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Abstract 
In this work, we show that when there is insufficient equipment for detecting 
a disease whose prevalence is t% in a sub-population of size N, it is optimal to 
divide the N samples into n groups of size r each and then, the value  

10r
t

 =  
 

 allows systematic screening of all N individuals by performing less 

than N tests (In this expression, x    represents the floor function1 of  
x∈ ). Based on this result and on certain functions of the R software, we 
subsequently propose a probabilistic strategy capable of optimizing the screen-
ing tests under certain conditions. 
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1. Introduction 
1.1. An Introductory Example 

Some authors, (see [1] for example), report the problem according to which in 
1945, when the American authorities were preparing to repatriate a thousand 
soldiers from a foreign village where they had just stayed for several months, it 
was learned that a dangerous disease affected 1% of the inhabitants of this village. 

Systematic screening of these 1000 soldiers was necessary while various tech-
nical and logistical constraints limited the real capacity of screening tests to a 

 

 

1Which is defined as the greatest integer less than or equal to x. 
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few hundred. 
The teams on site took the risk of grouping the 1000 soldiers into one hun-

dred (100) groups of ten (10) people each and mixing the samples from each 
group to have only 100 samples instead of 1000. For each of the 100 samples ob-
tained, they had the names of the 10 soldiers who made it up. 

Their procedure was summarized as follows: 
• If the test of one of these 100 samples obtained turns out to be negative, we 

deduce that the 10 soldiers who constitute it are negative and in that case, a 
saving of nine tests will be made for this group… 

• If the test of one of these 100 samples, on the other hand, turns out to be pos-
itive, they are then obliged to test each of the 10 individuals that constitute it 
in order to determine the health status of each of them. 

In this second case, the cost of a test was wasted by carrying out eleven screen-
ings (that of the group and that of each of the 10 soldiers who constitute it) in 
order to determine the health status of 10 individuals. 

Various approaches make it possible to justify that for this introductory prob-
lem, the value 10r =  soldiers per group was optimal and led to significantly 
less than 1000 tests to precisely determine the health situation of these 1000 in-
dividuals. 

1.2. Generalization of the Problem 

Starting from this very particular introductory problem, we have considered (in 
[2]) a more general formulation with the aim of finding a solution that is appli-
cable to various situations when the screening capacity is clearly lower than the 
number of individuals test but there is a need for systematic screening. 

More concretely, we consider the problem of finding the optimal value x r=  
of the number of individuals that each group must include when we are prepar-
ing to carry out the systematic screening of N individuals for a disease whose 
general prevalence is t% and we also decide to divide the N samples into n groups 
of size r each (in this case N rn= ). 

Remark 1. For the rest of this work, we will designate this technique described 
in this problem by the expression method of grouping of samples. 

2. Building an Optimal Solution 

2.1. Preliminary Notions and Tools 

2.1.1. Binomial Distribution 
Definition 1 (Bernoulli Trial): 
A Bernoulli trial is an experiment that results in two outcomes: success (S) 

and failure ( S ) 
The set of possible outcomes (fundamental set) of a Bernoulli trial is  
{ },S SΩ =  and it allows to define Bernoulli random variable. 

Definition 2 (Bernoulli random variable): 
Given a Bernoulli trial whose fundamental set is { },S SΩ = , Bernoulli ran-
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dom variable is the map { }: 0,1X Ω→  such as ( ) 1X S =  and ( ) 0X S = . 
Remark 2. In a Bernoulli trial, we define the probability of success ( )p P S=  

and the probability of failure 1q p= − . 
The probability mass function of a Bernoulli random variable is then given by: 

( )
if 1,

1 if 0X

p x
P x

p x
=

=  − =
                      (1) 

Definition 3 (Binomial experiment): 
A binomial experiment consists of n repeated and independent Bernoulli trials 

where the probability p of success in each trial is known. 
Definition 4 (Bernoulli random variable): 
Given a binomial experiment, the binomial random variable X counts the num- 

ber k of success. 
Then it said that the random variable X has a binomial distribution with pa-

rameters n and p, usually written ( ),n pβ . 
It’s shown (see [3] and [4]) that the probability mass function of a binomial 

random X of parameters n and p is: 

( ) ( )1 for 0,1, 2, ,n kk k
k np P X k C p p k n−= = = − = �          (2) 

Remark 3. Any random variable X with a binomial distribution with parame-
ters n and p is seen as the sum of n independent Bernoulli random variables in 
which the probability of success is p. 

Hence, the expected value ( )E X  and the variance ( )V X  of a binomial 
random ( ),n pβ  are given by: 

( ) ( ) ( )and 1E X np V X np p= = −                  (3) 

Remark 4. For a binomial distribution ( ),n pβ , 
• the probability of obtaining zero success is naturally: 

( ) ( ) ( )0 00 1 1n n
nP X C p p p= = − = −  

• Similarly, the probability of obtaining n successes is: 

( ) ( )01n n n
nP X n C p p p= = − =  

Remark 5 (Linear function). It is established that if two variables X and Y are 
such that Y aX b= +  then the expected value and the variance of Y are ex-
pressed as a function of those of X by: 

( ) ( ) ( ) ( )2andE Y aE X V Y a V X= =  

2.1.2. Binomial Distribution with R Software 
Let us first specify that the use of the R software in this work results only from 
our choice and our habits. 

