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Abstract 
Solving optimization problems with partial differential equations constraints 
is one of the most challenging problems in the context of industrial applica-
tions. In this paper, we study the finite volume element method for solving 
the elliptic Neumann boundary control problems. The variational discretiza-
tion approach is used to deal with the control. Numerical results demonstrate 

that the proposed method for control is second-order accuracy in the ( )2L Γ  

and ( )L∞ Γ  norm. For state and adjoint state, optimal convergence order in 

the ( )2L Ω  and ( )1H Ω  can also be obtained. 
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1. Introduction 

In this paper, we study the finite volume element method for solving the Neu-
mann boundary control problems governed by elliptic partial differential equa-
tions. The following control problem will be considered 

( ) ( )( ) ( ) ( ) ( )2 21min , d d ,
2 2

J y x u x y x y x x u x sλ
ΩΩ Γ

= − +∫ ∫         (1) 

subject to 

( ) ( )( ) ( ) ( ) ( )
( ) ( )( ) ( )

, in ,

, on ,

x y x c x y x f x

x y x Bu x

−∇ ⋅ ∇ + = Ω


∇ ⋅ = Γ

A

A n
             (2) 

where Ω  is a plane polygonal domain with piecewise smooth boundary Γ ,  
( ) ( ){ }ijx a x=A  is a 2 × 2 symmetric and uniformly positive matrix, ( ) 0c x >  
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is a sufficient smooth function defined on Ω, B denotes the linear and conti-
nuous control operator which makes ( ) ( )2Bu x L∈ Γ , ( )u x  and ( )f x  have 
enough regularity so that this problem has a unique solution. 

The control problem (1)-(2) has many applications, see for example [1], for a 
brief review of applications. Finite element method is an important numerical 
method for the problems of partial differential equations and is widely used in 
the numerical solution of distributed optimal control problems [2] [3] [4] [5]. 
Compared with distributed control problems, the Neumann boundary control 
problem is more difficult. Error estimates for finite element discretization of 
Neumann boundary control problems governed by elliptic equations are dis-
cussed in some publications. In [6], piecewise constant functions are used to 
discretize the control and obtain the rates of convergence in ( )2L Γ . The conti-
nuous piecewise linear functions are used to discretize the control and the cor-
responding error estimates are obtained in [7]. The variational discretization of 
Neumann type elliptic optimal control problems are considered by Hinze [8]. 
Error estimates for the postprocessing approach applied to the Neumann boun-
dary control problems in polyhedral domains are considered [9] [10]. 

The finite volume element (FVE) method has been one of the most commonly 
used numerical methods for solving partial differential equations. The main ad-
vantage of the method is that the local physical conservation law can be main-
tained. So it has been extensively used in computational fluid dynamics. We can 
refer to [11] for groundwater flow, [12] for weather prediction, [13] for shallow 
water wave, and to [14] for sedimentation problem. However, there are only a 
few published results on the finite volume element method for the distributed 
optimal control problems. In [15] [16], the authors discussed distributed optimal 
control problems governed by elliptic equations by using the finite volume ele-
ment methods. The variational discretization approach is used to deal with the 
control and the error estimates are obtained in some norms. In [17], the authors 
considered the convergence analysis of discontinuous finite volume methods 
applied to distributed optimal control problems governed by a class of second- 
order elliptic equations. 

In this paper, we consider the finite volume element method for solving the 
elliptic Neumann boundary control problems. Firstly, we introduce the Neumann 
boundary optimal control problems and their optimal conditions. To solve the 
optimal control problems, the associated FVE schemes are constructed. The varia-
tional discretization approach is used to deal with the control, which can avoid 
explicit discretization of the control and improve the approximation of the con-
trol. 

The rest of the paper is organized as follows. In Section 2, we introduce some 
notations and the associated optimality conditions for the Neumann boundary 
optimal control problems. Section 3 presents the finite volume element schemes 
for the Neumann boundary optimal control problems. In Section 4, numerical 
results are presented to illustrate the effectiveness. Brief conclusions are given in 
Section 5. 
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2. Some Notations and Optimality Conditions 

In the following, we use the following notations for the inner products and norms 
on ( )2L Ω  and ( )1H Ω : 

( ) ( ) ( ) ( ) ( )2 2 11, , , , .L L Hv w v w v v v v
Ω Ω Ω

= = =  

The corresponding weak formulation for (2) is: Find ( )1y H∈ Ω  such that 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )1, , , , ,a y x v x f x v x Bu x v x v x H
Γ

= + ∀ ∈ Ω     (3) 

where 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )
2

, 1
, d ,ij

i j j i

y x v x
a y x v x a c x y x v x x

x xΩ
=

 ∂ ∂
= +  ∂ ∂ 

∑∫       (4) 

and 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ), d , , d .f x v x f x v x x Bu x v x Bu x v x s
ΓΩ Γ

