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Abstract 
In this paper, we develop a mathematical model of the COVID-19 pandemic 
in Burkina Faso. We use real data from Burkina Faso National Health Com-
mission against COVID-19 to predict the dynamic of the disease and also the 
cumulative number of reported cases. We use public policies in model in or-
der to reduce the contact rate, this allows to show how the reduction of the 
daily report of infectious cases goes, so we would like to draw the attention of 
decision makers for a rapid treatment of reported cases. 
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1. Introduction 

Since December 2019, the Coronavirus disease 2019 (COVID-19) has been rav-
ing all the continents. Outbreak in Wuhan, China, the disease passed through 
Europe to finally reach Africa south of the Sahara. The Coronavirus disease 2019 
(COVID-19) is an infectious disease that erupted in China in December 2019 
and quickly spread into other countries in Europe and America. In West Africa, 
the first cases were reported in Senegal, Nigeria and Burkina Faso. In Burkina 
Faso, the first two cases were reported on March 9, 2020 ([1] [2] [3]); they were a 
Burkinabè couple who returned from travel from Mulhouse (France) after a few 
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days stay there. 
Currently, many mathematical models of the COVID-19 have been devel-

oped, mainly for the Coronavirus epidemic in China (see [1] [3]-[8]). We have 
developed a model describing the Coronavirus epidemic in Burkina Faso, fo-
cussing on the effects of public policies imposed by the government to contain 
this epidemic and the number of reported occurred cases. 

2. Mathematical Model 

Considering the known characteristics of the Coronavirus disease 2019 (COVID-19) 
pandemic, we assume that each person is in one of the following compartments: 
 S (Susceptible) means the number of persons who are not infected by the 

disease pathogen at time t, so who are susceptible to infection. 
 E (Exposed) represents the number of persons who are in the incubation pe-

riod after being infected by the disease pathogen. These persons have no visi-
ble clinical sign of the disease. They can infect other people but with lower 
probability than people in the infectious comportments. 

 I (Infectious) means the number of persons who start developing clinical 
signs, these persons are asymptomatic infectious cases. 

 Ir (Reported symptomatic infectious cases) represents the number of persons 
who are reported and isolated at time t. 

 Iu (Unreported symptomatic infectious cases) stands for the number of un-
reported symptomatic persons at time t. 

 R (Recovered) represents a person who has survived the disease, is no longer 
infectious and has developed a natural immunity to the disease pathogen. 

This leads to the following transfer diagram (Figure 1).  
The mathematical model consists of the following system of ordinary diffe-

rential equations:  
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Figure 1. Transfer diagram for the mathematical model of COVID-19. 
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where 
 ( )tγ  is the contact rate of a person in state S (day−1) at time t. 
 α  is the transition rate of a person in state E (day−1).  
 β  is such that 1 β  is the average time during which asymptomatic infec-

tious cases are symptomatic and 1 2β β β+ = . 
 η  is the transition rate of a person in state rI  to the state R (day−1). 
 θ  is the transition rate of a person in state uI  to the state R (day−1). 
 N is the number of people in the territory before the start of the pandemic. 

The initial data of the system is supplemented by  

( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 0 00, 0, 0, 0 and 0.r uS t S E t E I t I I t I t= > = > = > = ≥  

The time t is in day, the asymptomatic infectious individuals ( )I t  are infec-
tious for an average time period of 1 α  days. We also suppose that the popula-
tion is constant i.e. ( ) ( ) ( ) ( )N S t E t I t R t= + + + .  

Proposition 2.1. The basic reproduction number for the model system (1) is 
defined by  
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Proof. We use the method of next generation matrix in [9] to compute the 
reproduction number 0R . 
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On ( )0
0 ,0,0,0E S= , we get  
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The basic reproduction number is defined as the dominant eigeinvalue of the 
matrix 1FV −− . 

Therefore,  
0

2
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The basic reproduction number 0R  is defined as the number of cases that 
one infected person generates on average during his infectious period, in an un-
infected population and without any special control measures. This number does 
not change during the spread of the disease. 

The effective reproduction number ( )eR t  is defined as the number of cases 
that one infected person generates during his infectious period. This effective 
reproduction number depends on time, so, on public policies (change during the 
spread of the disease). Furthermore, ( ) 00eR R=  and the spread of the disease 
slows when ( ) 1eR t < . 

