052 0.8010 0.8052 

19 LVEF 0.8045 Ascitis 0.8038 Hypertension 0.8067 0.8021 0.8067 

20 Triglycerides 0.8064 Implantable defibrillator 0.8060 Mitral insufficiency 0.8080 0.8040 0.8080 

21 Diuretics 0.8070 Hemoglobin 0.8058 Smoker or ex-smoker 0.8091 0.8053 0.8091 

22 Ascitis 0.8085 ePVS 0.8061 Ascitis 0.8104 0.8060 0.8104 

23 Mid-apical pulmonary rales 0.8091 Hematocrit 0.8070 Periph. edema ≥ “ankles” 0.8116 0.8069 0.8116 

24 Smoker or ex-smoker 0.8099 Smoker or ex-smoker 0.8080 NYHA ≥ IV 0.8119 0.8071 0.8119 

25 Mitral insufficiency 0.8108 Mitral insufficiency 0.8086 BMI 0.8130 0.8084 0.8130 

26 Hypertension 0.8121 BMI 0.8103 Mid-apical pulmonary rales 0.8137 0.8084 0.8137 

27 BMI 0.8131 Hypertension 0.8119     

28 Periph. edema ≥ “ankles” 0.8144 Previous hosp. for worsening HF 0.8119     

29 Periph. edema ≥ “knee” 0.8151 Mid-apical pulmonary rales 0.8127     

30 CABG 0.8157 Diabetes 0.8127     

31 Calcium antagonists 0.8161 CABG 0.8133     

32 
Previous hosp. for worsening 

HF 
0.8166 Periph. edema ≥ “knee” 0.8136     
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Continued 

33 Bundle branch block 0.8170 Diastolic BP 0.8137     

34 NYHA ≥ IV 0.8176 NYHA ≥ IV 0.8145     

35 Serum sodium 0.8178 Bundle branch block 0.8147     

36 Diabetes 0.8180 Calcium antagonists 0.8153     

37 COPD 0.8181 Total cholesterol 0.8149     

38 Previous stroke 0.8184 Mean BP 0.8151     

39 Years of school education 0.8187 COPD 0.8150     

40 Age 0.8186 Periph. edema ≥ “ankles” 0.8163     

41 Weight 0.8186 Atrial fibrillation 0.8166     

42 Serum creatinine 0.8185 Cause of HF = “not known” 0.8165     

43 eGFR 0.8186 Previous stroke 0.8167     

44 Total cholesterol 0.8184 Aortic stenosis 0.8167     

45 Aortic stenosis 0.8185 Age 0.8164     

46 Cause of HF = “not known” 0.8186 Angina pectoris 0.8164     

47 Atrial fibrillation 0.8187 Years of school education 0.8166     

48 Pulmonary rales 0.8186 
Waiting for cardiac 

transplantation 
0.8168     

49 Basal pulmonary rales 0.8188 Serum sodium 0.8170     

50 Transient ischemic attack 0.8187 Definitive pace maker 0.8171     

51   Basal pulmonary rales 0.8168     

52   Weight 0.8169     

53   eGFR 0.8169     

54   Transient ischemic attack 0.8170     

55   Hepatomegaly 0.8165     

56   Pulmonary rales 0.8168     

57   ECG evaluation 0.8167     

58   ACE-inhibitors 0.8172     

59   Serum creatinine 0.8168     

60   Serum potassium 0.8170     

61   CVP > 6 cm H20 0.8170     

62   Cause of HF = “cardiomyopathy” 0.8167     

*AUC OOB obtained for the score including the variable in the row as well as all previous variables. **The AUC OOB of these columns were obtained by 
building an intermediate score using only LDA (respectively LR) for the linear part (resp. logistic part) from the selected variables. ***The AUC OOB of this 
column was obtained by constructing a full ensemble score with the same number of variables for both LDA and LR, using the optimal λ for each score. 
ACE: angiotensin-converting enzyme; AF: atrial fibrillation; AMI: acute myocardial infarction; AUC OOB: area under the ROC curve out-of-bag; BMI: body 
mass index; BP: blood pressure CABG: coronary artery bypass graft; COPD: chronic obstructive pulmonary disease; CVP: central venous pressure; eGFR: 
estimated glomerular filtration rate; ePVS: estimated plasma volume; HDL: high-density lipoprotein; HF: heart failure; LVEF: left ventricular ejection frac-
tion; NT-proBNP: N-terminal prohormone brain natriuretic peptide; NYHA: New York Heart Association. 
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scores constructed by this method are given at the end of this section. 

