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Abstract

In this paper, we study the positive radial solutions for elliptic systems to the
—Au = 2k, (|x]) f, (u,v) onQ,

~Av = Ak, (|X]) f, (u,v) onQ,

u(x)=v(x)=0 on|x| > o,

nonlinear BVP: , where Au=div(Vu) and

ou
£+cl(u)u =0 on|x=r,

(;ﬂ+62 (v)v=0, onl|x/=r,

Av =div(Vv) are the Laplacian of u, 1 is a positive parameter,

Q={xeR":N>2[x>1,1,>0}, let i=[12] then K, :[r,)—>(0,)

is a continuous function such that lim

. K (r)=0 and 2 s The exter-
on

nal natural derivative, and ¢ :[0,oo) - (0,oo) is a continuous function. We

discuss existence and multiplicity results for classes of fwith a) f >0, b)

f,<0,and ¢) f,=0. We base our presence and multiple outcomes via the

Sub-solutions method. We also discuss some unique findings.

Keywords

Elliptic System, Positive Radial Solution, Exterior Domains, Fixed Point Index

1. Introduction

In reaction diffusion processes, steady states define the long term dynamics.
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Here we consider a steady state reaction diffusion equation on an exterior do-
main with a nonlinear boundary condition on the interior boundary. Namely,
we study positive radial solutions to:

—Au = Ak, (|x]) f,(u,v) onQ,
—Av = 2Kk, (|x]) f, (u,v) onQ,

u(x)=v(x)=0 on|x|—> o,

X

X

ou
£+cl(u)u =0 on|x=r,

%+(~:Z (v)v=0, on|x|=r,.

where Au=div(Vu) and Av=div(Vv) are the Laplacian of , A isa positive
parameter, (= {X eR":N> 2,|X| > 1,1 > O} ylet i=[1,2] then
ki(r)=0 and

r—oo i

K; :[f,0) = (0,0) is a continuous function such that lim
% is the outward normal derivative, and ¢ :[0,0) — (0,0) is a is an non
decreasing (increasing) function. Here the reaction term f, :[O,oo)x[O,oo) —-R
isa C! function. The case when f, <0 (see [1] [2], that the study of positive
solutions to such problems is considerably more challenging than in the case
f, >0 (positone problems). For a rich history on semipositone problems with
Dirichlet boundary conditions on bounded domains, (see [3]-[8], and on do-
mains exterior to a ball, see [9] [10] [11]. Such nonlinear boundary conditions
occur very naturally in applications see [12] for a detailed description in a model
arising in combustion theory. Recently, the existence of a radial positive solution
for (1.1) when A>>1 has been established in [13], via the method of subsuper
solutions. Here we discuss the uniqueness of this radial solution when some ad-
ditional assumptions hold. In [14], the authors study such a uniqueness result
for the case of Dirichlet boundary condition on |X| =1,. Our focus in this paper
is to consider the uniqueness result for semipositone problem when a class of
nonlinear boundary condition is satisfied at |x|=r,. The fact that we have no
longer a fixed value of zon |x|=r, results in quite a challenge in extending the
results in [15].

Namely, we need to establish a detailed behavior of u at |X| =1, to achieve

our goal. Instead of working directly with (1), we note that the change of

2-N
variables r=|x and s= {LJ transforms (1) into the following boundary
rO

value problem:

w(1)= 280 L (u(0) V(D) tefod]

—Vv"(t) =4, (t) f,(u(t),v(t)) te[01],
Nro_zu’+61(u(1))u(1):0, (12)
Nro_ v’+62(v(1))v(1)=0,

u(0)=v(0)=0
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(2 AN 1
where § :ﬁt N=2 K, (rotZN J We will only assume k; <
2-N

r>1 and for some ue (0, N —2). then & e ((0,1],(0,00)) could be singular

e for

at 0.if 4>N-2, & will be nonsingular at 0 and it will be an easier case to

study. Note that & = inftE 0 & (t)>0 and there exists a constant d>0 such

N-2)-
that & < i forall te(0,1] where &= u Motivated by the above
dlscusswn, in this paper, we will study positive so%utlons in C? (0 l)ﬂC [O l]
to the following boundary value problems:

—u'(t)=4a,(t) f, (u(t).v(1)) tef01],

—V'(t) =23, (t) f ((t): (1) te[o1],
u'(1)+c(u(@))u)=0, (1.3)

