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Abstract 
In this paper, we study the positive radial solutions for elliptic systems to the 

nonlinear BVP: 
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, where ( )u div u∆ = ∇  and 

( )v div v∆ = ∇  are the Laplacian of u, λ  is a positive parameter,  

{ }0 0: 2, , 0nx N x r rΩ = ∈ > > >� , let [ ]1,2i =  then [ ) ( )0: , 0,iK r ∞ → ∞  

is a continuous function such that ( )lim 0r ik r→∞ =  and 
η
∂
∂

 is The exter-

nal natural derivative, and [ ) ( ): 0, 0,ic ∞ → ∞�  is a continuous function. We 
discuss existence and multiplicity results for classes of f with a) 0if > , b) 

0if < , and c) 0if = . We base our presence and multiple outcomes via the 
Sub-solutions method. We also discuss some unique findings.  
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1. Introduction 

In reaction diffusion processes, steady states define the long term dynamics. 
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Here we consider a steady state reaction diffusion equation on an exterior do-
main with a nonlinear boundary condition on the interior boundary. Namely, 
we study positive radial solutions to:  
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where ( )u div u∆ = ∇  and ( )v div v∆ = ∇  are the Laplacian of u, λ  is a positive 
parameter, { }0 0: 2, , 0nx N x r rΩ = ∈ > > >� , let [ ]1,2i =  then  

[ ) ( )0: , 0,iK r ∞ → ∞  is a continuous function such that ( )lim 0r ik r→∞ =  and  

η
∂
∂

 is the outward normal derivative, and [ ) ( ): 0, 0,ic ∞ → ∞�  is a is an non  

decreasing (increasing) function. Here the reaction term [ ) [ ): 0, 0,if R× ∞ →∞  
is a 1C  function. The case when 0if <  (see [1] [2], that the study of positive 
solutions to such problems is considerably more challenging than in the case 

0if >  (positone problems). For a rich history on semipositone problems with 
Dirichlet boundary conditions on bounded domains, (see [3]-[8], and on do-
mains exterior to a ball, see [9] [10] [11]. Such nonlinear boundary conditions 
occur very naturally in applications see [12] for a detailed description in a model 
arising in combustion theory. Recently, the existence of a radial positive solution 
for (1.1) when 1λ �  has been established in [13], via the method of subsuper 
solutions. Here we discuss the uniqueness of this radial solution when some ad-
ditional assumptions hold. In [14], the authors study such a uniqueness result 
for the case of Dirichlet boundary condition on 0x r= . Our focus in this paper 
is to consider the uniqueness result for semipositone problem when a class of 
nonlinear boundary condition is satisfied at 0x r= . The fact that we have no 
longer a fixed value of u on 0x r=  results in quite a challenge in extending the 
results in [15]. 

Namely, we need to establish a detailed behavior of u at 0x r=  to achieve 
our goal. Instead of working directly with (1), we note that the change of  

variables r x=  and 
2
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N
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 transforms (1) into the following boundary 

value problem:  
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1r �  and for some ( )0, 2Nµ ∈ − . then ( ] ( )( )0,1 , 0,ia ∈ ∞�  could be singular 

at 0.if 2Nµ ≥ − , ia�  will be nonsingular at 0 and it will be an easier case to 

study. Note that ( ] ( )0,1inf 0i ita a t∈= >� �  and there exists a constant 0d >�  such  

that i
da
tα

≤
�

�  for all ( ]0,1t∈  where ( )2
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N
N
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− −
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−
� . Motivated by the above 

discussion, in this paper, we will study positive solutions in ( ) [ ]2 10,1 0,1C C∩  
to the following boundary value problems: 
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where [ ) ( ): 0, 0,ic ∞ → ∞  is a continuous function and ( ] ( )( )0,1 , 0,ia C∈ ∞  is 
such that: 

(H1) ( ] ( )0,1inf 0i ita a t∈= > ; 
(H2) there exists a constant 0d >  such that ( )i

da t
tα

=  for all ( ]0,t ε∈  
where ( )0,1a∈  and 0ε ≈  

(H3) ia  is decreasing. We consider various 1C  classes of the reaction term  
[ ) [ ): 0, 0,if R× ∞ →∞  satisfying the following: 