3.7. Results for Parsimonious Scores Constructed by Method 3a 

Four scores constructed by Method 3a were particularly studied: the score in-
cluding all variables selected by the forward preselection, denoted S3.26 (the 
number of the method and the number of variables used), and three “parsimo-
nious” scores, denoted S3.15, S3.8 and S3.2, which yielded an AUC OOB above 
certain thresholds (0.80, 0.78 and 0.75). To attain these thresholds, 15, 8 and 2 
variables were respectively needed. The AUC OOB with λ = 0.5 and the optimal 
λ, as well as the optimal sensitivity and specificity according to the maximum 
Youden index of these four scores are given in Table 3. 

Score S3.2 had an AUC OOB of 0.7523 with an optimal λ = 1 (i.e. only LDA  
 

Table 2. Number of variables needed to obtain an AUC above given thresholds. 

AUC OOB Method 1 Method 2 Method 3a 
Number of variables  

common to all methods 

≥0.750 3 3 2 2 

≥0.760 4 5 4 2 

≥0.770 6 7 6 4 

≥0.780 8 8 8 7 

≥0.790 13 11 10 9 

≥0.800 17 17 15 13 

≥0.810 25 26 22 21 

Note: even if the methods necessitated the same number of variables to obtain a given AUC, the variables 
themselves may not be the same. 

 
Table 3. Summary of the characteristics of the parsimonious scores constructed using Method 3a. 

Score designation S3.26 S3.15 S3.8 S3.2 

Data 
Working sample defined in Section 3.3. Variables transformed differently for the linear intermediate score 

and the logistic intermediate score. 

Number of bootstrap samples 1000 

Number of variables used 26 15 8 2 

Number of modalities 2 

λ value λ = 0.5 
λ = 0 

(optimal) 
λ = 0.5 

λ = 0.09 
(optimal) 

λ = 0.5 
λ = 0.06 

(optimal) 
λ = 0.5 

λ = 1 
(optimal) 

AUC OOB of the LDA 0.8084 0.7963 0.7796 0.7523 

AUC OOB of the LR 0.8137 0.8001 0.7835 0.7482 

AUC OOB of the final score 0.8121 0.8137 0.7996 0.8002 0.7830 0.7835 0.7502 0.7523 

Sensitivity* 0.861 0.823 0.759 0.724 0.713 0.748 0.810 0.826 

Specificity* 0.611 0.651 0.689 0.719 0.707 0.675 0.551 0.547 

Maximum Youden index 0.472 0.474 0.448 0.443 0.420 0.423 0.361 0.373 

*Sensitivity and specificity associated with the maximum value of the Youden index. 
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was used). Score S3.8 had an AUC OOB of 0.7835 with an optimal λ = 0.06. 
Score S3.15 had an AUC OOB of 0.8001 with an optimal λ = 0.09. Finally, the 
full score including all preselected variables had an AUC OOB of 0.8137 with an 
optimal λ = 0 (i.e. only LR was used). It is interesting to note that for score S3.2, 
only LDA was used while for score S3.26 only LR was used. Thus, both classifiers 
are useful. 

4. Discussion 
4.1. Methodological Discussion 

In this article, we presented and compared different methods of construction of 
parsimonious ensemble scores, with the construction of short-term event scores 
for CHF as a concrete illustration. Parsimonious scores were obtained by com-
bining stepwise selections of variables and the use of an ensemble score. Since 
classic criteria of stepwise selection based on probabilistic models cannot be used 
in the case of an ensemble score, we proposed using a criterion based on the ab-
solute values of the coefficients of variables in an ensemble score and a second 
criterion based on the AUC. 