Remark 6 (Binomial distribution with R): 
As we can see in [5] and [6], R has three in-built functions to generate bi-

nomial distribution. They are described below: 
• The function dbinom (k, n, p) gives the probability density distribution  
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( )P X k=  at each point { }0,1, ,k n∈ � . 
• The function pbinom (k, n, p) gives the cumulative probability ( )P X k≤  

of an event { }0,1, ,k n∈ � .  
It is a single value representing the probability. 

• The function qbinom (s, n, p) takes the probability value s and gives a num-
ber { }0,1, ,k n∈ �  whose cumulative value matches the probability value s. 

Definition 5 (Floor function). The floor function of a real number x, denoted 
x   , is defined as the greatest integer less than or equal to x. 

2.2. Solution to Introductory Example  

In this section, we detail a solution of the introductory problem written in such a 
way that we prepare its generalization. 

Let us find the number r of the soldiers who must constitute a group so that 
the total number of tests necessary to determine the health status of these 1000 
soldiers is minimal. 

We know in this case that, the prevalence of the disease is given and is equal 
to 1%. 

By noting n the number of groups thus formed we necessarily have 1000nr = . 
• Denote by X the random variable which is equal to the number of soldiers 

whose test will be negative in a given group. The probability p that the test of 
a soldier from this population is positive is naturally equal to the prevalence 

0.01p =  and in this case, 1 0.99q p= − =  is the probability that a any sol-
dier be tested negative. 
As in each group there are r soldiers then the variable X is distributed ac-
cording to a binomial distribution ( ),0.99rβ . It then follows from the re-
mark 4 (page 3) that the probability ( )nP G  that a group is negative is then: 

( ) ( ) 0.99r
nP G P X r= = =                    (4) 

Similarly, ( ) ( )1 1 0.99r
p nP G P G= − = −  is the probability that a given group 

is positive. 
• Let us denote by Y the random variable which is equal to the number of groups 

which will be tested positive among the n. In this case Y is distributed ac-
cording to the binomial distribution ( )( ) ( ), ,1 0.99r

pn P G nβ β= −
 

We then obtain that the expected value ( )E Y  and the variance ( )V Y  of 
the number of positive groups are respectively: 

( ) ( ) ( )1 0.99r
pE Y nP G n= = −                  (5) 

• Let us denote by Z the number of analyses necessary for the complete deter-
mination of the health status of these 1000 soldiers. 
The number Z of necessary tests is obtained by first performing the n tests 
corresponding to the n groups and then adding to them, r other tests for each 
of the Y positive groups. 
It follows that the random variable Z is written as a linear function of the va-
riable Y according to the relation: 

https://doi.org/10.4236/am.2020.1112086
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Z n rY= +                           (6) 

By relying on the remark 5 (page 3), we obtain the expression of the expected 
value ( )E Z  of the number Z of the necessary tests: 

( ) ( )
( )
( ) ( )
( ) ( )

( )

1 0.99 1 0.99

1000 1 0.99 1000 1 1 0.01

1000 1000 1 1 0.01

r r

rr

r

E Z E n rY

n rE Y

n r n n rn

n n

r

= +

= +

 = + − = + − 
 = + − = + − − 

 = + − − 

according to the remark 5

 

By considering the approximation ( )1 0.01 1 0.01r r− ≈ −  we obtain: 

( ) ( )

( )

1000 1000 1 1 0.01

1000 1000 0.01

1000 10

E Z r
r

r
r

r
r

≈ + − −  

≈ +

≈ +

 

Let us denote by ( ) ( )N r E Z=  the function (of variable r) which expresses 
the average number of tests necessary to perform to determine the health status 
of the 1000 soldiers. 

As ( ) 1000 10N r r
r

= +  then: 

( )

( )( )

2

22

2 2

2

d d 1000 100010 10
d d

10 10010 1000

10 10 10

N r
r r r r

rr
r r

r r
r

− = + = + 
 

−−
= =

− +
=

 

As *r∈ , it follows from the relation 
( )( )

2

10 10 10d
d

r rN
r r

− +
=  that the signs 

of the derivative d
d
N
r

 are the same as the signs of ( )10r − . 

And on the other hand, d 0
d
N
r
=  if 10r = . 

We then obtain the following variation table (Table 1): 
 

Table 1. The value r = 10 minimizes the number of tests that are necessary for the intro-
ductory problem. 

r 0  10   

d
d
N
r

  − 0 +  

( )N r  
 min  
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We observe indeed, that for the data of the introductory problem (N = 1000, p 
= 0.01), the value 10r =  (and 100n = ) allows to minimize the average num-
ber of tests ( ) ( ) ( )N r E Z n rE Y= = +  which then gives: 

( ) ( )

( )
( )

min

1

1

100010 10
10

100 10 100 1 0.99 0

100 1000 1 0.99 0

196

N N E Y= = +

 = + − 

= + −

≈

relation 5

tests.