(F1) 0if <  and ( )
lim 0i

s

f s
s→∞ = ; 1,2i =  

(F2) if  is increasing and ( )lims if s→∞ = ∞ ; 1,2i =  
(F3) if  is concave on [ )0,∞ . 1,2i =  
Theorem 1.1. Assume (H1) - (H3) and (F1) - (F3). Then (1.3) has a unique 

positive solution for all λ  sufficiently large. 
In Section two we will establish important a priori estimates. We will first re-

call some important results from [8] where the authors studied the case of Di-
richlet boundary condition, or equivalently (1.3) with the boundary condition 

1t =  replaced by ( ) ( )1 1 0u v= = . These results do not depend on the boundary 
condition at 1t =  and hence it is also true for solutions of (1.3). In view of the 
readers convenience we include the proofs of these results. In Section three, we 
prove Theorem 1.1. 

2. Advance Estimates 

Let ( ) ( )
0

d
s

iF s f t s= ∫ . Note that there exist unique positive numbers ,β θ  such 
that ( ) 0if β =  and ( ) 0F θ =  and β θ<   

Theorem 2.1. (See [8].) Let ,u v  are a positive solution of (1.3). Then u and v 
has only one interior maximum in ( )0,1 , say at mt , depending on λ , and  
( )mu t θ> , ( )mv t θ> . 
Proof. Let  
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Note that by (H3), ( )1 0a t′ <  and ( )2 0a t′ <  for all ( ]0,1t∈ . Hence, ( )1E t  
and ( )2E t  are increases when ( )u t θ< , ( )v t θ<  and decreases when  
( )u t θ> , ( )v t θ> . 
Let ( )0,1mt ∈  be the first point at which u has a local maximum and assume 

that ( )u t θ≤  and ( )v t θ≤  for all [ ]0, mt t∈ . Then ( )1E t  and ( )2E t  are in- 
creases in [ ]0, mt . Now integrating (1.3) from t to mt , for mt t<  
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where ic d>  are such that ( ) i
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Since if  are continuous, there exists 0 0K >  such that ( ) 0F u K u≤  and  
( ) 0F v K v≤  for all ( ) [ ], 0,u v θ∈ . Hence 

( )( ) ( ) ( ) ( ) 2 1
1 0 1 0 0 1

0 0 0
lim lim lim 0
t t t

F u t a t K u t a t K C c dt αλ λ λ
+ + +

−

→ → →
≤ ≤ =  

( )( ) ( ) ( ) ( ) 2 1
2 0 2 0 0 2

0 0 0
lim lim lim 0
t t t

F v t a t K v t a t K C c dt αλ λ λ
+ + +

−

→ → →
≤ ≤ =  

Hence ( )0
lim 0it

E t+→
≥ . Since ( )iE t  increases on [ ]0, mt ,  

( ) ( )( ) ( )1 1 0m m mE t F u t a tλ= >  and ( ) ( )( ) ( )2 2 0m m mE t F v t a tλ= >  and which 
is a contra-diction if ( )mu t θ≤  and ( )mv t θ≤ . Suppose that u and v has two 
interior maxima. Then there exists ( ),1t t∈� �  such that ( ) 0u t′ =� , ( ) 0v t′ =�  
and ( ) 0u t′′ ≥� , ( ) 0v t′′ ≥� . Since ( ) ( ) ( )( )1 1 0u t a t f u tλ′′ = ≥� � � , and  

( ) ( ) ( )( )2 2 0v t a t f v tλ′′ = ≥� � �  we have ( )( )1 0f u t ≤�  and ( )( )2 0f v t ≤�  which 
implies that ( )u t β≤�  and ( )u t β≤� . Thus ( ) 0iE t <� . Let ( ),mt t tθ

�  such that  

( )u tθ θ=  and ( )v tθ θ= . Then ( )
( ) 2
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and iE  increases in ( ),t tθ
�  since ( )u t θ<  and since ( )v t θ<  in ( ),t tθ

� . 
Hence ( ) 0iE t >� , which is a contradiction. Therefore, we have only one interior 
maximum and that maximum value is larger than θ . 
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Theorem 2.2. (See [8].) Let u and v be a positive solution of (1.3) and let 

( )0, mt tβ ∈  such that ( )u tβ β=  and ( )v tβ β= . Then 
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Integrating (2.6) from 
2

tβ  to tβ , we have that 
1
2

1
2
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− 
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�  and  

1
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1
2
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� . This implies 
1
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  by (2.5).   