An advantage of a stepwise selection of predictors is that it allows automati-
cally building a succession of scores and therefore choosing which of the latter 
has the best balance between performance and the number of variables, accord-
ing to the desired quality objectives. Once this choice is made, the selected score 
can be used as a “classic” score. The use of an ensemble method to construct this 
score also provides confidence in the stability and performance of the results. 
Indeed, ensemble methods generally yield better results than a single predictor, 
provided that the predictors constituting the ensemble perform sufficiently well 
individually and are sufficiently different from each other [4]. The downside is 
that since the method relies on estimating a large number of models before their 
aggregation, this approach takes longer than estimating a single model. However, 
in the present context, it is only necessary to perform this procedure once to ob-
tain the selection of variables and their associated coefficients, after which a simple 
linear combination is sufficient to obtain the score for any new observation. 

Other selection methods could have been tested, for example by building all 
possible ensemble scores at each step with one more variable than in the pre-
vious step, keeping only the variable yielding the largest increase in AUC OOB. 
However, this would have entailed a lengthy processing time due to the large 
number of ensemble scores to construct and preliminary results (not shown) 
conclude that they would not have yielded a better performance than the pre-
sented methods. In the application, variants of Method 3 could also be used, e.g. 
preselecting variables using LDA as opposed to LR. Summarized results for these 
alternative methods are presented in the Supplementary Material. 

4.2. Application Discussion 

Regarding the variables used, when applying our method to the construction of a 
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short-term score in patients with CHF, the most predictive variable was syste-
matically NT-proBNP, which is a well-known predictor of HF [10] [17] [20] [34] 
[35] [36]. Other explanatory variables, such as NYHA class, systolic blood pres-
sure, LVEF, BMI, beta-blocker medication, uricemia, atrial fibrillation, heart rate 
or smoking status, have also often been selected in other studies [11] [13] [17] 
[20] [22] [23] [36]. Note that in a previous study on the same 1231 patients from 
the GISSI-HF trial with NT-proBNP, Barlera et al. [10] constructed a mortality 
predictive score using a Cox model and 14 variables: NT-proBNP, hs-cTnT, 
NYHA class, age, COPD, systolic blood pressure, diabetes, eGFR, sex, uricemia, 
LVEF, hemoglobin, BMI and aortic stenosis. In the present study, certain va-
riables used in a number of scores were included in the original set of variables 
but were not selected in the final scores, such as age, gender, diabetes, serum 
creatinine, eGFR, hemoglobin or serum sodium. Sex was not significant in un-
ivariate analysis. The remainder of these variables were not retained during the 
forward AUC preselection phase in Method 3a. However, it should be noted that 
these variables were selected in Methods 1 and 2, generally in the second half of 
the selection. Finally, the preselection of Method 3a also included less common 
variables such as glycemia, peripheral edema, cholesterol HDL, bilirubin, im-
plantable defibrillator, neoplasia, triglycerides, mitral insufficiency, as well as 
history of AMI, hypertension or ascites. 

All variables included in the parsimonious scores S3.15, S3.8 and S3.2 are eas-
ily available from either the patient’s medical history (paroxystic atrial fibrilla-
tion, previous AMI, implantable defibrillator, neoplasia), the patient’s drug 
consumption (beta-blockers), a clinical examination (NYHA class, peripheral 
edema, heart rate, blood pressure, third heart sound), or laboratory blood tests 
(NT-proBNP, glycemia, cholesterol HDL, bilirubin, uricemia, triglycerides). 

To our knowledge, no study has presented a score for short-term (180 days) 
events in CHF. Therefore, comparing the performance of our scores with others 
in the literature is difficult. Recent existing scores were generally constructed to 
predict long-term events for CHF patients, often at 1 or 2 years [10] [12] [17] 
[36] [37] and sometimes longer [9] [13], or to predict either short- or long-term 
events for acute HF patient [1] [35]. For instance, regarding CHF: 
• In Voors et al. [14], several models were compared to predict different out-

comes in CHF patients. Their models using 15 or 9 variables (including 
NT-proBNP) to predict a composite endpoint of all-cause mortality or HF 
hospitalization yielded an AUC of 0.71 or 0.69 in derivation, respectively. 
Herein, scores S3.15 and S3.8 obtained 0.80 and 0.78 AUC OOB values, re-
spectively. 

• The AUC of score S3.8 is similar to that of the score proposed by Spinar et al. 
[36] to assess the 2-year prognosis of CHF (all-cause mortality, heart trans-
plantation, device implantation), which yielded an AUC of 0.79 without 
cross-validation nor external validation for a model using 7 variables. 