= =∫ ∫     (5) 

Now, we consider the following optimal control problem for the state ( )y x  
and the control ( )u x : 

( ) ( )( ) ( ) ( ) ( )2 21min , d d ,
2 2

J y x u x y x y x x u x xλ
ΩΩ Γ

= − +∫ ∫       (6) 

over all ( ) ( )1 2H LΩ × Γ  subject to elliptic state problem (3) and the control 
constraints 

( ) ( ) ( ) , ,a bu x u x u x x≤ ≤ ∈Γ                    (7) 

where ( ) ( )2y x LΩ ∈ Ω  is a given desired state, 0λ ≥  is a regularization para-
meter and ( ) ( )a bu x u x≤ . We define the set of admissible controls by 

( ) ( ) ( ) ( ) ( ){ }2 : ,ad a bU u x L u x u x u x= ∈ Γ ≤ ≤             (8) 

where adU  is a nonempty, closed and convex subset of ( )2L Γ . 
From standard arguments for elliptic equations, we can obtain the following 

propositions. 
Proposition 1 For fixed control ( ) ( )2u x L∈ Γ , and ( )2f L∈ Ω , the state 

Equation (3) admits a unique solution ( ) ( )1y x H∈ Ω  and the following a pri-
ori estimate holds: 

( ) ( ) ( ) ( )( )21
.

L
y x C f x Bu x

Γ
≤ +                 (9) 

Proposition 2 Let adU  be a nonempty, closed, bounded and convex set, yΩ  
in ( )2L Ω  and 0λ > , then the optimal control problem (6) admits a unique 
solution ( ) ( )( ) ( ) ( )1 2,y x u x H L∈ Ω × Γ . 

This proof follows standard techniques [18]. 
The adjoint state equation for ( )1z H∈ Ω  is given by 

( )( ) ( ) ( ) ( ) ( )
( ) ( )( )

T

T

, in ,

0, on ,

x z c x z x y x y x

x z x

Ω
−∇ ⋅ ∇ + = − Ω


∇ ⋅ = Γ

A

A n
         (10) 

Proposition 3 The necessary and sufficient optimality conditions for (6) and 
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(7) can be expressed as the variational inequality 

( ) ( ) ( ) ( )( ) ( )
( )2, 0, .adL

u x B z x u x u x u x Uλ ∗

Γ
+ − ≥ ∀ ∈          (11) 

Further, the variational inequality is equivalent to 

( ) ( ) ( )
( )

, ,
a bu x u x

B z x
u x P

λ

∗

  

 
= −  

 
                  (12) 

where ( ) ( ) ( ) ( ) ( ){ }{ }, min ,max ,
a b b au x u xP u x u x  

⋅ = ⋅  denotes the orthogonal pro-

jection in ( )2L Γ  onto the admissible set of the control, and B∗  is the adjoint 
operator of B. 

3. FVE Method 

Now we describe the finite volume element discretization of the optimal control 
problem (6). We consider a quasi-uniform triangulation hT . Divide Ω  into a 
sum of finite number of small triangles K such that they have no overlapping in-
ternal region and a vertex of any triangle does not belong to a side of any other 
triangle. At last, we can obtain a triangulation such that 

hK T
K

∈
Ω =∪ . The set of 

all nodes are denoted by 

{ } is a node of element .h hN p p K T= ∈  

In addition, we denote by ( )iΠ  the index set of those vertices that, along with 

ix , are in some element of hT . 
The dual partition hT ∗  corresponding to the primal partition hT  is constructed 

as follows: In each element hK T∈  consisting of vertices ix , jx  and kx , take 
the barycenter q in K and select the midpoint ijx  on each of the three edges 

i jx x . Then connect q to the points ijx  by straight lines ijγ . In this way, we ob-
tain the dual element iV  whose edges are ijγ . Figure 1 gives a sketch of a dual 
element centered at a vertex ix . 
 

 
Figure 1. Dual element/control volume with barycenter as internal point. 
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We now formulate the discrete form of the optimal control problem. Let hS  
be the trial function space defined on the triangulation hT , 

( ){ }: is linear for all ,h hKS v C v K T= ∈ Ω ∈  

and let hQ  be the test function space defined on the dual mesh hT ∗ , 

( ){ }2 : is constant for all .h hVQ v L v V T ∗= ∈ Ω ∈  

In this way, we have 

( ){ } ( ){ }span , span | ,h i i h h i i hS x x N Q x x Nφ χ= ∈ = ∈  

where iφ  are the standard node basis functions with the nodes ix , and iχ  are 
the characteristic functions of the control volume iV . Let ( ):h hI C SΩ →  and 