Since 
0
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therefore 
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3. Data 

In this part, we use real data generated by the Burkina Faso National Health 
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Commission against Coronavirus Disease 2019 (COVID-19) called CORUS. Re-
call that the first cases were reported in Burkina Faso on March 9, 2020, From 
that date, we witnessed an exponential growth in the number of cumulated cases. 
Table 1 represents the daily cumulative number of reported infected cases and 
Table 2 the daily reported infected cases. 

With these data, we can see the daily dispersion of the infected case (Figure 
2), and the cumulative reported infected cases (Figure 3). 
 

 
Figure 2. Daily infected reported number. 
 

 
Figure 3. Cumulative infected reported number. 
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Table 1. Cumulative daily reported cases data from March 9, 2020 to March 27, 2020 for 
Burkina Faso by Burkina Faso National Health Commission against Coronavirus Disease 
2019 (COVID-19). 

March 9 13 15 17 18 19 20 21 22 23 

 2 3 7 20 27 33 40 64 75 99 

March 24 25 26 27       

 114 146 152 180       

 
Table 2. Daily reported cases data from March 9, 2020 to March 27, 2020 for Burkina 
Faso by Burkina Faso National Health Commission against Coronavirus Disease 2019 
(COVID-19). 

March 9 13 15 17 18 19 20 21 22 23 

 2 1 4 13 7 6 7 24 11 24 

March 24 25 26 27       

 15 32 6 28       

4. Model Parameters for COVID-19 in Burkina Faso 

Some of the parameters used in the simulations presented in Section 5 are from 
the literature. However, due to specificity of our real data, we fit some other pa-
rameters mainly to adjust the cumulative curve ( )C t . This curve represents the 
cumulative number of reported symptomatic infectious cases at time t. So using 
the fact that ( ) 1 21f fβ β β β β= + − = + , we have:  

( ) ( )
0

1 d
t

t
C t I s sβ= ∫  

For the beginning of the epidemic, we assume that the growth of the cumula-
tive curve is exponential as in [10], i.e. 

( ) 0e , .btC t a c t t= − ∀ ≥  

We use the cumulative number of reported symptomatic infectious cases from 
Table 1 to evaluate , ,a b c  and 0t . 

So from [4] and [10], we have  

( )
0

2
0 0 0 0

0 2

, and .r
bc b bI t I I
f S b b

ββ θγ γ
β β θ θ

+ +
= = = =

+ + +
 

With the data in Section 3, we fit the cumulative infectious cases reported 
number by :  

( ) 0.20.9e 7.5,tC t = −  

so we have 0.9, 0.2a b= =  and 7.5c = .  

5. Simulation and Comments 

The data we use here in Table 3 were calibrated for the situation of China, the 
first big source of COVID-19 [1] [3] [4] [7]. Due to the spread of the disease,  

https://doi.org/10.4236/am.2020.1111082


A. Guiro et al. 
 

 

DOI: 10.4236/am.2020.1111082 1210 Applied Mathematics 
 

Table 3. Summary of some parameters calibrated for COVID-19 from the literature and 
data fit in Burkina Faso. 

Notation Value Description Reference 

α  0.1818 Trans. rate of persons in state E (day−1) [1] 

η θ=  1
14

 
Trans. rate of persons in state ,u rI I  to state 
R (day−1) 

[1] 

f 0.7 
Fraction of asymptomatic infectious that become 
reported symptomatic 

fixed 

β  1
7

 Trans. rate of a persons in state I (day−1) [11] 

1 fβ β=  0.1 
Rate at which asymptomatic infectious become 
reported symptomatic 

 

( )2 1 fβ β= −  0.0428 
Rate at which asymptomatic infectious become 
unreported symptomatic 

 

0t   Time at which the epidemic started fitted 

0S   Number of susceptible at time 0t  fitted 

0I   Number of asymptomatic infectious at time 0t  fitted 

0r
I   

Number of unreported symptomatic infectious 
at time 0t  fitted 

γ   Transmission rate fitted 

 
new studies should be performed to analyze its behavior in other sanitary popu-
lation and climatic conditions. Only a limited number of studies accepted by the 
scientific community are available and these are what we use in Table 3. 

For the parameters used in this model, we present some important parameters 
and threshold values related to the Coronavirus Epidemic in Burkina Faso. In 
particular, we observe that the basic reproduction number 0 4.9R =  is bigger 
than other reproduction number values reported in the literature [3] [10] [12]. 
This could be explained by the fact that we have taken into account unreported 
infected persons. 