• The MAGGIC risk score [13], which has been shown to feature one of the 
best accuracies to predict 1-year mortality in CHF patients in Canepa et al. 
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[37] using 13 variables and subsequently studied on many validation cohorts, 
had an AUC between 0.64 and 0.74 in the studies without NT-proBNP [31] 
[35] [37] [38], and of 0.74 with NT-proBNP [35]. Note that the AUC for the 
composite endpoint of death and hospitalization, as used in the current 
study, is generally lower than the AUC for all-cause death only. Score S3.8 
achieved an AUC OOB of 0.78 using 8 variables. 

The main limitation of our application study is that only one dataset was used 
in our tests. However, the present work is mostly a “proof of concept” of the 
usefulness of the presented methods of construction of parsimonious ensemble 
scores. 

5. Conclusion 

Variables selection methods based on a probabilistic model can be used to 
achieve a stepwise selection for a given classifier such as logistic regression, but 
not directly for a classifier constructed by aggregation of several classifiers. In 
this article, we have proposed to construct parsimonious ensemble scores using 
sample balancing, several classifiers, bootstrap samples and stepwise variable se-
lection methods in this setting. As a concrete application, we constructed a 
short-term event (death or hospitalization for HF at 180 days) score for CHF pa-
tients, yielding satisfactory AUC values with respect to other scores in other HF 
patients’ populations. The methods proposed and tested in this article can be re-
produced on any delay, any set of variables and any other settings (other types of 
HF or other diseases) as long as there is a sufficient number of cases, i.e. a suffi-
ciently large training dataset. Applications on other datasets and comparisons 
with other methods should be conducted in order to confirm the interest of the 
proposed methods. 
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Supplementary Material for “Construction of Parsimonious 
Event Risk Scores by an Ensemble Method. An Illustration 
for Short-Term Predictions in Chronic Heart Failure  
Patients from the GISSI-HF Trial” 
A1. Summary Statistics of the Sample before Data Management 

Table A1. Descriptive statistics of the explanatory variables after winsorization and sam-
ple balancing performed before transformation of the variables. 

Variables Groups of related variables Mean (SD) or N (%) 

Femaleb,d - 2227 (19.5%) 

Agea,g - 68.10 (10.20) 

Years of school educationd,g - 6.92 (3.65) 

Weightg 
Obesity 

75.87 (14.33) 

BMIa,g 26.96 (4.48) 

Smoker or ex-smokerb,d - 6645 (58.2%) 

Heart Rateg - 72.49 (13.38) 

Diastolic blood pressureg 

Blood pressure 

76.28 (10.17) 

Systolic blood pressureg 125.21 (19.41) 

Mean blood pressurea,g 92.58 (12.17) 

NYHA classc 
(ref: “NYHA I”) 

≥II 

NYHA 

10837 (95.0%) 

≥III 3061 (26.8%) 

≥IV 242 (2.1%) 

Peripheral edemac,d 
(ref: “No”) 

≥Ankles 

Peripheral edema 

1768 (15.5%) 

≥Knee 316 (2.8%) 

≥Above 159 (1.4%) 

Main cause of HF b 
(ref: “Ischemic”) 

Cardiomyopathy - 3126 (27.4%) 

Hypertension - 1726 (15.3%) 

Other - 346 (3.0%) 

Not known - 175 (1.5%) 

Ascitesb,d - 147 (1.3%) 

Hepatomegalyb,d - 2188 (19.2%) 

Mitral insufficiencyb,d - 5461 (47.9%) 

CVP > 6 cm H20b,d - 1139 (10.0%) 

Basal pulmonary ralesb,d - 1732 (15.2%) 

Mid-apical pulmonary ralesb,d - 79 (0.7%) 

Pulmonary ralesb,d - 599 (5.2%) 

Aortic stenosisb,d - 315 (2.8%) 

Third heart sound (S3)b,d - 2177 (19.1%) 

Hematocritg 

Hematology 

40.16 (4.53) 

Hemoglobing 13.40 (1.60) 

ePVSa,g 4.57 (0.92) 
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Continued 

Serum creatinineg 
Renal function 

1.27 (0.44) 

eGFRa,g,h 64.08 (22.63) 

Serum potassiumg - 4.48 (0.50) 

Serum sodiumg - 139.49 (3.33) 