 

Ultimately, by setting 10r =  the number of soldiers per group, the total num-
ber of expected tests is equal to ( ) 196E Z ≈  with a standard deviation equal to: 

( ) ( )

( )

( )
( )

2

1 0.99 0.99

10 100 1 0.99 0.99

10 2.940666 29.40

Z

Y

r r

r r

V Z V n rY

r V Y r

r n

σ

σ

= = +

= =

= −

= −

≈ × =

 

Illustration 1. note that with this value 10r =  we are almost certain to ob-
tain the health status of these 1000 soldiers by carrying out only less than 300 
tests. 

Indeed, for this value 10r = , the probability that 100 10Z n rY Y= + = +  is 
less than 300 is worth: 

( ) ( ) ( )100 10 300 10 200 20P Y P Y P Y+ ≤ = ≤ = ≤  

Using the R syntaxes (see remark 6 page 4), we obtain for this last expression 
that: 

> pbinom (20, 100, 1-0.99^10) 
[1] 0.9995506 

In other words, with the value 10r = , there is more than 99.95% chance 
that the total number of tests ( ) ( )20 300P Y P Z≤ = ≤  required does not 
exceed 300 to determine the health status of these 1000 soldiers. 

As announced, we will be inspired by the solution to this particular problem 
to build a general solution that can be transposed to various situations.  

2.3. Solution to the General Problem 

Consider a disease that affects t% of the population. 
We have N samples corresponding to N individuals of a given sub population. 

In the rest of this work, we will speak indiscriminately about an individual or the 
sample which corresponds to him and no confusion is to be feared. 

For various logistical limitations, we do not have enough equipment to per-
form all the N tests, but there is a need to know the health status of each of the N 
individuals constituting the sub population. 

https://doi.org/10.4236/am.2020.1112086
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In the laboratory, they then decide to use the method of grouping samples as 
described by the remark 1 in the subsection 0. 

They then to divide the N samples (it would suffice to take a part of each sam-
ple) into n groups of r individuals each and in each group we mix the r samples 
to run n tests. In this case, N rn= . 

At the end of each test, two cases are possible: 
• The group is negative and we deduce that all the r individuals that constitute 

it are negative. In this case, we save 1r −  tests for each negative group. 
• The group is positive and we are then obliged to systematically test each of 

the r individuals that constitute it. In this case, we waste a test because we 
determine the state of health of r individuals after doing 1r +  tests (the 
positive group test and then the r individuals tests). 

How to find the size r of each group to minimize the number of tests that it 
will be necessary to do to determine, in this way, the health status of all the N 
individuals? 

According to the definition 1 (page 2), an individual’s test is seen as a Ber-

noulli trial which leads to a success with the probability of 
100

t  (prevalence) 

and a failure with the probability 1
100

t
− . 

Denote by nG  the event a group is negative and pG  the event a group is 
positive. 

If X denotes the random variable which is equal to the number of negative in-
dividuals in a group, the variable X is distributed according to the binomial law 

of the parameters r and 1
100

t
− . 

1) Let’s find the probability that a group will test positive. 
For a group to be negative, it is necessary that each of the r individuals that 

constitute it is tested negative. 
So, 

( ) ( )
0

1 1
100 100 100

r r
r

n r
t t tP G P X r C      = = = − = −     

     
         (7) 

We deduce, by using the probability of the opposite event, that the probability 
( )pP G  for a group to be positive is equal to: 

( ) ( )1 1 1
100

r

p n
tP G P G  = − = − − 

 
                 (8) 

2) Law of the number of positive groups. 
As we have n groups then the variable Y which is equal to the number of posi-

tive groups is a binomial distribution of the parameters n and  

( ) 1 1
100

r

p
tP G  = − − 

 
 

By using the relation 3 (page 3), the expected value of number Y of positive 
groups and its variance ( )V Y  are, respectively: 

https://doi.org/10.4236/am.2020.1112086
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( ) ( ) 1 1
100

r

p
tE Y n P G n

  = ⋅ = − −  
   

                (9) 

3) The law of the total number of tests required. 
Let us denote by Z the total number of tests to be carried out. It is obvious that 

for n tests corresponding to n groups we must add r additional tests for each of 
the positive groups. 