Lemma 2.3. Let u and v be a positive solution of (1.3). Then ( )1u →∞  and 
( )1v →∞  as λ →∞  

Proof. We first claim that ( )1
2

u β θ+
≥  and ( )1

2
v β θ+

≥  for 1λ � . As-
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sume that ( )1
2

u β θ+
<  and ( )1

2
v β θ+

<  Then there exists a ( ),1mt tθ ∈�   

such that ( )u tθ θ=�  and ( )v tθ θ=�  where mt  is the point at which ,u v  achi- 
eves are maximum, and ( )mu t θ> , ( )mv t θ>  by Lemma 2.1. 
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This cannot hold unless ( )1 0u →  and ( )1 0v →  as λ →∞ . However, 
rewriting (1.10) as 
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we obtain a contradiction when 1λ �  since 
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Let  
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Let 
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: sin
t t
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 − 

. Then ψ  satisfies: 
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Multiplying (1.13) by ψ  and (1.14) by h,and w integrating both from tβ  to 
1 and subtracting, we have 
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Since ( )mu t →∞ , ( )mv t →∞  and 0tβ →  as λ →∞ , it is all true that  

( ) ( ) 1and , in ,1 for 1
2 2 4

v t u tβ θ β θ λ+ +  ≥ ≥   
�        (1.16) 

Now we show that ( )1u →∞  and ( )1v →∞  as λ →∞ . Since ,u v  is a 
solution of (1.3), u and v can be written as: (see Appendix 8.2 in [5] for details)  
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where 
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G s a s f u s s G s a s f u s sβ

β
λ

 + 
 = +  ∫ ∫

  (1.19) 

( )( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( )
2

1
2 2 2 20

1 1 1

1, d 1, d
t

t

c v v

G s a s f v s s G s a s f v s sβ

β
λ

 + 
 = +  ∫ ∫

  (1.20) 

Then using the fact ( )1,G s s=  and tβ → ∞  as λ →∞ , for λ  large we 
obtain  

( )( ) ( ) ( ) ( )( ) ( ) ( )( )( )1
1 1 1 1 10

1 1 1 d d
t

t
c u u sa s f u s s sa s f u s sβ

β
λ + = +  ∫ ∫  

( )( ) ( ) ( ) ( )( ) ( ) ( )( )( )1
2 2 2 2 20

1 1 1 d d
t

t
c v v sa s f v s s sa s f v s sβ

β
λ + = +  ∫ ∫  

( ) ( )( ) ( ) ( )( )1
11 1 1 10
4

d d
t

sa s f u s s sa s f u s sβλ  
≥ + 

 
∫ ∫  

( ) ( )( ) ( ) ( )( )1
12 2 2 20
4

d d
t

sa s f v s s sa s f v s sβλ  
≥ + 

 
∫ ∫  

( )1
11 1
4

d
2 2

f sa s sλ β θ+ ≥  
  ∫

 

( )1
12 2
4

d
2 2

f sa s sλ β θ+ ≥  
  ∫

 

where the last inequality is obtained by (1.16). Hence, we have  

( )( ) ( ) ( )( ) ( )1 21 1 1 and 1 1 1 ,c u u K c v v Kλ λ   + ≥ + ≥            (1.21) 

where ( )1
11 1
4

1 d 0
2 2

K f sa s sβ θ+ = > 
  ∫

 and ( )1
12 2
4

1 d 0
2 2

K f sa s sβ θ+ = > 
  ∫

. 

Now, from (1.21), clearly ( )1u →∞ , ( )1v →∞  as λ →∞ .    
Lemma 2.4. Let u and v be a positive solution of (1.3). Then there exists  

[ ] 1, ,1
4

α µ  ⊂   
, α µ≠ , both independent of λ , such that [ ] ( ),inf u tα µ → ∞  

and [ ] ( ),inf v tα µ → ∞  as λ →∞  

Proof. As λ →∞ , mt  may converge to 1 or to any other point in ( )0,1 . 
First we consider the case 1mt   as λ →∞ . Since ( ) ( )1 mu u t<  and  
( ) ( )1 mv v t<  clearly there exists 1α <  such that [ ] ( ),1inf u tα → ∞  and  