Uricemiag - 6.43 (1.94) 

Triglyceridesg - 137.92 (84.01) 

Cholesterol HDLg 
Cholesterol 

47.58 (13.19) 

Total Cholesterolg 175.10 (44.48) 

Bilirubing - 0.84 (0.42) 

Glycemiag - 122.98 (46.60) 

NT-proBNPf,g - 1856.60 (2194.91) 

Diabetes mellitusb,d - 3481 (30.5%) 

Hypertensionb,d - 6470 (56.7%) 

Previous AMIb,e - 5421 (47.5%) 

Previous strokeb,e - 643 (5.6%) 

Previous hosp. for worsening HFb,e - 6526 (57.2%) 

Angina pectorisb,e - 2060 (18.1%) 

Coronary angioplastyb,d - 1478 (13.0%) 

Transient ischemic attack (TIA)b,d - 1228 (10.8%) 

COPDb,d - 2348 (20.6%) 

CABGb,e - 2847 (24.9%) 

Implantable defibrillatorb,d - 1020 (8.9%) 

Paroxystic AFb,d - 2756 (24.2%) 

Neoplasiab,d - 592 (5.2%) 

Definitive pace makerb,d - 1944 (17.0%) 

Waiting for cardiac transplantationb,d - 122 (1.1%) 

LVEFd,g - 32.58 (10.05) 

Bundle branch blockb - 3883 (34.0%) 

Atrial fibrillationb - 2087 (18.3%) 

Left ventricular hypertrophyb - 1885 (16.5%) 

Pathological Q wavesb - 2236 (19.6%) 

Normal ECG evaluationb - 415 (3.6%) 

ACE-inhibitorsa,b - 8782 (77.0%) 

Beta-blockersa,b - 7430 (65.1%) 

Calcium antagonistsa,b - 803 (7.0%) 

Diureticsa,b - 10813 (94.8%) 

aderived variable; bbinary variable encoding; cordinal encoding; dbaseline value copied to follow-up visits; 
ebaseline value copied to follow-up visits and updated when possible; finterpolated values; gwinsorized vari-
able. SD: standard deviation; BMI: body mass index; NYHA: New York Heart Association; HF: heart fail-
ure; CVP: central venous pressure; ePVS: estimated plasma volume; eGFR: estimated glomerular filtration 
rate; HDL, high-density lipoprotein; AMI: acute myocardial infarction; COPD: chronic obstructive pulmo-
nary disease; CABG: coronary artery bypass graft; AF: atrial fibrillation; LVEF: left ventricular ejection frac-
tion; ACE: angiotensin-converting enzyme. 
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Table A2. Descriptive statistics of the explanatory variables prior to the data management 
phase. 

Variables 
Groups of related 

variables 
Mean (SD) or N (%) 

Femaleb,d - 1219 (19.7%) 

Agea - 66.94 (10.76) 

Years of school educationd - 7.00 (3.77) 

Weight 
Obesity 

76.25 (14.76) 

BMIa 26.96 (4.46) 

Smoker or ex-smokerb,d - 3425 (55.3%) 

Heart rate - 70.22 (13.25) 

Diastolic blood pressure 

Blood pressure 

77.37 (10.29) 

Systolic blood pressure 127.16 (18.75) 

Mean blood pressurea 93.96 (12.07) 

NYHAc 

(ref: “NYHA I”) 

≥II 

NYHA 

5671 (91.6%) 

≥III 1017 (16.4%) 

≥IV 46 (0.74%) 

Peripheral edemac,d 

(ref: “No”) 

≥Ankles 

Peripheral edema 

732 (11.8%) 

≥Knee 106 (1.7%) 

≥Above 33 (0.5%) 

Main cause of HFb 

(ref: “Ischemic”) 

Cardiomyopathy - 1866 (30.2%) 

Hypertension - 956 (15.4%) 

Other - 178 (2.9%) 

Not known - 133 (2.1%) 

Ascitesb,d - 21 (0.3%) 

Hepatomegalyb,d - 914 (14.8%) 

Mitral insufficiencyb,d - 2647 (42.8%) 

CVP > 6 cm H20b,d - 467 (7.5%) 

Basal pulmonary ralesb,d - 738 (11.9%) 

Mid-apical pulmonary ralesb,d - 51 (0.8%) 