We assume that the exponential increase phase of the epidemic is intrinsic to 
the population of each region. Also, the Susceptible population ( )S t  is not 
significantly reduced over the time. We suppose that the entire population of 
Burkina Faso at the date 0t  are susceptible so, ( )0 20000000S t = , the exposed 
population at the same date ( )0 0 200E t E= = . Applying the model to Ouaga-
dougou, the capital city, we set ( )0 2000000S t =  and ( )0 0 200E t E= = .  

5.1. Without Any Public Policies until March 26, 2020 

We use the cumulative curve to fit the parameter γ . From the beginning of the 
epidemic until March 9, 2020, we assume that there was no public policy so we 
fit 0.7γ = . This could be corroborated by the fact that the cumulative infected 
data curve fits well with the component of the reported infectious. Figure 4 
shows the evolution of the cumulative infected reported cases and the forecast  
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Figure 4. Fitting data with the model (1). 
 
relating to the model. Figure 5 shows the evolutions of different types of in-
fected people without any public policy in the country. For the entire Burkina 
Faso, we can reach the bar of six million infected people in the long term with 
five hundred thousand people in Ouagadougou as is shown in Figure 6. 

5.2. With Pubic Policies Started on March 27, 2020 

From this date, we decrease the rate of contact ( )tγ  due to different types of 
measures taken by the public authorities. We can see the effect of these measures 
on the spikes of different types of infectious cases which decrease according to 
the degrees of the measures taken. We can see the curve of the contact rate in 
Figure 7.  

( ) ( )( )
0

0

, 0 27

exp 27 , 27

t
t

t t

γ
γ

γ µ

≤ ≤=  − − ≥
              (10) 

Depending on the public measures taken, µ  increases, so the contact rate 
( )tγ  decreases and it is possible to limit the number of infected persons. µ  is 

chosen in such a way that the simulation for the time interval aligns with the 
cumulative reported case data. So we are able to predict the future values of the 
epidemic from the early cumulative reported data. The earlier the decisions pub-
lic policies are made, the better the management of the epidemic. So for in-
stance, Figures 8-13 show the evolution of different types of infectious cases in 
Burkina for 0.1µ = , 0.13µ = , 0.16µ = , 0.2µ = , 0.25µ = , 0.3µ = . Fig-
ure 14 and Figure 15 represent the evolution of the cumulative reported case 
when 0.05µ =  and 0.1µ = . 
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Figure 5. Forcast of the evolution of different types of infectious in Burkina. 

 

 
Figure 6. Forcast of the evolution of different types of infectious in Ouagadougou. 
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Figure 7. Contact rate ( )tγ  for 0.15µ = . 

 

 
Figure 8. Forcast of the evolution of different types of infectious cases in Burkina for 0.1µ = . 
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Figure 9. Forcast of the evolution of different types of infectious cases in Burkina for 0.13µ = . 

 

 
Figure 10. Forcast of the evolution of different types of infectious cases in Burkina for 0.16µ = . 
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Figure 11. Forcast of the evolution of different types of infectious cases in Burkina for 0.2µ = . 

 

 
Figure 12. Forcast of the evolution of different types of infectious cases in Burkina for 0.25µ = . 
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Figure 13. Forcast of the evolution of different types of infectious cases in Burkina for 0.3µ = . 

 

 
Figure 14. Evolution of the cumulative infectious cases in Burkina for 0.05µ = . 

https://doi.org/10.4236/am.2020.1111082


A. Guiro et al. 
 

 

DOI: 10.4236/am.2020.1111082 1217 Applied Mathematics 
 

 
Figure 15. Evolution of the cumulative infectious cases in Burkina for 0.1µ = . 

6. Conclusion 

In this paper, we have developed a mathematical model of COVID-19 for Bur-
kina Faso, inspired by models in [3] and [10]. We have been able to estimate 
some parameters which have made it possible to fit the model to real data from 
the start of the Epidemic up to March 27, 2020 (when public policies were in-
troduced). It emerges from this model that the most important parameter here is 
the contact rate which is a time dependent function (with respect to the public 
policies taken). A drastic reduction of the contact rate can lead to a considerable 
reduction in the number of infectious and of the duration of the epidemic. 
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