It follows that the total number Z of tests is related to the number Y of posi-
tive groups by the relation: 

Z n rY= +                           (10) 

According to the remark 5 (page 3), the expected value of Z is: 

( ) ( ) ( )

1 1
100

1 1
100

1 1
100

r

r

r

E Z E n rY n rE Y

tn rn

tn N N nr

N tN
r

= + = +

  = + − −  
   

  = + − − =  
   

  = + − −  
   

by using the relation 9

because
 

Notice that in the expansion of left 1 right
100

rt − 
 

 the terms of degrees great-

er than one are more and more negligible, we write: 

1 1
100 100

rt t r   − ≈ − ⋅   
   

                    (11) 

In that case: 

( ) 1 1
100

1 1
100

100 100
1

100 100

rN tE Z N
r

N tN r
r

N t N tN r N r
r r
N Ntr trN
r r

  = + − −  
   

   ≈ + − − ⋅   
   

 ≈ + ⋅ ⋅ ≈ + ⋅ ⋅ 
 

 ≈ + ≈ + 
 

 

By writing ( ) 1
100
trE Z N

r
 = + 
 

 where the number of individuals N and the 

prevalence t are known, we see that the expected value ( )E Z  of the total 
number Z of tests to be performed is a function of the variable r which is the size 

of each group and its variation is the same as that of ( ) 1
100
trf r

r
 = + 
 

 as we 

have: 

( ) ( )E Z N f r= ⋅                        (12) 
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4) Minimum value of E(Z) 

( )( )

2

2 2

2

d d 1 1 100
d d 100 100 100

10 10

100

f tr t tr
r r r r r

r t r t

r

− − + = + = + = 
 

− +
=

 

Since 2100r  and ( )10r t +  are positive, then the signs of  

( )( )
2

10 10d
d 100

r t r tf
r r

− +
=  depend only on those of ( )10r t −  which vanishes 

for 10r
t

= . 

Noting that: 

10
10 10

100 10 10 5

t
t t ttf

t t
 

= + = + = 
 

               (13) 

We deduce the following variation table (Table 2): 
Ultimately, we deduce from the above that the optimal value of r is the divisor 

of N as close as possible to 10
t

 where t% is the prevalence of the disease in the 

sub population of N individuals. 
In this case, by mixing the samples from r individuals of each group, the 

number of tests necessary for the complete determination of the state of health 

of N individuals is a random variable NZ r Y
r

= + ⋅  whose expected value is: 

( )
5

N tE Z ⋅
=                         (14) 

Then (see the definition 5 on page 4), we take 0
10r

t
 

=  
 

 and in this case we 

will denote 0
0

Nn
r

 
=  
 

 the optimal number of groups corresponding to the val-

ue 0r . 
In the same way, it follows from the relation 9 that the random variable Y0 

corresponding to the number of positive groups is distributed according to a 
 

Table 2. The optimal value of individuals per group for the general problem. 

r 0  
10

t
   

( )d
d

E Z
r

  − 0 +  

( )E Z   
5

N t   
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binomial law of the parameters 0n  and probability of success  
0

0 1 1
100

rtp  = − − 
 

. 

To these data corresponds the optimal variable 0Z  which is equal to the total 
number of tests (see 10) and which is defined by: 

( ) ( )0 0 0 0 0 minavec
5

N tZ n r Y E Z E Z ⋅
= + = =            (15) 

3. Towards an Optimal Strategy 

In this section, we gradually establish the elements on which the optimal strategy 
will be based.  

3.1. Preconditions 

Ascertainment 1 (Low prevalence disease). The reliability of the general solu-
tion increases as the prevalence decreases. 

It should be noted directly, from the expression ( )0 5
N tE Z =  of the ex-

pected value of the the total number Z of tests, that its value is less than the 
number N of individuals only if the prevalence does not exceed 25%. 

On the other hand, the lower the prevalence t, the lower the number  

( )0 5
N tE Z =  of expected tests than N. 

Also, from a numerical point of view, the validity of the approximation ap-

proximation 1 1
100 100

rt tr − ≈ − 
 

 (relation 11, page 9) increases with the small-

ness of the prevalence t. 

3.2. A Measure of the Risk of Method Failure 

We propose thereafter, a succession of the syntaxes of the R software which 
make it possible to decide on the use of the solution to the general problem as 
presented in subsection 2.3. 

Remark 7 (Possible values of Z0). Note first that even when the prevalence t is 

very low, the value ( )0 5
N tE Z =  is only an expected value of the random va-

riable 0 0 0 0Z n r Y= +  whose set of possible values is  

{ }0 0 0 0, 1, 2, , , 1, 2, ,n n n N N N N n+ + + + +� �  where the value 0
0

Nn
r

=   

corresponds to the first extreme case where there are no positive individuals and 
all the 0n  groups are then negative while the value 0N n+  corresponds to the 
extremely undesirable case where all 0n  groups are all positive. 

As the objective of the strategy is to perform significantly less than N tests, the 
risk of failure can be measured by the probability ( )0R P Z N= ≥  that the va-
riable 0Z  takes a value which is not less than N. 
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So: 
1) if R is substantially close to zero, we are in the case where the strategy is 

recommended and it will be more reliable as the risk R is close to zero. 
2) if, on the other hand, R non-negligible, the strategy is contraindicated. 