Pulmonary ralesb,d - 263 (4.3%) 

Aortic stenosisb,d - 105 (1.7%) 

Third heart sound (S3)b,d - 945 (15.3%) 

Hematocrit 

Hematology 

40.58 (4.35) 

Hemoglobin 13.60 (1.56) 

ePVSa 4.47 (0.89) 

Serum creatinine 
Renal function 

1.21 (0.42) 

eGFRa 67.59 (22.79) 

Serum potassium - 4.47 (0.50) 
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Continued 

Serum sodium - 139.65 (3.45) 

Uricemia - 6.39 (1.84) 

Triglycerides - 147.31 (110.90) 

Cholesterol HDL 
Cholesterol 

49.15 (13.62) 

Total cholesterol 180.67 (44.55) 

Bilirubin - 0.81 (0.56) 

Glycemia - 119.61 (46.53) 

NT-proBNPf - 1312.57 (1978.60) 

Diabetes mellitusb,d - 1535 (24.8%) 

Hypertensionb,d - 3390 (54.8%) 

Previous AMIb,e - 2649 (42.8%) 

Previous strokeb,e - 293 (4.7%) 

Previous hosp. for worsening HFb,e - 3068 (49.6%) 

Angina pectorisb,e - 968 (15.6%) 

Coronary angioplastyb,d - 792 (12.8%) 

Transient ischemic attack (TIA)b,d - 500 (8.1%) 

COPDb,d - 1074 (17.4%) 

CABGb,e - 1321 (21.3%) 

Implantable defibrillatorb,d - 488 (7.9%) 

Paroxystic AFb,d - 1174 (19.0%) 

Neoplasiab,d - 242 (3.9%) 

Definitive pace makerb,d - 824 (13.3%) 

Waiting for cardiac transplantationb,d - 38 (0.6%) 

LVEFd - 33.56 (9.74) 

Bundle branch blockb - 2007 (32.4%) 

Atrial fibrillationb - 911 (14.7%) 

Left ventricular hypertrophyb - 1031 (16.7%) 

Pathological Q wavesb - 1200 (19.4%) 

Normal ECG evaluationb - 289 (4.7%) 

ACE-inhibitorsa,b - 4848 (78.3%) 

Beta-blockersa,b - 4434 (71.6%) 

Calcium antagonistsa,b - 509 (8.2%) 

Diureticsa,b - 5689 (91.9%) 

aderived variable; bbinary variable encoding; cordinal encoding; dbaseline value copied to follow-up visits; 
ebaseline value copied to follow-up visits and updated when possible; f interpolated values. SD: standard 
deviation; BMI: body mass index; NYHA: New York Heart Association; HF: heart failure; CVP: central 
venous pressure; ePVS: estimated plasma volume; eGFR: estimated glomerular filtration rate; HDL, 
high-density lipoprotein; AMI: acute myocardial infarction; COPD: chronic obstructive pulmonary disease; 
CABG: coronary artery bypass graft; AF; atrial fibrillation; LVEF: left ventricular ejection fraction; ACE: 
angiotensin-converting enzyme. 
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A2. Alternative Methods: Description and Results 
A2.1. Method 3b 
Preselection of variables: Two forward preselections using AUC as criterion were 
performed, one for logistic regression (LR) and the other for linear discriminant 
analysis (LDA). Let t denote a stopping time. For 1,2,...,i t= : at step i: 1i −  
variables denoted 1 1,..., iV V −  were available from step 1i − . For every set of va-
riables 1 1,..., ,i jV V V−  with 1,..., 1j i≠ − , a logistic regression (respectively a li-
near regression) was performed on the entire sample without bootstrap. The va-
riable, denoted iV , yielding the maximal AUC in resubstitution was included 
for the step 1i + , provided that the AUC significantly increased using DeLong’s 
test; otherwise, the inclusion of variables was stopped ( t i= ). The preselection 
using logistic regression (respectively LDA) was used to build an intermediate 
LR score (respectively an intermediate LDA score). Note that the number of 
preselected variables and the preselected variables themselves may differ be-
tween the two preselections. 

Note that, contrary to the preselection phase of Method 1 with AIC, there is 
no need in this instance for a probabilistic model. Indeed, the AUC can be 
computed as long as there is a prediction, without assumption on the manner 
with which this prediction was obtained. 