[ ] ( ),1inf v tα → ∞  as λ →∞  by Lemma 2.3. 
Now, let us consider the case when 1mt →  as λ →∞ . By differentiating 

(1.17) and (1.18) (or integrating (1.3)), we obtain  

( ) ( ) ( )( ) ( )( ) ( ) [ ]1
1 1 1d 1 1 , 0,1 ,

t
u t a s f u s s c u u tλ′ = − ∈∫  

( ) ( ) ( )( ) ( )( ) ( ) [ ]1
2 2 2d 1 1 , 0,1

t
v t a s f v s s c v v tλ′ = − ∈∫  

which gives us that  
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( ) ( ) ( )( ) ( )( ) ( )1
1 1 1d 1 1 0,

t
u t a s f u s s c u uλ′ = − =∫          (1.22) 

( ) ( ) ( )( ) ( )( ) ( )1
2 2 2d 1 1 0

mt
v t a s f v s s c v vλ′ = − =∫          (1.23) 

Now we rewrite (1.17) and (1.18) by using (1.22), (1.23) as:  

( ) ( ) ( ) ( )( ) ( ) ( )( )( )1 1
1 1 1 10

, d d ,
mt

u t G t s a s f u s s a s f u s s tλ λ= −∫ ∫  

( ) ( ) ( ) ( )( ) ( ) ( )( )( )1 1
2 2 2 20

, d d
mt

v t G t s a s f v s s a s f v s s tλ λ= −∫ ∫  

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

1 1 1 10

1
1 1

, d , d

, d .

m

m

t t

t

t

G s t a s f u s s G t s a s f u s s

G t s t a s f u s s

β

β
λ λ

λ

= +

+ −  

∫ ∫

∫
 

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

2 2 2 20

1
2 2

, d , d

, d .

m

m

t t

t

t

G s t a s f v s s G t s a s f v s s

G t s t a s f v s s

β

β
λ λ

λ

= +

+ −  

∫ ∫

∫
 

Note that if [ ]0, mt t∈ , then  

( ) ( ) ( )( )1
1 1, d 0

mt
G t s t a s f u s s− =  ∫  

and 

( ) ( ) ( )( )1
2 2, d 0

mt
G t s t a s f v s s− =  ∫  

since 1mt t s≤ ≤ ≤  implies ( ),G t s t= . Now 0tβ →  and 1mt →  as λ →∞ . 

Hence, for 1 3,
4 4

t  ∈   
 and λ  large we obtain  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )( )1 1 1 10
, d , d ,mt t

t
u t G t s a s f u s s G t s a s f u s sβ

β
λ= +∫ ∫  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )( )2 2 2 20
, d , dmt t

t
v t G t s a s f v s s G t s a s f v s sβ

β
λ= +∫ ∫  

( ) ( ) ( )( ) ( ) ( ) ( )( )
3
4

1 1 1 110
4

, d , d ,
t

G t s a s f u s s G t s a s f u s sβλ
 

≥ +  
 
∫ ∫  

( ) ( ) ( )( ) ( ) ( ) ( )( )
3
4

2 2 2 210
4

, d , d
t

G t s a s f v s s G t s a s f v s sβλ
 

≥ +  
 
∫ ∫  

( )
3

1 4
1 1

4

, d ,
2 2
a

f G t s sβ θλ + ≥  
  ∫

 

( )
3

2 4
2 1

4

, d .
2 2
a

f G t s sβ θλ + ≥  
  ∫

 

Thus, 

( ) ( )
3

1 4
1 11 3, 44 4

inf , d
2 2
a

u t f G t s sβ θλ
 
  

+ ≥  
  ∫  

and 

( ) ( )
3

2 4
2 11 3, 44 4

inf , d
2 2
a

v t f G t s sβ θλ
 
  

+ ≥  
  ∫  
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on 1 3,
4 4
 
  

, which means that ( )u t →∞  and ( )v t →∞  for all 1 3,
4 4

t  ∈   
 as 

λ →∞ . 
Lemma 2.5. Let u and v be a positive solution of (1.3). Then there exists λ�  

such that if λ λ> � , then 

( ) ( ) ( ) ( ), and ,u t Cd t v t Cd tλ λ≥ ∂Ω ≥ ∂Ω             (1.24) 

for some positive constant C, independent of λ . Here ( )0,1Ω = . 
Proof. Let iφ  be the unique solution of the problems  