( ):h hI C Q∗ Ω →  be the usual interpolation operators, i.e., 

( ) ( ) ( ) ( ) ( ) ( ), .
i h i h

h i i h i i
x N x N

I y x y x x I y x y x xφ χ∗

∈ ∈

= =∑ ∑  

By the interpolation theorem of Sobolev spaces, we have for ( )2
hv S H∈ Ω∩  

and hw S∈  

2
2 1, 0,1, .m

h hmv I v Ch v m w I w Ch w− ∗− ≤ = − ≤  

Then the finite volume element schemes for (3), (10) and (11) are defined as 
follows: 

( ) ( ) ( ), , , , ,h h h h h h ha y I v f I v Bu I v v S∗ ∗ ∗

Γ
= + ∀ ∈             (13) 

( ) ( ), , , ,h h h h h ha z I w y y I w w S∗ ∗
Ω= − ∀ ∈               (14) 

( ) ( ) ( ),, 0 or ,  ,
a b

h
h h h h adu x u x

B z
u B z u u u P u Uλ

λ

∗
∗

 Γ  

 
+ − ≥ = − ∀ ∈ 

 
    (15) 

where 

( ) 0, d d .
i

h h h h h h hV V
V

a y I v I v y s c y I v x∗ ∗ ∗

∂
 = − ∇ ⋅ −  ∑ ∫ ∫A n  

We use the following fixed-point iteration algorithm to compute the above 
discrete optimality problem.  
 
Algorithm 1 

1) Choose 0
h adu U∈  and set 0k = ;  

2) Compute k
hy  by solving ( ) ( ) ( ), , ,k k

h h h h h ha y I v f I v Bu I v∗ ∗ ∗

Γ
= + ;  

3) Compute k
hz  by solving ( ) ( ), ,k k

h h h h ha z I w y y I w∗ ∗
Ω= − ;  

4) Set ( ) ( )
1

,a b

k
k h
h u x u x

B zu P
λ

∗
+

  

 
= − 

 
;  

5) If 1 610k k
h hu u+ −− ≤ , then we set 1k

h hu u += , else 1k k= + , and go back to Step 2. 
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4. Numerical Examples 

In this section, we report some numerical results of finite volume element schemes 
for the Neumann boundary optimal control problems. To illustrate the theoreti-
cal analysis, the following rate of convergence r is defined, 

2
2log ,h

h

u u
r

u u
 −

=   − 
 

where hu  is the numerical solution with space step size h and u is the analytical 
solution. 

4.1. Example 1 

To validate the finite volume element schemes for the solution of elliptic prob-
lem with the Neumann boundary condition, test example is needed for which 
the exact solutions are known in advance. We consider the following problem 
with inhomogeneous Neumann boundary condition, 

( ) ( ) ( ) ( )
( ) ( )

, in ,

, on ,

y x c x y x f x

y x g x

−∆ + = Ω

∇ ⋅ = Γ n

               (16) 

where Ω denotes unit square ( ) ( )0,1 0,1× , n  is the outer unit normal vector. 
We consider the following exact solution to the above boundary value problem 

( ) 2 2
1 2 1 2 .y x x x x x= + +  

In this example, we choose ( ) 2 2
1 21c x x x= + + . The source term ( )f x  and 

the boundary condition ( )g x  can be derived from the exact solution. 
We compute the L∞ , 2L  and 1H  errors for ( )y x . They are displayed in 

Table 1. Examination of the table shows that the error measures of the FVE 
schemes diminish approximately 2h  for the error in the 2L  norm and h in the 

1H  norm, which is optimal from the the viewpoint of polynomial degrees. And 
the error in the L∞  norm is quasi-optimal. 

4.2 Example 2 

This example is taken from [7]. The optimization problem reads 

( ) ( ) ( )2 21min , d d d d ,
2 2 u yJ y u y y x u s e x u s e y sλ

ΩΩ Γ Γ Γ
= − + + +∫ ∫ ∫ ∫  

 
Table 1. Errors results for Example 1. 

h L∞ error r L2 error r H1 error r 

1/8 2.1580E−02 - 4.9749E−03 - 1.5893E−01 - 

1/16 6.4194E−03 1.75 1.2544E−03 1.99 8.0310E−02 0.98 

1/32 1.8578E−03 1.79 3.1446E−04 2.00 4.0287E−02 1.00 

1/64 5.2742E−04 1.82 7.8683E−05 2.00 2.0163E−02 1.00 

1/128 1.4757E−04 1.84 1.9675E−05 2.00 1.0084E−02 1.00 
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subject to 

( ) ( ) ( ) ( )
( ) ( ) ( )