Construction of intermediate scores: For each classifier, intermediate scores using 
only the associated selected variables were constructed, using 1000 bootstrap samples 
(the same for both classifiers) and two modalities of selection of variables (all va-
riables or all groups of related variables). Since the preselection was performed sepa-
rately for both classifiers, intermediate scores may not use the same variables. 

Construction of final scores: The two intermediate scores were aggregated in a 
final score by averaging their prediction for each statistical unit. Since the inter-
mediate scores in this method were constructed independently from each other 
on two different sets of variables, there were multiple ways to combine the latter. 
In this instance, intermediate scores using the same number of preselected va-
riables by classifier were aggregated in a final score. 

A2.2. Method 3c 
Preselection of variables: A forward preselection using AUC as criterion was 
performed using LDA. Let t denote a stopping time. For 1,2,...,i t= : at step i: 

1i −  variables denoted 1 1,..., iV V −  were available from step 1i − . For every set 
of variables 1 1,..., ,i jV V V−  with 1,..., 1j i≠ − , a linear regression was performed 
on the entire sample without bootstrap. The variable, denoted iV , yielding the 
maximal AUC in resubstitution was included for the step 1i + , provided that 
the AUC significantly increased using DeLong’s test; otherwise, the inclusion of 
variables was stopped ( t i= ). 

Note that, contrary to the preselection phase of Method 1 with AIC, there is 
no need in this instance for a probabilistic model. Indeed, the AUC can be 
computed as long as there is a prediction for each statistical unit, without as-
sumption on the manner with which this prediction was obtained. 
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Construction of intermediate scores: For each classifier, intermediate scores 
using only the preselected variables, with the transformations corresponding to 
the classifier (see Subsection 3.2.4), were built, using 1000 bootstrap samples (the 
same for both classifiers) and two modalities of selection of variables (all va-
riables or all groups of related variables). 

Construction of final scores: The two intermediate scores using the same 
number of preselected variables were aggregated in a final score by averaging 
their prediction for each statistical unit. 

 
Table A3. Results. 

Method 3b Method 3c 

Variables (LR part) 
AUC 

OOB** 
(LR part) 

Variables (LDA part) 
AUC 

OOB**  
(LDA part) 

AUC 
OOB*** 

(all) 
Variables 

AUC 
OOB**  

(LR part) 

AUC 
OOB** 

(LDA part) 

AUC 
OOB*** 

(all) 

NT-proBNP 0.7246 NT-proBNP 0.7246 0.7246 NT-proBNP 0.7246 0.7246 0.7246 

NYHA ≥ III 0.7482 NYHA ≥ III 0.7523 0.7523 NYHA ≥ III 0.7482 0.7523 0.7523 

NYHA ≥ II 0.7550 Glycemia 0.7591 0.7625 Glycemia 0.7559 0.7591 0.7592 

Glycemia 0.7621 NYHA ≥ II 0.7642 0.7642 NYHA ≥ II 0.7624 0.7642 0.7642 

Periph. edema ≥ “above” 0.7687 Paroxystic AF 0.7683 0.7721 Paroxystic AF 0.7669 0.7683 0.7685 

Beta-blockers 0.7731 Systolic BP 0.7725 0.7801 Systolic BP 0.7721 0.7725 0.7733 

Systolic BP 0.7791 Beta-blockers 0.7770 0.7818 Beta-blockers 0.7781 0.7770 0.7789 

Cholesterol HDL 0.7835 Cholesterol HDL 0.7807 0.7856 Cholesterol HDL 0.7823 0.7807 0.7829 

Paroxystic AF 0.7864 Uricemia 0.7839 0.7886 Uricemia 0.7860 0.7839 0.7865 

Uricemia 0.7902 Third heart sound 0.7866 0.7916 Third heart sound 0.7883 0.7866 0.7888 

Bilirubin 0.7925 Periph. edema ≥ “above” 0.7891 0.7935 Periph. edema ≥ “above” 0.7923 0.7891 0.7926 

Implantable defibrillator 0.7948 Implantable defibrillator 0.7912 0.7956 Implantable defibrillator 0.7941 0.7912 0.7945 

