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Abstract 
In dielectrics and semiconductors, a plasma model of the generation and slip 
of dislocations is considered, where under shock loads in a generalized space 
of rectangular pulses an alternating field forms a distribution of pairs of pho-
toelectrons and cations; these electrons with velocities eV  create δ-collisions 
with cold plasma from free electrons and holes with masses em  and hm  
( )h em m , they emit and absorb longitudinal electron plasma waves whose 
phase velocities pw pwkω  are close to or are equal to the velocities eV , while 
the frequencies pwω  and wave numbers pwk  of the wave packet of plasma 

waves are complex, the short-wave components ( )1

minpwk −  of this wave packet 

at 1pw ek a⋅   ( ea -Debye screening radius) decay in the core linear defect, 

and its long-wavelength components ( )1

maxpwk −  propagate in the region of 

the medium surrounding the core of the defect at 1pw ek a⋅ <≅ . When a de-
fect is generated, the distribution of cations under the influence of the inter-
nal Coulomb field shifts to the region of the first peak (protrusion) of the 
electron plasma wave, thereby forming a vacancy valley. When sliding under 
the influence of an external electric field, a cationic plasma wave consisting of 
a vacancy valley and two cationic protrusions moves against the background 
of an additional potential relief created by an electron plasma wave near the 
core of the defect. It has been shown that δ-collisions create flows of dynamic 
large-scale correlations of plasma fluctuations in the form of asymptotics of 
different-time correlators of density and potential fluctuations as t → +∞.  
 

Keywords 
Solid-State Plasma, Debye Screening Radius, Charged Particle Collisions, 
Plasma Wave, Flows of Dynamic Correlations of Density, Potential  
Fluctuations 

How to cite this paper: Busov, V.L. and 
Vladimirovna, G.M. (2020) Plasma Model 
of Generation and Slip of Linear Defects in 
Crystalline Materials. Applied Mathemat-
ics, 11, 1167-1177. 
https://doi.org/10.4236/am.2020.1111079 
 
Received: June 22, 2020 
Accepted: November 17, 2020 
Published: November 20, 2020 
 
Copyright © 2020 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/am
https://doi.org/10.4236/am.2020.1111079
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/am.2020.1111079
http://creativecommons.org/licenses/by/4.0/


V. L. Busov, G. M. Vladimirovna 
 

 

DOI: 10.4236/am.2020.1111079 1168 Applied Mathematics 
 

1. Introduction 

At present, the fundamental theory of the nuclei of linear defects in semicon-
ductors is the Reed discrete static model [1] [2], where it was assumed that an 
additional half-plane of the edge dislocation introduces a chain of free or un-
saturated bonds into the crystal. Due to the attraction of free electrons to these 
bonds in germanium, as well as in most cases, a negative linear charge of a dis-
location core arises in silicon, which forms a cylindrical space charge in the en-
vironment surrounding the core with a radius R from 1 to 10 μm. Using the 
Poisson equation and the electrostatic energy of trapped electrons, Reed found 
the work of space charge formation for one additional electron in the chain 

0
3 ln 0.866
2pr

c

fA f E
f

 
= ⋅ − 

 
                   (1) 

where f is the degree of filling of the chain is determined by the Fermi distribu-
tion function  

( ) 1

1 exp d fE E
f

kT

−
 −
 = +
  

                    (2) 

where dE  is the dislocation level within the band gap; fE  is the Fermi level; 
T is the absolute temperature; 0E  is the interaction energy of neighboring elec-
trons in the chain, 2

0 chE e a=  ; cha  is the distance between neighboring 
trapped electrons; 1 cha  is the density of additional electrons per unit length of 
the dislocation; —dielectric constant; cf  is distribution function cf f=  at 

chR a= ; c is the distance between adjacent unsaturated bonds, the ratio cha c  
is of the order of 0.1. Reed also found the potential of the field 0φ  created by all 
other electrons of the linear charge and positive space charge at the location of 
an arbitrary injected electron 

0 3ln 1.232
c

e ff
c f

φ
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                    (3) 

The numerical value of was confirmed experimentally by scanning with an 
electron beam except for its sign ([1], p. 112). Of particular interest is the de-
pendence of the electrostatic potential of the barrier bφ  on the distance r from 
the dislocation line ([1], Figure 8.25, p. 178), where ( )b rφ  obtained at an aver-
age concentration of conduction electrons 15 31 10 cmesn −= × ; 2.85 nmcha = ; 