( ) ( )
( ) ( )

, , ,1

1 0, and 1,2

i i

i i

a t t

t i

α µ β

β

φ ω

ψ ψ

 ′′− =


= = =
                (1.25) 

where ω  is the characteristic function. By the Hopf maximum principle there 
exists 0ic >�  such that ( ) ( )i i it c e tφ > �  for all [ ]0,1t∈ , where ie  are a solu-
tion of  

( ) ( )
( ) ( )

, , ,1

0 1 0, and 1,2
i i

i i

e a t t

e e i
α µ βω ′′− =


= = =

                 (1.26) 

Let 0H >  be such that ( ) ( ): 0 0i i iD c f H f= + >� , and this is possible by 
(F2). Let 1 1,u v  and 2 2,u v  satisfy  

( ) [ ] ( ) ( ) ( ) ( )1 1 1 1 1, , 0,1 , 0 0 1u f H a t t u uλ ω α µ′′− = ∈ = =  

( ) [ ] ( ) ( ) ( ) ( )1 2 2 1 1, , 0,1 , 0 0 1v f H a t t v vλ ω α µ′′− = ∈ = =  

and 

( ) [ ] ( ) ( ) ( ) ( )2 1 1 2 20 , , 0,1 , 0 0 1u f a t t u uλ ω α µ′′− = ∈ = =  

( ) [ ] ( ) ( ) ( ) ( )2 2 2 2 20 , , 0,1 , 0 0 1v f a t t v vλ ω α µ′′− = ∈ = =  

Now by Lemma 2.4, there exists 0λ >�  such that if λ λ> � , then  

( ) ( ) [ ]and on , .u t H v t H α µ≥ ≥               (1.27) 

Hence, by (1.27), for 1λ �  we have that for ( )0,1t∈   

( ) ( ) ( ) ( ) [ ] ( ) ( ) [ ]1 1 1 1 1 10, , ,Bu f u a t f u a t t f u a tλ λ ω λ ω α µ′′− = ≥ +  

( ) ( ) ( ) ( ) [ ] ( ) ( ) [ ]2 2 2 2 2 20, ,Bv f v a t f v a t t f v a tλ λ ω λ ω α µ′′− = ≥ +  

( ) ( ) ( ) ( ) [ ]2 2 2 20 ,v f a t f H a tλ λ ω α µ′′− ≥ +  

( ) ( ) ( ) ( ) [ ]1 1 1 10 ,u f a t f H a tλ λ ω α µ′′− ≥ +  

( ) ( )1 2u u t′′= − −  

( ) ( )1 2v v t′′= − −  

( ) ( )( )1 20 0 0u u u− − = , ( ) ( )( )1 20 0 0v v v− − =  and  
( ) ( )( ) ( )1 21 1 1 0u u u u− − = > , ( ) ( )( ) ( )1 21 1 1 0v v v v− − = > . By the maximum 

principle, ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 1 1 10u t u t u t f H t f e tλ φ λ= − = +  and  
( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 2 2 20v t v t v t f H t f e tλ φ λ= − = +  in [ ]0,1 . Hence 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 10u t f H c e t f e t De tλ λ≥ + =�  

and 
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( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 20v t f H c e t f e t De tλ λ≥ + =�  

for all [ ]0,1t∈ . 
Note that there exists 0L >  such that ( ) ( )1 ,e t Ld t≥ ∂Ω  and  
( ) ( )2 ,e t Ld t≥ ∂Ω  for all [ ]0,1t∈ . Hence, for λ  large ( ) ( ),u t Cd tλ≥ ∂Ω  and 
( ) ( ),v t Cd tλ≥ ∂Ω for all [ ]0,1t∈ , where : 0C DL= > . 
Lemma 2.6. Let u and v be a positive solution of (1.3). Then there exists Hλ  

such that u Hλ∞
≤  and v Hλ∞

≤ . 
Proof.  
Let ( )1

0
diB a s s= ∫ . Then B < ∞  since ( )i ia t c tα≤  for all ( )0,1t∈  for some 

0ic > . Now for each given 0λ > , there exists 0Wλ >  such that if  

W Wλ> , then ( ) 1
2

if W
W Bλ

≤  due to the hypothesis (F1). Also since  

[ )( )1 0, ,if C R∈ ∞ , there exists 0Kλ >  such that ( )if W Kλ≤  on [ ]0,Wλ . Hence,  