Neoplasia 0.7966 Neoplasia 0.7930 0.7975 Neoplasia 0.7958 0.7930 0.7961 

Third heart sound 0.7984 Triglycerides 0.7949 0.7990 Triglycerides 0.7979 0.7949 0.7981 

Heart rate 0.8001 Heart rate 0.7965 0.8009 Heart rate 0.7998 0.7965 0.7999 

Previous AMI 0.8020 Bilirubin 0.7980 0.8026 Bilirubin 0.8019 0.7980 0.8019 

Triglycerides 0.8038 Previous AMI 0.7995 0.8038 Previous AMI 0.8036 0.7995 0.8036 

LVEF (baseline) 0.8052 LVEF 0.8011 0.8052 LVEF 0.8052 0.8011 0.8052 

Hypertension 0.8067 Mitral insufficiency 0.8028 0.8069 Mitral insufficiency 0.8064 0.8028 0.8064 

Mitral insufficiency 0.8080 Diuretics 0.8039 0.8082 Diuretics 0.8070 0.8039 0.8070 

Smoker or ex-smoker 0.8091 Hypertension 0.8051 0.8094 Hypertension 0.8084 0.8051 0.8084 

Ascitis 0.8104 Smoker or ex-smoker 0.8060 0.8105 Smoker or ex-smoker 0.8093 0.8060 0.8093 

Periph. edema ≥ “ankles” 0.8116 Periph. edema ≥ “ankles” 0.8069 0.8117 
Periph. edema ≥ 

“ankles” 
0.8101 0.8069 0.8101 

NYHA ≥ IV 0.8119 Ascitis 0.8081 0.8121 Ascitis 0.8119 0.8081 0.8119 

BMI 0.8130 BMI 0.8093 0.8131 BMI 0.8131 0.8093 0.8131 

Mid-apical pulm. Rales 0.8137        

*AUC OOB obtained for the score including the variable in the row as well as all previous variables. **The AUC OOB of these columns were obtained by 
building an intermediate score using only LDA (respectively LR) for the linear part (resp. logistic part) from the selected variables. ***The AUC OOB of 
these columns was obtained by building a full ensemble score with the same number of variables for both LDA and LR, using the optimal λ for each score. 
BMI: body mass index; NYHA: New York Heart Association; LVEF: left ventricular ejection fraction. 
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A3. Transformation of the Variables for the Logistic Regression 
and the Linear Discriminant Analysis 

Table A4. P-values of the linearity tests before and after transformation for LR and LDA. 

Variable 

For logistic regression For linear discriminant analysis 

p-value 
before 

Transformation 
p-value 

after 
p-value  
before 

Transformation 
p-value  

after 

Age 0.364   0.853   

Years of school education 0.449   0.462   

Weight 0.280   0.267   

BMI 0.006 (x − 27.8)2 0.051 0.004 (x − 28.0)2 0.059 

Heart rate 0.149   0.806   

Diastolic blood pressure 0.704   0.291   

Systolic blood pressure <0.001 (x − 142.0)2 0.756 <0.001 (x − 142.0)2 0.133 

Mean blood pressure 0.028 x−2 0.516 0.003 (x − 108.7)2 0.707 

Hematocrit 0.001 (x − 43.4)2 0.051 <0.001 (x − 43.4)2 0.220 

Hemoglobin 0.068   0.005 (x − 15.3)2 0.222 

ePVS 0.242   0.034 (x − 3.3)2 0.300 

Serum creatinine 0.376   0.007 x2 0.352 

eGFR 0.004 x−1 0.648 <0.001 x−2 0.487 

Serum potassium 0.067   0.056   

Serum sodium 0.055   0.031 (x − 142.3)2 0.455 

Uricemia <0.001 (x − 6.7)2 0.383 <0.001 (x − 6.7)2 0.975 

Triglycerides 0.023 x−2 0.672 0.009 x−2 0.220 

Cholesterol HDL 0.009 x−2 0.819 0.001 x−2 0.404 

Total cholesterol 0.011 x−2 0.230 0.001 (x − 192.5)2 0.051 

Bilirubin 0.210   0.800   

Glycemia 0.924   0.609   

NT-proBNP <0.001 Ln(x) 0.407 <0.001 x0.5  

LVEF <0.001 (x − 42.8)2 0.228 <0.001 (x − 42.7)2 0.959 

See next tables for abbreviations. 
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