0.4 nmc = ; 0.14chc a = ; 0.4 eVdE =  below the boundary of the conduction 
band, and consists of two branches: ascending at 0r =  from 0.18 V to the 
maximum of the curve 0.27 V at 6 10 nmmr = ÷  and descending from mr  to

100 nmfr ≈ . It should be noted that the distance mr  is associated with the 
wavelength ieλ  of the injected electron 

2

ln
2m

ie

e Rr
kT λ

=
π

                       (4) 

Here the question arises: How does the generation and slip of linear defect 
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nuclei occur in the Reed model? 
On the other hand, in the limiting case, near the electric breakdown and shock 

compression of crystalline dielectrics and semiconductors, there occurs a 
solid-plasma phase transition [3], where the combined influence of electric fields 
is 9 1010 -10 V moutE =  and hydrostatic pressures 9 1110 -10 Pap =  lead to two 
effects: 1) reduction of the band gap ( )*

gE p  according to the linear law 

( ) ( )* 0
g g pE p E p a p= + ⋅ ,                    (5) 

where pa  is the baric coefficient expressed in terms of the compressibility coef-
ficient K and has a negative value 

pa Kγ= ⋅                           (6) 

where ( )12 12 199 10 200 10 ; 2 3 10 JK γ− − −× ≤ ≤ × ≅ − ÷ ×  the generation of elec-
tron-hole pairs, the probability w of occurrence of which has the form [4] [5] 

( )2* *
0

* *
0

exp ln1
2

out
g

eh out
g

eE a E
w n N

E ea E
α

⋅  
= = −  π ⋅ ⋅ 

          (7) 

where ehn  and N are the average densities of electron-hole pairs formed per 
unit time and valence electrons, respectively; *

0a  is the effective lattice parame-
ter; α  is the ratio of the width of the valence band to the width of the conduc-
tion band. It was shown in [3] that when injected electrons move in the volume 
of a shock wave in the velocity range 3 64 10 1 s10 mieV × ÷ ×=  and pressures 

10 111.2 10 1 10 Pap = × ÷ ×  for alkali halide crystals of the NaCl type, the value of 
( )*

gE p  decreases from 8.6 to 1.5 eV. 
It is known [6] that the energy of the ground state of a solid-state plasma is 

mainly determined by electrostatic energy, and as a second-order correction it 
contains the correlation energy W, which is divided into two components: 1W , 
due to large-scale Coulomb correlations in the relative motion of electrons, and

sW , due to the Pauli principle in the form of small-scale correlations with an ef-
fective radius of 0.1 - 0.2 nm. An analysis of the works [7] [8], which consider 
the processes of damage formation in ionic crystals under the influence of in-
tense laser radiation, shows that here the decisive role is played by the influence 
of plasma arising both at the boundaries of blocks, grains, cleavage, and in the 
volumes of pores and cavities.  

The well-known Reed model does not reflect the combined dynamics of con-
duction electrons captured by unsaturated bonds and the atomic collective near 
the dislocation line during generation and slip of the dislocation core. The ques-
tion naturally arises: How is the generation and sliding of linear defects in a 
solid-state plasma under impact loads? 

The aim of this work is to build a plasma model of the processes of generation 
and slip of linear defects in dielectrics and semiconductors. 

2. The Theoretical Model 

We find the Debye radius of screening of a solid-state plasma ([9], p. 145) 
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                        (8) 

where e is the electron charge; , ,e em es edn n n n≡  are the average electron densi-
ties in metals, semiconductors, and dielectrics, respectively. At room tempera-
ture and 22 23 31 10 - 6 10 cmemn −= × ×  ([10], p. 380) the ema  radius in metals is 
25 ÷ 30 nm, at low temperatures 4 - 6˚ K 4 - 5 nmema = . In semiconductors 
doped with impurity atoms, 16 18 310 -10 cmesn −≈ , the radius esa , according to 
(8), takes values from several mm to several cm. In pure Ge, 13 14 310 -10 cmesn −≈  
is comparable to or slightly larger than edn  alkali halide crystals. 