( ) [ ), 0, .
2i
Wf W K W

B λλ
≤ + ∈ ∞                 (1.28) 

Now by Lemma 2.1 and (1.28), we have  

( ) ( ) ( )( ) ( )( ) ( )1
1 1 10

( , ) d 1 1m m mu u t G t s a s f u s s c u u tλ
∞
= = −∫  

( ) ( ) ( ) ( )( ) ( )( ) ( )1
2 2 20

, d 1 1m m mv v t G t s a s f v s s c u u tλ
∞
= = −∫  

( ) ( ) ( )( )1
1 10

, dmG t s a s f u s sλ≤ ∫  

( ) ( ) ( )( )1
2 20

, dmG t s a s f v s sλ≤ ∫  

( ) ( ) ( )1
10

, d
2

m
m

u t
G t s a s K s

B λλ
λ

 
≤ + 

 
∫  

( ) ( ) ( )1
20

, d
2

m
m

v t
G t s a s K s

B λλ
λ

 
≤ + 

 
∫  

( ) ( )1
10

1 d
2 ma s u t K s

B λλ
λ

 ≤ +  ∫  

( ) ( ) ( ) [ ] [ ]( )1
20

1 d since , 1 in 0,1 0,1
2 ma s v t K s G t s

B λλ
λ

 ≤ + ≤ ×  ∫  

( )1
2 mu t BKλλ= +  

( )1
2 mv t BKλλ= +  

Hence, for each 0λ > , u Hλ∞
≤  and v Hλ∞

≤ , where 2H BKλ λλ= . 

3. Proof of Theorem 1.1 

We first claim that (1.3) has a maximal positive solutions ,u v� �  for 1λ � . Let 

iϕ  be the solutions of the problems  

( ) ( )
( ) ( )( ) ( )
( )

1 , 0,1

1 1 1 0,

0 0 and 1,2

i

i i i i

i

a t t

c

i

ϕ

ϕ ϕ ϕ

ϕ

′′− = ∈
 ′ = =


= =

                 (1.29) 
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Note that (1.29) has the unique solution since ie , 0ϕ  are sub solutions and 
super solutions of (1.29), respectively, where ie  is defined in (1.26) and 0ϕ  is 
the solutions of the linear boundary condition problems  

( ) ( )
( ) ( )( ) ( )
( )

0

0 0 0

0

, 0,1

1 1 1 0,

0 0 and 1,2

i

i

a t t

c

i

ϕ

ϕ ϕ ϕ

ϕ

′′− = ∈
 ′ = =


= =

                 (1.30) 

Since if  satisfies (F1), given 0λ > , we can choose 1Zλ ≥  such that  

( )i iZ f Zλ λλ ϕ
∞

>  and ( )iZ f Hλ λλ>  where Hλ  is as in Lemma 2.6. Then, 

iZλϕ  are a super solutions of (1.3) since  

( ) ( ) ( ) ( ) ( )

( )( ) ( )( )( ) ( ) ( ) ( )( )( ) ( )( )
( ) ( )( ) ( )( )

( )

, 0,1

1 1 1 1 1 1

1 1 1 0,

0 0 and 1,2

i i i i i i i i

i i i i i i i i

i i i i

i

Z Z a t a f Z a f Z t

Z c Z Z Z c Z

Z c

Z i

λ λ λ λλ

λ λ λ λ λ

λ

λ

ϕ λ ϕ λ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ

 ′′− = ≥ ≥ ∈


′ ′+ = +

 ′≥ + =

 = =

 

Next, we show that this super solution iZλϕ  is larger than any positive solu-
tions of (1.3). Let iθ  be any positive solutions of (1.3). From Lemma 2.6, we have  

( ) ( ) ( ) ( )

( ) ( )0, 0,1

i i i i i i i i i

i i

Z Z a t a f a Z f

a Z f H t

λ λ λ

λ λ

ϕ θ λ θ λ θ

λ

′′  − − = − = − 

 ≥ − > ∈ 

 

by the choice of Zλ . Note that ( )( )0 0i iZλϕ θ− = . Now we show that  
( )( )1 0i iZλϕ θ− ≥ . Indeed, since  