)+, (v )V
u(0)=v(0)=o.
where ¢; :[0,00) — (0,%0) isa continuous function and 8, eC((O,l],(O,oo)) is
such that:

(H1) a —|nft€01] (t)>0; g

(H2) there exists a constant d >0 such that & (t):t_“ for all te(0,¢]
where ae(0,1) and &£~0

(H3) a isdecreasing. We consider various C' classes of the reaction term

f; 1[0,00)x[0,00) - R satisfying the following:

=0
=0

f
(F1) f; <0 and Iims_mﬂ:o; i=12
s

(F2) f isincreasingand lim _,  f(s)=00;i=12

(F3) f, isconcave on [O,oo). i=12

Theorem 1.1. Assume (H1) - (H3) and (F1) - (F3). Then (1.3) has a unique
positive solution for all A4 sufficiently large.

In Section two we will establish important a priori estimates. We will first re-
call some important results from [8] where the authors studied the case of Di-
richlet boundary condition, or equivalently (1.3) with the boundary condition
t=1 replaced by u(1)=v(1)=0. These results do not depend on the boundary
condition at t=1 and hence it is also true for solutions of (1.3). In view of the
readers convenience we include the proofs of these results. In Section three, we

prove Theorem 1.1.

2. Advance Estimates

Let F( J. f. (t)ds . Note that there exist unique positive numbers 3,6 such
that fI (,B) 0 and F(6)=0 and g<¢6

Theorem 2.1. (See [8].) Let u,v are a positive solution of (1.3). Then zand v
has only one interior maximum in (0,1), say at t, dependingon A, and
u(t,)>0, v(t,)>6.

Proof. Let
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e 0= #F (o(0)a 0+ (o) 14
(t)=AF (v(t))a, (1) |V’(2t)| te(0,1)
then
E{(t) = 2F (u(t))ai (t).t < (0,), 1.5)
E1 ()= £F (v(1)a (1)t £(0.) |

Note that by (H3), a/(t)<0 and a;(t)<0 forall te (0,1] . Hence, E,(t)
and E,(t) areincreases when u(t)<@, v(t)<@ and decreases when
u(t)>0, v(t)>6.

Let t, €(0,1) be the first point at which u has a local maximum and assume
that u(t)<@ and v(t)<@ forall te[0,t, ]. Then E (t) and E,(t) arein-
creases in [0,t, ]. Now integrating (1.3) from ¢to t,for t<t,

f
=J':m/1a1(s) f,(u(s))ds<Af (6 j c1 —Lds </1€11 :(9)
a
1.6

t tm 02 C, fz (49) ( )

=["a,(s) f,(v(s))ds < A, (6) [ " Zds < A2

C
where ¢, >d are such that a(t)< t—; for all te(0,1) using (H2). Integrat-
ing again (1.6) from O to t, t<t,

“clf( Jgs, ¢, =40

ae 1—fa€ (1.7)
t)sﬁlcz o ( )ds, Cozczlz( )
-a -a

Since f; are continuous, there exists K, >0 such that |F (u)| <K,u and
|F (V)| <Ky forall (u,v)e[0,0].Hence

lim AF (u(t)|a, (1)< lim 2,0 (1), (1) < lim 27K,C,c,dt =0

lim A F(v(t))|a\2 (t) < lim AKov(t)a, (t) < lim A2K,C,c,dt** =
t—0"

t—0" t—0"

Hence lim_ . E (t)20.Since E(t) increaseson [0,t,],
E (t,)=4F(u(t,))a,(t,)>0 and E,(t,)=AF(v(t,))a,(t,)>0 and which
is a contra-diction if u(t,)<6 and v(t,)<6. Suppose that u and v has two
interior maxima. Then there exists fe(f,1) such that u’(f)=0, v'(f)=0
and u"(f)>0, v"(f)=0.Since u"(f)=41a,(f)f ( ())>O and
V'(f)=2a, (f) f,(v(f))20 we have f,(u(f))<0 and f,(v(f))<0 which
implies that u(f)ﬁﬂ and u( )<,[)’ Thus E, (t)<0 Let t (t t) such that
t

IU'(e)I

V()

u(t,)=6 and v(t,)=6. Then E(t,)= , E(ty)= > ) >0

and E increases in (t,,f) since u(t)<@ and since v(t)<@ in (t,,f).
Hence E, (f) >0, which is a contradiction. Therefore, we have only one interior

maximum and that maximum value is larger than 6.
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Theorem 2.2. (See [8].) Let u and v be a positive solution of (1.3) and let
1
t, €(0,t,) such that u(t[,):ﬂ and V(tﬂ):ﬂ.Then t, SO[& 2] as
A—>o.