At the first stage of the theory, we assume that under the influence of impurity 
ions, external electric fields and shock waves, the material already has an equi-
librium neutral distribution of free electrons and holes with masses em  and 

hm  for which: 1) the effective mass of electrons is * *
e hm m -effective mass of 

holes; 2) the relaxation time of free electrons is re recτ τ -the recombination 
time of the injected electrons and holes. We also emphasize that upon impact of 
the surface of a Ge, Si type semiconductor, an intermittent field injects valence 
electrons from atoms at lattice sites, turning them into cations; in the case of an 
insulator of the type Na+Cl− injection of bond electrons and the formation of 
light cations Na+ take place. 

Let us consider in the Cartesian coordinate system a certain volume V of 
crystalline material, where an alternating field if

xE  acts in the generalized space 
of rectangular pulses along the x axis in the standing wave regime ( )0

if
xE tδ  and 

( )0
if
xE tδ τ− +  (τ  is the pulse duration) [11] in the slip plane x0z. The field if

xE
creates in the right ( 0x > ) and left ( 0x < ) half-spaces of volume V a pair of 
photoelectrons and cations forming two flat beams with velocities eV  and e−V , 
while the cation velocities catv  in both half-spaces will be consider small:

cat ev V . Each beam in its half-space creates δ-ollisions, through which it inter-
acts with the plasma, while the chains of photoelectrons emit and absorb longi-
tudinal plasma waves—harmonics ( )exp i tω− −  kr  of only certain frequen-
cies pwω  and wave vector pwk , selectable using equations 

0pw pw eω − =k V                       (9) 

( ), 0l pw pwε ω =k                      (10) 

where ( ),l pw pwε ωk  is the longitudinal dielectric constant of the plasma, and 
obtained from the expression of the Landau collision integral ([9], p.236). In our 
case, we will consider the intrinsic plasma of the material to be cold: 

,ed es ev v V , where ,ed esv v  are the average thermal velocities of plasma elec-
trons in dielectrics (d) and semiconductors (s). Plasma electrons will be elasti-
cally scattered with respect to the direction of the beam only forward at large an-
gles χ ([12], p. 64). The roots of the dispersion law (10) are complex 

pw pw pwiω ω ω′ ′′= + , pwγ ω′′= − , γ  is the plasma wave attenuation decrement ac-
cording to the law ( )exp tγ−  
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( ) ( )3 2

1 3exp
8 22

e

pw e pw ek a k a
γ

 Ωπ  = ⋅ ⋅ − −
 
 

            (11) 

where eΩ  is the plasma frequency of electrons, { }1 224e e en e mΩ = π ;  
,e ed esa a a≡ . It should be noted here that the real part pwω′  при 1pw ek a   

( )231
2pw e pw ek aω  ′ = Ω + 

 
                   (12) 

and the imaginary part 

( )1 ,
2pw e l pw pwω ε ω′′ ′′= − Ω k                    (13) 

exponentially small with lε ′′ . Hence, a plasma wave in the form of a long-wave 
harmonic is propagating if γ  is exponentially small for 1pw ek a  . In contrast, 
short-wavelength harmonics are non-propagating; they make the main contri-
bution to the converging Balescu-Lenard collision integral BLStf  and essentially 
form the core of a linear defect. Indeed, as shown in ([9], p. 238), it is the region 

1pw ek a   that makes the main contribution to the integral BLStf . It should be 
noted here that the short-wave harmonics of the electron plasma wave create an 
internal Coulomb attraction of the cation distribution. 

On the other hand, plasma waves can be considered as fluctuation waves. For 
times t∆  that are small compared with the period of the rectangular pulses 

1
repω− , the plasma can be considered collisionless. If, within the standard proce-

dure, the distribution function of plasma electrons ef  and the scalar potential 

eϕ  are divided into the regular ,e ef ϕ  and fluctuation parts ,e efδ δϕ : 

e e efff δ= +  and e e eϕ ϕ δϕ= + , then the system of equations describing such 
a plasma has the form ([9], p. 256): 

e e e e e e
e

f f f f
e e

t x
ϕ δϕ δ∂ ∂ ∂ ∂ ∂ ∂

+ − =
∂ ∂ ∂

⋅
∂ ∂ ∂

v
r r r p

             (14) 

34 de ee f pϕ∆ = − π ∫                       (15) 

where the right side of (14) is the collision integral. It is clear that the terms 
quadratic in eδϕ  and efδ  in these equations describe the effect of collisions 
on fluctuations. Neglecting these terms and taking ( )e ef f= p ; 0eϕ = , ac-
cording to [9], we obtain the equations for fluctuations efδ  and eδϕ  for 