( )

( ) ( )

( ) ( )

0 0 0 0 0
0 0

0 0
0 0 0 2

0 0

0 0
0 02 2

0 0

1 1

1 1
1 1 1

N NR P Z N P r Y N P r Y N
r r

r r
P r Y N P Y N

r r

r r
P Y N P Y N

r r

   
= ≥ = + ≥ = ≥ −   

   
   − −

= ≥ = ≥      
   

   − −
= − < = − ≤ −      

   

 

As the distribution 0Y  (number of positive groups for 0
10r

t
= ) is binomial 

of the parameters 0
0

Nn
r

=  (the total number of groups) and 
0

0 1 1
100

rtp  = − − 
 

 

(the probability for a given group to be positive) then from the relation  
( )0

0 2
0

1
1 1

r
R P Y N

r
 −

= − ≤ −  
 

 we can deduce a succession of the syntaxes of the 

software R, in accordance with the remark 6 (page 4): 
First, we load the size of the sub population in the variable N and the preva-

lence in the variable t. We then introduce the succession of the following syn-
taxes: 

> r0=trunc(10/sqrt(t))  
> n0=trunc(N/r0)  
> p0=1-((1-(t/100))^r0)  
> k=N*((r0-1)/(r0^2))  
> R=1-pbinom(k-1,n0,p0) 
> R 

1) For the above syntaxes; 

a) r0 comes from the formula 0
10r

t
ε  

=  
 

. The trunc function calculates, for 

software R, the ceilling of its argument. 

b) n0 comes from the formula 0
0

Nn
r

ε
 

=  
 

. The trunc function guarantees the 

loading in the variable 0n  of an integer because 0r  may not be a divisor of N; 

c) p0 comes from the formula 
0

0 1 1
100

rtp  = − − 
 

 

d) k comes from the value 0
2

0

1r
N

r
 −
 
 

 which appears in the risk expression 

( )0
0 2

0

1
1 1

r
R P Y N

r
 −

= − ≤ −  
 

 established in the subsection 0. 

e) in the end, this last expression gives rise to the syntax R. 
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2) After compiling these syntaxes, the software will give the value of the risk R. 
If this value is zero, the strategy can be used. 

Illustration 2 (Return to the introductory example in 1.1):  
According to the data of the introductory example in 1.1 (page 1), the size of 

the sub population is 1000 soldiers while the prevalence is 1%. 
Using the criterion gives: 

> N=1000  
> t=1  
> r0=trunc(10/sqrt(t))  
> n0=trunc(N/r0)  
> p0=1-((1-(t/100))^r0)  
> k=N*((r0-1)/(r0^2))  
> R=1-pbinom(k-1,n0,p0) 
> R  
[1] 0 

As in this case the risk of error is zero, the strategy is recommended for 
these data of the introductory example. 

1) By calling the variables we ultimately obtain: 

> N=1000  
> t=1  
> r0=trunc(10/sqrt(t))  
> n0=trunc(N/r0)  
> p0=1-((1-(t/100))^r0)  
> k=N*((r0-1)/(r0^2))  
> R=1-pbinom(k-1,n0,p0)  
> R  
[1] 0  
> r0  
[1] 10  
> n0  
[1] 100  
> E=(N*sqrt(t))/5  
> E  
[1] 200 

In this case, each group will actually have 10 samples, the total number of 
groups will be 100 and the expected value of the total number of tests to be per-
formed is 200. 

2) We can call other loaded variables, like for example 0p  and 0n  and get: 

> p0  
[1] 0.09561792  
> n0  
[1] 100 
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Thus, the number of positive groups ( )0 0 0,Y n pβ=  is in this introductory 
example, a binomial variable of the parameters 0 100n =  and 0 0.09561792p =  
the probability that one any of the 100 groups is positive. 

Illustration 3 (Contraindication). Consider the situation of a sub population 
of 2000 individuals for which the prevalence of a disease is 30%. 

By measuring the risk of strategy failure we obtain: 

> N=2000  
> t=30  
> r0=trunc(10/sqrt(t))  
> n0=trunc(N/r0)  
> p0=1-((1-(t/100))^r0)  
> k=N*((r0-1)/(r0^2))  
> R=1-pbinom(k-1,n0,p0)  
> R  
[1] 1  
> 

So 1R =  means that at 100% the method will fail. 

3.3. Effectiveness of the Method 

By exploiting the illustration made above on various values of the prevalence, we 
note that this method exposed in (3) can only be used when the prevalence does 
not exceed t = 25%, a case in which it is almost impossible for the method to lead 
to more tests than the N samples. 

It should be noted, from the illustrations above that the risk R that the method 
leads to more tests than samples, almost coincides with the function  

] [ [ ]: 0,100 0,1f →  and defined by: 

( ) ( ) ( )
( )

0 si 25%
1 si 25%

f t t
R t f t

f t t
 ≈ ≤≡ =  ≈ >

               (16) 

From the syntax t = seq(1,30,0.1) of software R we take, for the introductory 
example, all the values of the prevalence ranging from 1% to 30% with an incre-
ment of 0.1% and by executing the syntax below we obtain the graphical repre-
sentation of the variation of the risk of failure R according to the prevalence: 

> t=seq(1,30,0.1)  
> r0=trunc(10/sqrt(t))  
> N=1000  
> n0=trunc(N/r0)  
> p0=1-((1-(t/100))^r0)  
> k=N*((r0-1)/(r0^2))  
> R=1-pbinom(k-1,n0,p0)  
> plot(t,R) 

The compilation of these commands gives graphical representation (Figure 
1). 
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Figure 1. Represents the probability R of the failure of the method as a function of the prevalence t which is expressed as a per-
centage. 