Proof. Let tﬁ e(O,tﬂ) be the point such that u(tﬂJ=

5 Ll

(SRS
ot
=
o,
<
7\
—
YRS
NG
1]
N

2
from Integrating (1.3) from 0 to ¢for some t<t,
2

¢ = -/ —|>0
Yij 2
L 1 ﬁ(_fl(zn
t, <€A % t, <A 2 where (1.8)
2 2
¢, = il T >0
B 2
_f | 2
o~ (2)]

By the mean value theorem, there exists a fe {0, t ﬂ} such that
2

1
u(tﬂ]—u(O):u'(f)tl,, v[tﬂ]—v(o):v'(f)tﬂ and by (2.5) u'(f)zzﬁ/ﬁ
2 2 2 2 Cl

1
and v'(f)z%ﬂ.smce u" and V' areincreasesin [O,tﬂ],
2
Yij 1
u'(t)>=-2?, te{tﬁ,tﬂ}
2¢, Z 19)
B

1
V() 222, telt,t
=2 ]
1
Integrating (2.6) from t; to t;, we have that [tﬂ—tﬂJSQi 2 and
2 2

1 1
(tﬁ —tﬁJS €, ?. This implies t, < O(ﬂ zj by (2.5). O
2
Lemma 2.3. Let zand vbe a positive solution of (1.3). Then u (1) — o0 and
V(l) —>® as A—>®
+6
2

+0

s
and v(1)> 5

Proof. We first claim that u(1)> B

for A>1. As-
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sume that u(l)<¥ and v(l)<¥ Then there exists a f, e(t,,1)

such that u(f,)=6 and v(f,)=60 where t, is the point at which u,v achi-

eves are maximum, and u(t,)>6, v(t,)>¢ byLemma 2.1.

|u '(f, )| |V’ (f, )|

From (2.1) and (2.2), El(fg)=T>O, Ez(fg)=T>o and

E;(t)=0 on [f,,1] since u(t)<@ and v(t)<@ in [{,1]. Hence we obtain
that

El(l)—/lF(u(l))ai(l)+w> 0,
E,(1)=2F(v(1))a, (1)+@>0

and from (1.3), we have
{q (UW)u() = —'(1) 2 22F (u(D)a, (1),
6, (v(1)v(1)=—v'(1) 2 |-24F (v(1))a, (1).

This cannot hold unless u(1)—>0 and v(1)—>0 as A —> . However,

(1.10)

rewriting (1.10) as

(1.11)
&, (v(O)v(D)? 2 J_u F%)l)) e
we obtain a contradiction when A>1 since S;S ) — £,(0),
F\(/\Ei)l)) S5 1,(0) if u(1)—>0 and v(1)—>0 as 4> co. Hence,
u(1)zﬂ;‘9 and v(1)zﬂ;”9 for 1 (1.12)

Next, we claim that u(t,)=|ul|, > and v(t,)=|v|| > as 2 —>w.
Let
hi=u-f and wi=v-p then h>0, w>0 in (tﬂ,lJ and satisfies

-h"=2a, (t)%uﬁ?h (1)

-W" = Aa, (t) \flz_(\;) wo(t,,1)

(1.13)

h(t,)=w(t,)=0,

h(1)=u(1)-5>0

w(l)=v(1)-4>0

. (t_tﬁ) .~
Let y =:sin : .Then y satisfies:
Y
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2

"

ey
v(ty)=w(1)=0

Multiplying (1.13) by y and (1.14) by Aand wintegrating both from t; to
1 and subtracting, we have

(1.14)

1 f (u)
hﬂ "h h
J, (0w =y I{ A ﬁal(t)J it
I} (wy —yw)o F{ v, (t)}wwdt
Since f h"y —y"h)dt = —' (1)h(1)( and
L (W'y — l// "w)dt = - (1)w(1)(>0) b 1ntegrat10n by parts, we can see that
2 2
T s l(u)al(t) and ———> 1 f(v) 3, (t) for some t e (t,,1) (1.15)
(1-t,) u-8 (1-t,) v-8