1
rept ω−∆ 

 

0e e e e
ej

j j j

f f f
v e

t x x p
δ δ δϕ∂ ∂ ∂ ∂

+ ⋅ − =
∂ ∂ ∂ ∂

                (16) 

34 de ee f pδϕ δ∆ = − π ∫                      (17) 

It should be noted here that ( )ef p  reflects the nonequilibrium stationary 
state of a collisionless plasma, in the absence of an external field it depends only 
on the momenta of plasma electrons and is a stationary solution (14), (15). 
Equations (16) and (17) allow us to construct the asymptotics of different-time 
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correlators as t → +∞  ( ) ( )1 1 1 2 2 2, , , ,e ef t f tδ δr p r p  and  
( ) ( )1 1 1 2 2 2, , , ,e ef t tδ δϕr p r p . In ([9], p. 260), Fourier images or spectral corre-

lators of these asymptotics were found 

( )
( )

( ) ( )
3 2

2 3
24

32 d
,

e e

l

e f p
kω

δϕ δ ω
ε ω

π
= −∫k

p kV
k

          (18) 

( ) ( ) ( )
( ) ( )

2
2

2

8
0 ,

e
e e e e

e l

fe ef f
i kω ω

δϕ δ δϕ δ ω
ω ε ω

∂ π
= + −

− + ∂k k

k p kV
kV p k

   (19) 

All three components of the bulky expression ( )e ef f
ω

δ δ
k

 (19) also contain 
the product ( ) ( )e ef δ ω −p kV , and the first (…)1-initially, and two the rest 
(…)2, (…)3 – after finding ef∂

∂p
, while (…)1 represents in the momentum space a 

δ-peak with an amplitude of ~ne, and (…)2, (…)3 in k -space the line spectrum 
with envelopes 2k −  and 1k − , respectively. 

The process of generating nuclei of linear defects is divided into several stages: 
the formation of short-wavelength harmonics of the plasma wave efδ  and 
their stabilization by moving the distribution of photoelectrons to the region of 
the first trough efδ , and the distribution of cations to the region of the first 
peak (protrusion) efδ  and the formation of a vacancy valley. Indeed, using the 
diffusion equations, or rather the mass transfer of cations and photoelectrons 
([9], p. 118; 2, p. 157) 

( )( )1
inscat

cat x cat cat cat e
n

div kT n n zeE f
t

µ µ δ
∂  = − ∇ + + ∂

        (20) 

( )( )1
phe ins

phe x phe phe phe e

n
div kT n n eE f

t
µ µ δ

∂
 = − ∇ + − ∂

        (21) 

where catn  and ,phe catn µ  and pheµ  are the average distribution densities of 
cations and photoelectrons and their mobility; ( )( )1

ins
eE fδ +  and ( )( )1

ins
eE fδ −  

are the internal Coulomb fields caused by the distribution of plasma electrons in 
the regions of the first protrusion and the first trough efδ , we will determine  

the conditions for stabilization of the defect nucleus. At 0phecat nn
t t

∂∂
= =

∂ ∂
, the  

drift currents caused by the fields ( )( )1
ins

eE fδ +  and ( )( )1
ins

eE fδ −  are bal-
anced by mass transfer currents from the gradients densities catn  and phen , 
while the photoelectrons are redistributed to the potential valley of the first 
trough efδ , and the cations to the potential valleys of the first protrusion efδ  
both on the left and on the right, provided that such stabilization time is shorter 
than the recombination time at the holes, and this is always true [2] [9]. In other 
words, the distributions of photoelectrons and cations are in quasistable states in 
an additional potential relief created by the short-wavelength harmonic efδ . In 
this case, the variation of the force acting on the photoelectron (cation) from the 
side of external and internal electric fields 

( ) ( ) ( ) 3dout out own
j j j ep j e jp j e

j
jp j jF F E n eE e x x f x x x

x
ϕ∂  ′ ′ ′= − + − − ∂ ∫   (22) 
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where ,p d s= ; ep epn f=  is the average density of plasma electrons; The epϕ  
is scalar potential of photoelectrons (cations) in the Coulomb field of plasma 
waves and the distributions of cations (photoelectrons) reflect either oscillations 
at the bottom of the corresponding potential valleys or tunneling through barri-
ers when the threshold beam velocities thr

eV  are reached. Note that photoelec-
trons and cations under the influence of external fields move through a periodic 
sequence of potential barriers ( )U x+  and wells ( )U x− , while the photoelec-
tron distribution is Boltzmann’s: ( )~ expphe phe ef n kTε− , where  