1

2

( , in ,

, on ,

y x c x y x e x

y x e x u x

−∆ + = Ω

∇ ⋅ = + Γ n

 

where Ω denotes unit square ( ) ( )0,1 0,1× , 1λ = , ( ) 2 2
1 21c x x x= + − , ( ) 1ye x = ,  

2
1 1 2y x x xΩ = + , ( ) ( )( )2 2 2 2

1 1 2 1 1 2 22 1 1 2e x x x x x x x= − + + − + + − , 

( )
( )

( )( )( )

( )

3
1 1

2
2

2

2 2 1 2 2 2

2
1 3

2 2 4

1 , on ,

8 0.5 0.58,
1 min on ,

1 16 1 ,

1 , on ,

1 1 , on ,

u

x

x

e x x x y x y x

x

x x

∗ ∗

− − Γ

  − +− − Γ= − − − − 
− − Γ

− + − Γ

 

and 

( )
( ){ }

2 3
1 1 1 1

22
2 2 2 2

2
2

1 1 3

2
2 2 4

1 2 , on ,

7 2 min 8 0.5 0.58,1 , on ,

2 2 , on ,

1 , on ,

x x x

x x x
e x

x x

x x

 − + − Γ

 + − − − + Γ= 
− + + Γ

 − − Γ

 

where 1Γ  to 4Γ  are the four sides of the square, starting at the bottom side and 
going counterclockwise, 

1 2
21 210.5 and 0.5 .

20 20
y y∗ ∗= − = +  

This problem has the following exact solution: ( ) 2 2
1 1 2 21 2y x x x x x= + + − ,  

( ) 1z x =  and 

( )
( ){ }

3
1 1

2
2 2

2
1 3

4

, on ,

min 8 0.5 0.58,1 , on ,

, on ,

0, on .

x

x
u x

x

 Γ

 − + Γ

= 
 Γ
 Γ

 

The convergence results of the control ( )u x  in Table 2 demonstrate second- 
order accuracy in the ( )2L Γ  and ( )L∞ Γ  norm. The L∞ , 2L  and 1H  errors 
for state ( )y x  and adjoint state ( )z x  have been computed by the finite vo-
lume element schemes. They are displayed in Table 3 and Table 4, respectively. 
Examination of the tables shows that the error measures of the schemes diminish 
approximately quadratically for the error in L∞  and 2L  norm, and linearly for 
the error in 1H  norm except the error of adjoint state ( )z x . This may be due 
to its better smoothness. Figure 2 shows the computed optimal control with  

1 32h = . 
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Table 2. Errors of the control for Example 2. 

h ( )L∞ Γ  error r ( )2L Γ  error r 

1/8 1.4360E−03 - 1.4176E−03 - 

1/16 3.6011E−04 2.00 3.5464E−04 2.00 

1/32 9.0099E−05 2.00 8.8761E−05 2.00 

1/64 2.2553E−05 2.00 2.2030E−05 2.01 

1/128 5.6702E−06 1.99 5.5253E−06 2.00 

 
Table 3. Errors of the state for Example 2. 

h L∞ error r L2 error r H1 error r 

1/8 1.4335E−02 - 4.3446E−03 - 1.8989E−01 - 

1/16 4.2037E−03 1.77 1.0918E−03 1.99 9.5306E−02 0.99 

1/32 1.2171E−03 1.79 2.7324E−04 2.00 4.7710E−02 1.00 

1/64 3.4726E−04 1.81 6.8287E−05 2.00 2.3863E−02 1.00 

1/128 9.7623E−05 1.83 1.6953E−05 2.01 1.1933E−02 1.00 

 
Table 4. Errors of the adjoint state for Example 2. 

h L∞ error r L2 error r H1 error r 

1/8 1.4360E−03 - 5.2125E−04 - 2.8099E−03 - 

1/16 3.6011E−04 2.00 1.3011E−04 2.00 7.0613E−04 1.99 

1/32 9.0099E−05 2.00 3.2532E−05 2.00 1.7677E−04 2.00 

1/64 2.2553E−05 2.00 8.1387E−06 2.00 4.4214E−05 2.00 

1/128 5.6702E−06 1.99 2.0439E−06 1.99 1.1057E−05 2.00 

 

 
Figure 2. The computed optimal control hu . 
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5. Conclusion 

In this article, we have considered the finite volume element approximation of 
the Neumann boundary optimal control problem which is governed by the ellip-
tic partial differential equations. To obtain optimal convergence order, the varia-
tional discretization approach is used to deal with the control. Numerical results 
demonstrate that the proposed FVE method can effectively solve the the Neu-
mann boundary optimal control problem. Second-order accuracy is obtained for 
the control in the ( )2L Γ  and ( )L∞ Γ  norm. In the future, we will consider the 
error estimates for the present method. 
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