Note that inf,a (t)>0, inf,,a,(t)>0 and from Lemma 2.2 we can as-

f f
sume (1—tﬁ)>%. Thus (2.11) is only true if Lu)_“) and z(V)_>O

when 1> 1. By (F1) (F2), we conclude that u(t,)=|u|  and v(t,)=|v| a
A — o . Notice that since U”"<0 and v"<0 in (t 1|, we have

u(t)zW(t—tﬂﬁﬁ, teft,t, ]

p1m

v(t)= V(tm_)_ﬁ(t—tﬂ)+ﬁ, te[t,t, ]

t,—t,
p+0
u(t,
u(t)> (1)_t 2 1)+ 220 veq, )
p+0
v(t,)-
v(t)z(l_—z(l—t)+ﬁ;9, tet,]

Since u(t,)—>w, V(t,)—>o and t; >0 as 1 — oo, itisall true that
v(t)zg and u(t)zg, in El} for A>1 (1.16)

Now we show that u(l)—>o and v(1)—>o as A—o0. Since u,v isa

solution of (1.3), wand vcan be written as: (see Appendix 8.2 in [5] for details)

= /lj:G (t;s)a(s) f,(u(s))ds—c, (u(1))u(1)t (1.17)
= A[;G(t.s)a, (s) f, (v(s))ds—c, (v(1))v(L)t (1.18)
where
DOI: 10.4236/am.2021.123009 137
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, 0<s<t<1
e(t,s)={‘°‘ °

t, 0<t<s<1
Let t=1.Then from (1.17) and (1.18), we have

[ 1+ (u()]u()
t 1 (1.19)
=4[ [} 6(1:9)a(9) £ (u(s))s [} G (Ls)ar () (u(s))es |
[1+ c, (v(l))]v(l)
(1.20)

= 4[L§”G(1’5)a2 (5) %, (v(s))ds+ [} G(L5)a, (5) 1, (v(s))ds}

Then using the fact G(l,s) =s and tﬂ —>w as A—oo, for 1 large we
obtain

[1+c(u :/1(j”sa1 u(s) ds+j sa, (s) f,(u(s ))ds)

[1+¢, (v(1)Jv(2) = A{ [ sa, (s ds+j sa, (s) f, (v(s))ds)

5
z[ ds+jlsa1 ((s))dsj
( sa, (s ds+jlsa2 )fz(v(s))ds)
>§f [ﬁzejflsai( )ds
-2 Z(ﬂzgjjisaz(s)ds

where the last inequality is obtained by (1.16). Hence, we have

[1+¢, (u(1)]u())= 2K and [1+c,(v(1))]v(1)= 2K, (1.21)
where K:— (ﬁzejjlsai( )ds>0 and K:— (ﬂgajjlsaz(s)ds>0

Now, from (1.21), clearly u(1l)—> o, v(1) > as A—o0. O
Lemma 2.4. Let uzand vbe a positive solution of (1.3). Then there exists

[a,y]c[%,l}, a # 4, both independent of A, such that inf[mﬂ]u(t)—mo
and inf . v(t)> o as 1>
[ar.4]

Proof. As A — o, t, may converge to 1 or to any other point in (0,1).
First we consider the case t, -1 as A —o0.Since u(l)<u(t,) and
v(1)<v(t,) clearly thereexists o<1 suchthat inf,  u(t) —>o and
inf[a,l] v(t) > as A —>o byLemma 2.3.

Now, let us consider the case when t, =1 as A —co. By differentiating
(1.17) and (1.18) (or integrating (1.3)), we obtain

w'(t)=2["a,(s)f,(u(s))ds—c (u(1))u(1), tefo,],
v(t)=2[ a,(s) f, (v(s))ds—c, (v(1))v(1), te[0,1]

which gives us that
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(1)=2[ 2, (5) f, (u(s))ds—c, (u(D))u (1) =0, (122)
)= 2], a,(s) T, (v(s))ds —c, (v(2))v(1) = 0 (1.23)
Now we rewrite (1.17) and (1.18) by using (1.22), (1.23) as:
=ﬁfG (t:5)a (s) T, (u(s))ds=2( [ au(s) u(u(s))es]t.
)= 2,6 (t.5)au (s) , (v($))ds = A( [ 2, (5) £ (v(s) st
_q‘ﬂ s,t)a,(s) f, (u(s)) dsmj G(t,5)a,(s) f, (u(s))ds
+a, [6(ts) t]ai 5) f,(u(s))ds.
= 4] G(s,t)a, (s) f, (v(s)) dsmj G(t.s)a,(s) f,(v(s))ds
(s)