( ) ( )( )( ) ( ) ( ) ( )( ) ( )1 1 1 0 1 1 1i i i i i i i iZ c Z Z cλ λ λϕ ϕ ϕ θ θ θ′ ′+ ≥ = + , we have  

( ) ( ) ( )( )( ) ( ) ( )( ) ( )1 1 1 1 1 1 0i i i i i i i iZ c Z Z cλ λ λϕ θ ϕ ϕ θ θ′ ′− + − ≥      (1.31) 

If we assume that ( ) ( )1 1 0i iZλϕ θ− < , then  
( )( )( ) ( ) ( )( ) ( )1 1 1 1 0i i i i i ic Z Z cλ λϕ ϕ θ θ− <  since ic  increases. Hence from (3.3) 

we obtain ( ) ( )1 1 0i iZλϕ θ′ ′− > . However, ( ) 0i iZλϕ θ ′′− − >  in ( )0,1 ,  
( )( )0 0i iZλϕ θ− =  and ( )( )1 0i iZλϕ θ− <  implies that ( ) ( )1 0i iZλϕ θ ′− > , 
which is a contradiction. Hence ( ) ( )1 1 0i iZλϕ θ− ≥ . Therefore, by the maxi-
mum principle, i iZλϕ ϕ≥  in [ ]0,1 . Therefore, (1.3) has a maximal positive 
solutions ,u v� � . Now, let u and v be any other positive solutions of (1.3). To es-
tablish our theorem, we will show that u u≡ �  and v v≡ �  for 1λ � . Since  

,u v  and ,u v� �  are solutions of (1.3), we obtain 

( ) ( ) ( ) ( )( ) ( )( )( ) ( )

( ) ( ) ( ) ( )( ) ( )( )( ) ( )
( )( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( )( ) ( )

1 1 1

2 2 2

1 1

2 2

, 0,1

, 0,1

0 0 0,

1 1 1 1 1 0,

1 1 1 1 1 0

u u t a t f u t f u t t

v v t a t f v t f v t t

u u v v

u u c u u c u u

v v c v v c v v

λ

λ

 ′′− − = − ∈
 ′′− − = − ∈


− = − =


′ − + − =


′ − + − =

� �

� �

� �

� � �

� � �
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By the mean value theorem, there exists ξ  such that u uξ≤ ≤ �  and  
v vξ≤ ≤ �  quadin [ ]0,1  and  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
( )( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( )( ) ( )

1 1

2 2

1 1

2 2

, 0,1

, 0,1

0 0 0,

1 1 1 1 1 0,

1 1 1 1 1 0

u u t a t f u t u t t

v v t a t f v t v t t

u u v v

u u c u u c u u

v v c v v c v v

λ ξ

λ ξ

 ′′ ′− − = − ∈
 ′′ ′− − = − ∈
 − = − =
 ′− + − =


′ − + − =

� �

� �

� �

� � �

� � �

       (1.32) 

By multiplying (1.3) by ( ) ( ),u u v v− −� �  and (1.32) by ,u v  and integrating, 
we first obtain, using integration by parts,  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( )( )

1

0

1 1

1 1

d 1 1 1 1

1 1 1 1 1 1

1 1 1 1

0

u u u u u u t u u u u

u c u u u c u u

u u c u c u

 ′′ ′′ ′ ′− − − = −  
   = − +   

 = − 
≤

∫ � � � �

� � �

� �

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( )( )

1

0

2 2

2 2

d 1 1 1 1

1 1 1 1 1 1

1 1 1 1

0

v v v v v v t v v v v

v c v v v c v v

v v c v c v

 ′′ ′′ ′ ′− − − = −  
   = − +   

 = − 
≤

∫ � � � �

� � �

� �

 

since ic  are increasing. Using that if  is concave, we also have  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
1 1 10 0

1
1 1 10

d d

d

u u u u u u t a t f u f u u u t

a t f u f u u u u t

λ ξ

λ

 ′′ ′′ ′− − − = − −    

′≥ − −  

∫ ∫

∫

� � �

�
  (1.33) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
2 2 20 0

1
2 2 20

d d

d

v v v v v v t a t f v f v v v t

a t f v f v v v v t

λ ξ

λ

 ′′ ′′ ′− − − = − −    

′≥ − −  

∫ ∫

∫

� � �

�
  (1.34) 