 
Considering the fact that the manipulations (mixing of samples, storage, …) 

Required by the method present a certain cost, it is not sufficient to establish that 
for small values of the prevalence of less than 25%, the method will be efficient. 

Depending on certain specificities of the test and the nature of the samples, 
the method could lead to slightly less than N tests without the cost of the differ-
ence in the tests compensating for the cost of handling and using the method. 

There then arises the need for another indicator of the effectiveness of 
this method. 

Remark 8 (Effectiveness of the strategy). Beyond the risk R established as al-
most zero for 25%t < , we consider that the method is effective when it leads to 
a number of tests well below half N/2 of the total number samples. 

In order to develop syntaxes R making it possible to decide on the efficiency E 
of the proposed strategy, within the meaning of the remark above, let’s calculate 

( )0 2E P Z N= < , the probability that the total number of tests is less than half 
of the number of samples. 

( )

( ) ( )

0 0 0
0

00 0
0 0 0 0

0 0

0 0
0 02 2

0 0

2 2

22
2 2

2 2
1

2 2

N N NE P Z P r Y
r

N rr N N
P r Y P r Y

r r

N r N r
P Y P Y

r r

  = < = + <  
   

 − −
= < = <       

   − −
= < = ≤ −      

   

 

From the relation 
( )0

0 2
0

2
1

2
N r

E P Y
r

 −
= ≤ −  

 
 where 0Y  is a binomial distri-

bution of the parameters 0n  and 0p  we deduce, from the remark 6, (page 4), 
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that this efficiency can be calculated directly by the syntax pbinom(l-1, n0, p0) 

with 
( )0

2
0

2
2

N r
l

r
−

=  on condition that all the values prior to loading l are already 

saved in the R environment. 
Illustration 4 (Conditions of effectiveness of the introductory example). Re-

turning to the introductory example in 0, the prevalence is equal to 1%t =  and 
1000N = , we obtain the efficiency using the following commands: 

> t=1  
> N=1000  
> r0=trunc(10/sqrt(t))  
> n0=trunc(N/r0)  
> p0=1-((1-(t/100))^r0)  
> l=N*((r0-2)/(2*r0^2)) 
> E=pbinom(l-1,n0,p0)  
> E  
[1] 1 

As for this introductory example (see 1.1), 1E = , we deduce that by taking 

0 10r =  and 0 100n = , the probability of performing less than 500 tests and ap-
preciably close to 1. The method is therefore effective for this case. 

Illustration 5 (Effectiveness of the method as a function of prevalence). With 
the command t = seq(1,25,0.1) we load all the prevalences between 1% and 25% 
and using the commands below we call the graphical representation of the  

efficiency ( ) 0 2
NE t P Z = < 

 
 as a function of the prevalence t. 

> t=seq(1,25,0.1)  
> N=1000  
> r0=trunc(10/sqrt(t))  
> n0=trunc(N/r0)  
> p0=1-((1-(t/100))^r0)  
> l=N*((r0-2)/(2*r0^2))  
> E=pbinom(l-1,n0,p0)  
> plot(t,E) 

The execution of these commands gives the Figure 2. 
By extracting some values from the function ( )E t  (the command E [i] on R 

gives the ith component of the vector E) we notice that: 
Table 3 confirms that for the introductory problem, the efficiency of the me-

thod is almost certain as long as the prevalence t does not exceed 5% and it de-
creases as t increases. 

 
Table 3. Efficiency of the method for the introductory problem. 

t 1% 2% 3% 4% 5% 6% 7% 8% … 

( )E t  1 1 1 0.9999471 0.9915099 0.8465961 0.06821181 0.004509621 … 
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Figure 2. Represents the efficiency E of the proposed method as a function of the prevalence t which is expressed as a percentage. 

 

From what precedes we deduce the following statement: 
Ascertainment 2 (Conclusion of the introductory example): For the N = 1000 

individuals of the introductory example, the method could be applied with 
guarantee of determining the health status of all 1000 individuals by performing 
less than 500 tests provided that the prevalence t does not exceed 5%. 

4. Optimal Strategy 
4.1. Specific Objectives of the Strategy 

When using the method of grouping samples (see remark 1, page 2), the objec-
tive of our strategy is to provide test practitioners with a concrete approach that 
should enable them, in various circumstances, to: 
• determine the optimal size of each group as done on 2.3, 
• measure the risk of failure of this method as done on 3.2, 
• measure the effectiveness of the method and as done on 3.3, 
• find the limit value of the number of tests that the use of the method will not 

exceed. 
The combination of these informations will allow to decide whether or not to 

use the method of grouping the samples. 
At this level it is, in fact, possible to compare the cost entailed by the use of the 

method of grouping samples with that of the maxN Z−  tests that the method saves.  

4.2. Foundations of the Strategy 
4.2.1. Main ingredients 

• In subsection 2.3, we have established that by taking 10r
t

= , the method  
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consisting of dividing the N samples into n groups of r individuals each 
makes it possible to minimize the expected value ( )E Z  of the random va-
riable Z which is equal to the total number of tests necessary to determine the 
health status of all the N individuals. 