+4f, [6(ts)-t]a,(s) £, (v(s))ds.
Note thatif te[0,t, ], then
L [6(ts)-t]a(s) 1, (u(s))ds =0
and

I[G t,s)—t]a,(s)f,(v(s))ds=0

since t<t, <s<1 implies G(t,s)=t.Now t; >0 and t, >1 as A —>w.

u(t)= A(L, G (t.5)a,(5) u(u(5))ds + [ G (t.5)a, (5) (u(5))es .
V()= 2{[7 6 (.5)a, ()£, (v(s))ds + [ G (t.5)a, (5) , (v(s)) s
2[00 ) o) 16 60 ) u(o)s |
M[IJ”G(m)az(s)u(v(s))dsﬂfea,s)az(s)u(v(s))ds]

L (p+0
2/1?1‘2( > jij(t s)ds
Thus,
a _(p+0). . >
u(t)zl?fl(T][llng £G(t,s)ds
2a] 4
and
B+6). ¢ 3
v(t)zﬂ,—zfz( 5 jflng %“G(t s)d
4'4
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on {l %} , which means that u(t) >c and v(t)—>oo forall te [% %} as

A— é(‘r)
Lemma 2.5. Let u and v be a positive solution of (1.3). Then there exists y)
such that if 1>, then
u(t)=ACd (t,0Q) and v(t)=ACd (t,00Q) (1.24)
for some positive constant C, independent of 4.Here Q=(0,1).
Proof. Let ¢ Dbe the unique solution of the problems

¢H @, , I(t), (tﬂ,l) (1 25)
v (tﬂ) =y;(1)=0, and i=12
where @ is the characteristic function. By the Hopf maximum principle there

exists G >0 such that ¢ (t)>Ce(t) for all te[0,1], where € are a solu-

tion of

{—e =, ,3(t), (tﬁ’l) (1.26)
e (0)=¢(1)=0, and i=12

Let H >0 be such that D:=¢f,(H)+ f,(0)>0, and this is possible by
(F2).Let u,v, and u,,V, satisfy
-u/=Af (H)o[a, u]a (), te(0,1),u (0)=0=u (1)
v/ =21f,(H)ow[a, u]a,(t),te(0,1),v,(0)=0=v, (1)
and
-u; = Af (0)w[a, u]a (t),t€(0,1),u,(0)=0=u,(1)
-v; = Af,(0)o[a, u]a,(t), te(0,1),v,(0)=0=v,(1)
Now by Lemma 2.4, there exists 4 >0 such thatif 1> 1, then
u(t)=H and v(t)>H on[a,ul. (1.27)
Hence, by (1.27), for A>>1 we have that for te(0,1)
—u"=Af (u)a (t)=Af (u)a (t)o[0t; ]+ Af (u)a (t)o[a, 4],
V=4t (V)& (1) 2 4F, (v)a, () 0[0t; ]+ A1, (V) &, (t) 0@, 4]
V"2 21, (0)a, (t)+ A1, (H)a, () o[, 4]
U= 21, (0)ay (1) + 21, (H)a (t) o[, 4]
(
(

"

=—(u,—u,) (t

)

=—(v-v,) (1)
u(0)=(u,~u,)(0)=0, v(0)=(v,~V,)(0)=0 and

u(1)-(u-u,)(1)=u(1)>0, V(l) (vy —Vg))(l) v(1)>0. By the maximum

>0
principle, u(t)=u,(t)-u,(t)=Af (H )qﬁl(t +f,(0)e,(t) and
v(t)=v (t)—v,(t)=2f,(H) +11,(0)e,(t) in [0,1]. Hence
f )

= 2()
u(t)>f,(H)ce (t)+Af,(0)e (t)=4De(t)

and
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v(t)> f,(H)C,e, (t)+Af,(0)e,(t) = ADe, (t)
forall te[0,1].