From (F1), there exist 0ir > , 0ib >  such that ( ) ( )i if s f s s b′− ≥  when-
ever is r≥ . From (1.20), for 1λ � , ( ) iu t r≥  and ( ) iv t r≥  if  

( ), ird t
Cλ

∂Ω ≥ . Let ,1i ir r
C Cλ λ+

 Ω = −  
 and 0, 1 ,1i ir r

C Cλ λ−
   Ω = −   
   

∪ . Then 

from (1.33), we have  

( ) ( ) ( ) ( )( )1 1 1 10 d 0 da t b u u t a t f u u tλ λ
+ −Ω Ω

≥ − + −∫ ∫� �  

( ) ( ) ( ) ( )( )2 2 2 20 d 0 d .a t b v v t a t f v v tλ λ
+ −Ω Ω

≥ − + −∫ ∫� �        (1.35) 

since when if  is concave ( ) ( ) ( )0i i if W Wf W f′− ≥  for all 0W ≥ . 
Next let m and h satisfy  

( ) ( ) ( ) ( ) ( )1 , 0,1 , 0 1 0,m t a t t m mω
+Ω′′− = ∈ = =  
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( ) ( ) ( ) ( ) ( )2 , 0,1 , 0 1 0m t a t t m mω
+Ω′′ = ∈ = =  

and 

( ) ( ) ( ) ( ) ( )1 , 0,1 , 0 1 0,h t a t t h hωΩ−
′′− = ∈ = =  

( ) ( ) ( ) ( ) ( )2 , 0,1 , 0 1 0h t a t t h hωΩ−
′′− = ∈ = =  

respectively. Now multiplying (1.32) by ( )0i ib m f h+  and integrating, we ob-
tain  

( ) ( )1
1 10

: 0 dI u u b m f h t′′= − − +  ∫ �  

( ) ( )1
2 20

: 0 dJ v v b m f h t′′= − − +  ∫ �  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )
1 1 1 1

1 1

1 1 1 0 1 d

0 d

u u b m f h a t b u u t

a t f u u t
+

−

Ω

Ω

′ ′= − + + −  

+ −

∫
∫

� �

�
 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )
2 2 2 2

2 2

1 1 1 0 1 d

0 d

v v b m f h a t b v v t

a t f v v t
+

−

Ω

Ω

′ ′= − + + −  

+ −

∫
∫

� �

�
 

1 2

1 2

I I
J J

= +
= +

                        (1.36) 

Note that as λ →∞ , im e→  and 0h →  in [ ]1 0,1C . Hence, for λ  large, 
we obtain ( )0 0i ib m f h+ > , in ( )0,1  and 1,2i =  

( ) ( )0 0 in 0,1i ib m f h+ >                  (1.37) 

and 

( )0 0i ib m f h′ ′+ <                       (1.38) 

Hence for 1λ � , (1.37) implies 1 0I ≤ , 1 0J ≤  and combining with (1.34) 
(which implies 2 0I ≤  and 2 0J ≤ ) we have 0I ≤  and 0J ≤ . However, by 
(1.32), we also have  

( ) ( )

( ) ( ) ( ) ( )( ) ( )

1
1 10

1
1 1 1 10

: 0 d

0 d

I u u b m f h t

a t f u t u t b m f h tλ ξ

′′= − − +  

′+ − +  

∫

∫

�

�
 

( ) ( )

( ) ( ) ( ) ( )( ) ( )

1
2 20

1
2 2 2 20

: 0 d

0 d

J v v b m f h t

a t f v t v t b m f h tλ ξ

′′= − − +  

′+ − +  

∫

∫

�

�
 

Now for 1λ � , using (1.36), 0ia > , and 0if ′≥  we get 0I ≥  and 0J ≥ . 
Hence, we conclude that 0I ≡  and 0J ≡  for 1λ � , which implies that  
v v≡�  and u u≡�  in [ ]0,1 . This proves that (1.3) has a unique positive solu-
tion for all λ  large. 

4. Conclusion 

In the paper, were studied the positive radial solutions for elliptic systems to the 
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nonlinear Boundary Value problems. And then, we presented that by the Theo-
rem 1.1, and Theorem 2.2, we can obtain a solution of the problem (1.3). More-
over, for all 1λ � , then (1.3) has a unique positive solution. 
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