• In 3.1 and 3.2 we have specified that as long as the prevalence t of the disease 
does not exceed 25% the risk R of failure of this method is almost zero but 
that low prevalence values are most recommended. 

• In 3.3, we denote by ( )E t  the probability that the method leads to less than 

2
N  tests, a probability that we have assimilated to a indicator of efficiency 

of the method. 
It is on the basis of these results that we identify the optimal strategy of using 

the method of grouping samples as described in the subsection 1.2 (page 2). 
At this stage only the calculation of maxZ  is missing. 

4.2.2. Determination of Zmax 
Let us calculate the limit value maxZ  of the number of tests that we will not ex-
ceed. 

To calculate the limit value maxZ  that the random variable Z (the total num-
ber of tests) will not exceed, it is necessary to first fix the error level η  (or the 
reliability 1 η− ) with which the limit value z will be determined. 

In practice, the risk of error η  must be so low (we can take for example 
1

10000
η ≈ ) that we are almost certain that in fact, maxZ Z≤ . 

It’s important to note that in subsection 0.0.2 we deduced from the relation 10 
that , for the optimal value 0r , the total number of tests 0Z  is written in the 
form 0 0 0 0Z n r Y= +  where 0Y  is is the number of positive groups and 0Y  is a 
binomial distribution ( )0 0,n pβ . 

After having fixed a very low value of the error η  we have: 

( ) ( )0 max 0 0 0 max

max 0
0

0

1 1

1

P Z Z P n r Y Z

Z n
P Y

r

η η

η

≤ = − ⇒ + ≤ = −

 −
⇒ ≤ = − 

 

          (17) 

By exploiting the relation 17: 

max 0
max 0 0

0

Z n
l Z n r l

r
−

= ⇔ = +                   (18) 

we obtain that: 

( )0 1P Y l η≤ = −  where ( )0 0 0,Y n pβ≡  is a binomial distribution.   (19) 

According to the third in-built function of the R software (see 2.1.2) we de-
duce from relation 19 that: 

( )0 01 , ,l qbinom n pη= −  and then from 18 we have:          (20) 

( )max 0 0 0 0 0 01 , ,Z n r l n r qbinom n pη= + = + ∗ −             (21) 
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Illustration 6 (Maximum number of tests of the introductory example): 
The introductory example presented in 0 we have a prevalence 1%t =  for a 

sub population of size 1000N = . 
As we established in subsection 3.2, the optimal parameters of the sample 

grouping method are loaded into the R software as follows: 

> N=1000  
> t=1  
> r0=trunc(10/sqrt(t))  
> n0=trunc(N/r0)  
> p0=1-((1-(t/100))^r0) 

If we fix, for example, a risk of error 1
10000

η = , we can use the syntax of re-

lation 21: 
> eta=1/10000  
> Zmax=n0+r0*(qbinom(1-eta, n0, p0)) 

By executing all of these syntaxes in the R software environment we ultimately 
obtain: 

> N=1000  
> t=1  
> r0=trunc(10/sqrt(t))  
> n0=trunc(N/r0)  
> p0=1-((1-(t/100))^r0)  
> eta=1/10000  
> Zmax=n0+r0*(qbinom(1-eta , n0, p0))  
> Zmax  
[1] 320 

We interpret this result by asserting that for the introductory example, there 
are 9999 out of 10,000 chances, i.e. 99.99%, that using the parameter 0 10r =  
(and in this case 100n = ) will lead to a total number of tests that does not ex-
ceed 320 for all the 1000 samples. 

4.3. Summary of the Optimal Strategy 
4.3.1. Descriptive Steps of the Optimal Strategy 
Given the need to perform a systematic screening of a disease with a prevalence 
of t% within a sub population of size N, the application of the optimal strategy to 
the method of grouping samples as described by the remark 1 (page 2) consists 
of the following four steps: 

Step 1 (Determination of method parameters). At this level we determine the 
size 0r  of each group on which depend the parameters of the random variable 

0Y  which is equal to the number of positive groups among all the 0n  groups. 
1) 0Y  is a binomial random variables of parameters 0n  and  

0

0 1 1
100

rtp  = − − 
 

; 
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2) The random variable 0Z  which is equal to the total number of tests to be 
performed is related to 0Y  by the relation: 0 0 0 0Z n r Y= +  

Step 2 (Measurement of the risk of method failure). ( )0R P Z N= >  R is the 
probability that this method leads to more tests than samples. 
• If 0R ≈  then the method can be used. 
• If 0R ≠  then the method cannot be used. 