Note that there exists L >0 such that e (t)>Ld(t,0Q) and
e,(t)>Ld(t,06Q) forall te[0,1].Hence, for A large u(t)>ACd(t,0Q) and
v(t)>ACd (t,0Q)forall te[0,1], where C:=DL>0.

Lemma 2.6. Let uzand vbe a positive solution of (1.3). Then there exists H,
such that |u] <H, and |v| <H,.

Proof.

Let B= I:ai (s)ds. Then B<w since a (t)<ct, forall te(0,1) for some
C, > 0. Now for each given A1 >0, there exists W, >0 such that if

f (W
W >W,, then M < L due to the hypothesis (F1). Also since
" w 2B

f. e Cl([0,00), R),thereexists K, >0 suchthat f(W)<K, on [O,Wl] .Hence,

W

f; (W)£%+ K, We[0,0). (1.28)

Now by Lemma 2.1 and (1.28), we have
Jul, =u(t,)= A.[SG(tm )3, (s) f, (u(s))ds—c, (u(1))u(D)t,
M, =V(ty) = A[ G (tn.5)a, (s) f, (v(s))ds—c, (u(@))u(D)t,
< ﬂj:G (t,.8)a,(s) f,(u(s))ds

< /IJ-:G (ty.s)a, (s) f,(v(s))ds

s/lj:G(tm,s)ai(s){M Ki}ds

2B

+

2AB

<A[[G(t,.5)a, (s){v(t"‘) + Ki}ds

s/lj':ai(s)[z/%Bu(tm)JrKi}ds

< lf:az(s)[%v(tmﬁ K;lds (since G(t,s)<1 in [0,1]x[0,1])

:%u(tm)msm

= Z(t, )+ ABK,
Hence, for each 4 >0, ||u||w <H, and "V”w <H,,where H, =21BK,.

3. Proof of Theorem 1.1

We first claim that (1.3) has a maximal positive solutions 0,V for A>>1. Let
@, be the solutions of the problems
-p/=2a,(t), te(0,1)
9 (1) =c (o (1)n(1)=0, (1.29)
¢ (0)=0 and =12
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Note that (1.29) has the unique solution since €, ¢, are sub solutions and
super solutions of (1.29), respectively, where € is defined in (1.26) and ¢, is

the solutions of the linear boundary condition problems
oy =23,(t), te(0)
2% (1) =c (2 (1)2 (1) =0, (1.30)
?,(0)=0 and =12

Since f; satisfies (F1), given A >0, we can choose Z, 21 such that
Z, > Af, (Z/1 le, ||w) and Z, >Af(H,) where H, isasin Lemma 2.6. Then,

Z,¢, are a super solutions of (1.3) since

~(2,0) =Z,a(t)2 24,1, (2, |p],) 2 28 f,(Z,0), te(01)
(Z)ﬂ)i' (1))+ G (Zz ((/7i (1)))2/1@ =z, (4‘7{ (D)+c (Zz ((Di (1))) ?, (1))
27, (¢i’(l)+ G (¢7i (1))(/’i (1)) =0,

Z,p(0)=0 and i=12

Next, we show that this super solution Z,¢, is larger than any positive solu-
tions of (1.3). Let 8, be any positive solutions of (1.3). From Lemma 2.6, we have
_(Za(/’i -0, )" =7, (t)_/lai f; (9| ) =g [Zz —Af, (el )}

>a[z,-Af(H,)]>0, te(0,)

by the choice of Z,. Note that (Z,¢, —6,)(0)=0. Now we show that
(Z,0,—6,)(1)=0. Indeed, since
Z,0/(1)+¢(Z, (1)) 2,0 (1)20=6/(1)+¢ (6,(1)) 6, (1) , we have
2,4 (1H)-6(1)+¢ (ZA (o (1))>Z/1‘Pi (1)-c(4@)a@)=0 (1.31)
If we assume that Z,¢, (1)—6, (1) <0, then
C (Za( ; (1))) Z,p(1)-c (49, (1))6’I (1)<0 since ¢ increases. Hence from (3.3)
we obtain Z,¢/(1)-6/(1)> 0. However, —(Z,¢,-6,) >0 in (0,1),

i
(Z,0,-6,)(0)=0 and (Z,p,—6,)(1)<0 implies that (Z,p—6,) (1)>0,
which is a contradiction. Hence Z,¢,(1)—6,(1)>0. Therefore, by the maxi-
mum principle, Z,¢ >¢, in [0,1]. Therefore, (1.3) has a maximal positive
solutions U,V. Now, let uand vbe any other positive solutions of (1.3). To es-
tablish our theorem, we will show that u=0 and v=V for A>1. Since

u,v and U,V are solutions of (1.3), we obtain
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By the mean value theorem, there exists ¢ suchthat u<&<0d and
v<£E<V quadin [0,1] and

1-u)' (1)= 23, () () (a() -u(1). te(01)
7V’ ()= 2, (1) G(E)(7() V(D). te(0)

(G-u)(0 ) v-v)(0)=0, (1.32)
(a-u) () +c(a()a()-c (u@)u)=o,
( )

V-v) +cz( 7(1)v(1)-c, (v(1))v(1)=0

By multiplying (1.3) by (G—u),(V-v) and (1.32) by u,v and integrating,
we first obtain, using integration by parts,

f;[(ﬂ—u)” U —(G—u)u"}dt — 0 (1)u(1)-u'(1)a(1)
)

since C; areincreasing. Using that f; is concave, we also have
j;[(a_u)" ! —(U—u)u”}dt — [t e (O ,(u)- (£)u](a-u)dt

> [ a, ()] f,(u)- £/(u)u](a-u)dt
j;[(v_v)”v_(v_v)v"}dt:aj;az (t)[fz(v)— (e v] 7-v)dt
zljlat[fv V)V ](v-v)dt

From (F1), there exist r,>0, b >0 such that f( )—f'(s)s=b when-
ever $>1.From (1.20), for A>1, u(t)>r and v(t)>r if

d(t,0Q) >~ Let Q. Ll——i and Q :( j (1—— 1] Then
iC 2C

from (1.33), we have
0> /I.f(h a (t)b (a-u)dt+Af, a(t)f(0)(a-u)dt

022, a,(t)b, (V-v)dt+2[ a(t)f,(0)(V-v)dt. (1.35)

(1.33)

(1.34)

since when f; is concave f (W)-Wf'(W)> f (0) forall W>0.
Next let m and 4 satisfy

()= 3(1), te(01), m(0)=m(1)=0
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m”(t):a)g+a2(t), te(0,1), m(0)=m(1)=0
and

-h"(t)=w, a(t), te(0,1), h(0)=h(1)=0,

-h"(t)=w, a,(t), te(0,1), h(0)=h(1)=0

respectively. Now multiplying (1.32) by bm+ f, (0)h and integrating, we ob-
tain

l:= [ ~(a-u) [bm+ f,(0)h]dt

3= [ =(7-v) [bm+ £, (0 h}dt

(3@ -u(@)[bm' () + JJ+f, &

+, a0 £(0)(a- U)O't

= (V1) -v(1)[o,m'(2)+ £, ()N (R) ]+ [, @, ()b, (V-v)dt
+],, 2, (1) F, (0)(7-v)dt

=1 +1, (136)
=J,+J, '

Note thatas A —>ow, m—e and h—0 in C' [0,1]. Hence, for 4 large,
we obtain bm+ f(0)h>0,in (0,1) and i=12

bm+ f, (O)h >0 in (0,1) (1.37)
and
bm'+ f, (O)h'< 0 (1.38)

Hence for A1, (1.37) implies 1, <0, J, <0 and combining with (1.34)
(which implies 1, <0 and J,<0) we have | <0 and J<0. However, by
(1.32), we also have

L= [ ~(a-u) [bm+ f,(0)h]dt

+;Lj0a1 (t) f/(&)(a(t)—u(t))[bym=+ f, (0)h]dt
3= [ ~(v-v)' [o,m+ 1, (0)h]ct

+ 4013, (1) £5(£)(7(t) - v(t))[b,m+ 1, (0)h ]at

Now for A>1, using (1.36), & >0, and f'>0 weget 120 and J2>0.
Hence, we conclude that 1 =0 and J=0 for A>1, which implies that
V=v and G=u in [0,1]. This proves that (1.3) has a unique positive solu-
tion forall A large.

4. Conclusion

In the paper, were studied the positive radial solutions for elliptic systems to the
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nonlinear Boundary Value problems. And then, we presented that by the Theo-

rem 1.1, and Theorem 2.2, we can obtain a solution of the problem (1.3). More-

over, for all A>1, then (1.3) has a unique positive solution.
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