Step 3 (A measure of the effectiveness of the method). 0 2
NE P Z = ≤ 

 
 E is  

the probability that the total number of tests carried out by the method does not 
exceed half of the total number of samples. 
• If 0R ≈  and 1E ≈  then the use of the method is strongly recommended. 
• If 0R ≈  and 1E ≠  then the final decision will be taken by comparing the 

total cost of using the method of grouping of samples with the cost of  

maxN Z−  tests that will be saved by the method. 
At this level it only lacks the calculation of the maximum number maxZ  of 

tests that the method will not exceed. 
Step 4 (determination of maxZ ). As shown in 4.2.2, a syntax of R software 

makes it possible to determine maxZ  with a desired precision 1 η−  (or with a 
risk η  of error). 

4.3.2. Expression of the Strategy in the R Software Environment 
1) To perform the first step we use the following syntax: 

> r0=trunc(10/sqrt(t))  
> n0=trunc(N/r0) 

2) To perform the second step we use the following syntax (see 3.2): 

> p0=1-((1-(t/100))^r0)  
> k=N*((r0-1)/(r0^2))  
> R=1-pbinom(k-1,n0,p0) 
> R 

3) To carry out the third step we use the following syntax (see 3.3): 

> l=N*((r0-2)/(2*r0^2))  
> E=pbinom(l-1,n0,p0)  
> E 

4) To carry out the fourth step we use the following syntax: 
If we fix a risk of error η , we can use the syntax of relation 21: 

> eta=v 
> Zmax=n0+r0*(qbinom(1-eta, n0, p0))  
> Zmax 

4.3.3. Examples 
Example 1. Let consider a disease with a prevalence of 5% in a subpopulation 

of 5000 individuals. 
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1) Using the first step we get: 

> N=5000  
> t=5  
> r0=trunc(10/sqrt(t))  
> n0=trunc(N/r0)  
> r0  
[1] 4  
> n0  
[1] 1250  
> 

It is therefore optimal to mix 4 samples for each of the 1250 groups. 
2) Using the second step we get: 

> p0=1-((1-(t/100))^r0)  
> k=N*((r0-1)/(r0^2))  
> R=1-pbinom(k-1,n0,p0)  
> R  
[1] 0  
> 

As R = 0 then the method can be used. 
3) Using the third step we get: 

> l=N*((r0-2)/(2*r0^2))  
> E=pbinom(l-1,n0,p0)  
> E  
[1] 1  
> 

As E = 1, it is certain that the method will lead to a number of tests which 
does not exceed half of the samples. The method is strongly recommended. 

Using the fourth step we have by choosing, for example 1
10000

η = : 

> eta=1/10000  
> Zmax=n0+r0*(qbinom(1-eta, n0, p0))  
> Zmax  
[1] 2386  
> 

We conclude this example by asserting that the value 0 4r =  is optimal. 
• As 1E =  it is certain that the method will lead to a number of tests which 

does not exceed 2500. 

• As max 2386Z =  for 1
10000

η = , we affirm, with a probability of 0.9999, that  

the value 0 4r =  will allow systematic screening of these 5000 individuals by 
performing a number of tests which does not exceed 2386. 

and in this case there is a probability of 99.99% that the total number of tests 
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does not exceed 434. 
Example 2. Consider a disease with a prevalence of 10% in a sub population 

of 600 individuals. 
1) Using the first step we get: 

> N=600  
> r0=trunc(10/sqrt(t))  
> n0=trunc(N/r0)  
> r0  
[1] 3  
> n0  
[1] 200 

It is therefore optimal to mix three samples for each of the 200 groups. 
2) Using the second step we get: 

> p0=1-((1-(t/100))^r0)  
> k=N*((r0-1)/(r0^2))  
> R=1-pbinom(k-1,n0,p0)  
> R  
[1] 0  
> 

As R = 0 then the method can be used. 
3) Using the third step we get: 

> l=N*((r0-2)/(2*r0^2))  
> E=pbinom(l-1,n0,p0)  
> E  
[1] 1  
> 

In this case (E ≈ 0), even if the risk of failure is zero but it is almost im-
possible that the method leads us to less than 300 tests. 

4) Using the fourth step we have by choosing, for example 1
10000

η = : 

> eta=1/10000  
> Zmax=n0+r0*(qbinom(1-eta, n0, p0))  
> Zmax  
[1] 434  
> 

We conclude this example by asserting that the value 0 3r =  is optimal 
and in this case there is a probability of 99.99% that the total number of 
tests does not exceed 434. 

5. Conclusions and Perspectives 

The strategy proposed in this work responds to the need to carry out systematic 
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screening when logistical resources are not sufficient. 
The conditions of use (low prevalence) of this strategy are frequent in practice. 

In this period when humanity is facing the COVID-19 pandemic, there is almost 
everywhere a lack of screening equipment. 

Unfortunately, we cannot yet recommend our strategy in the case of covid-19 
because, on the one hand, the prevalence is generally not known and, on the other 
hand, the screening tests and the nature of the samples considered must still 
progress. 

In terms of perspectives, we will focus the rest of this research on a double 
project: 
• From a mathematical point of view, we will try to integrate the estimation of 

the prevalence in this strategy in order to be able to apply it to diseases whose 
prevalence is not known. 

• Regarding applications, we would like to increase the number of exchanges 
with epidemiology researchers in order to determine the diseases and tests 
for which the type of sample allows this strategy to be applied. 
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