( ) ( )2 2 ,x e ep m U x U x eε ϕ= ± = − . If we put rep efω δ⋅  on the right side of equa-
tion (16), and then multiply the left and right sides of (16) by the variation xFδ  
and average in direct space over coordinates and time, then the correlator ob-
tained at different times can be reduced to correlators (18), (19), (19'). In what 
follows, we restrict ourselves to the case of low temperatures, when such nonlin-
ear effects as scattering by lattice vibrations and ionized impurities do not play a 
significant role [2]. Here, in δ-collisions, the equilibrium distribution 0f  is dis-
placed in the momentum space along the xp  axis abruptly by thr

xP  both in 
the positive and negative directions of this axis without changing the shape 

( )0f p . Suppose that, under the influence of an external uniform electric field
outE , the distribution of photoelectrons in the defect nucleus shifts in the posi-

tive direction of the xp+  axis. According to (21), the second peak (protrusion) 
( )2efδ −  serves as a barrier to the passage of the drift current of these electrons. 

In turn, the cations in ( )1efδ +  in one direction xp+  are affected by the 
Coulomb attraction of the photoelectron distribution, which plays a decisive 
role, and the less significant Coulomb attraction of the hole distribution due to 
the small density, and also the field outE  in the opposite direction. Here, the 
barrier for cations is the trough ( )1ef − . In other words, when sliding, when the 
photoelectron velocity reaches the threshold values thr thr

sl genV V> , the ion plasma 
wave, consisting of a vacancy valley and two cationic protrusions, moves against 
the background of an additional potential relief created by the short-wavelength 
harmonic efδ . 

Let us consider the interaction of two dislocations d1 and d2 with arbitrary 
edge and screw components of the Burgers vector. In the framework of the 
plasma model, the long-wave propagating harmonics of plasma waves d1 (d2) 
interact with the oscillation currents e

oscJ  and rotations e
turnJ  in the additional 

potential relief of the dislocation core d2 (d1) created by short-wave harmonics 
that do not propagate in this core i.e. ( ) ( ), 1 , 2e e e e

osc turn osc turnJ J d J J d
. The 

smoothness of electric fields from e
oscJ  and magnetic fields from axial compo-

nents of spiral currents from d1 (d2) to d2 (d1) core allows us to use quasiclassi-
cal dynamics in the form of Hamilton equations 

s
e

e

H∂
=
∂

r
p

                           (23) 

s
e

e

H∂
= −

∂
p

r
                          (24) 
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where instead of the Hamiltonian of the system sH  of two subsystems of pairs 
of photoelectrons and cations d1 and d2 we substitute the interaction Hamilto-
nian 1H  in the interaction representation [11] 

( ) ( )1 d , , ; ,H J A e cat osc turnν ν
µ µµν ν µ′ ′ ′= − = =∑∫ r r r r       (25) 

where in our case the vector potential Aν
µ  depends on the difference between 

the coordinates of the charged particles of the source d1 (d2) and the test charge 
d2 (d1), which transformes (25) into the convolution integral, maximally sim-
plifying the description of the force interaction d1 and d2 both in direct and in 
the reverse k -space by means of the Borel convolution theorem, transforming 
(25) upon its Fourier transform into the usual product of the Fourier compo-
nents of currents. Here 1H  is directly proportional to the scalar product 

1 2⋅k k , where 1k  and 2k  are the wave vectors of charged particles by d1 and 
d2, and the nature of the interaction is determined by the law cosα . For 
0 2α< < π  d1 and d2 are attracted, and for 2 απ < < π  they repel. Note that 
in the equilibrium state d1 and d2 in k -space, the right-hand side of (24) con-
tains ( )1 2δ +k k . When considering accumulations of dislocations, a statistical 
description is applicable using binary correlation functions of currents and 
stresses ,if el

kl mnσ σ  in the corresponding spaces. 
Of particular interest is the experimental confirmation of the plasma model. 

In Figure 1, the AFM image of the source of Frank-Read dislocations located 
near the surface of a single-crystal KCl sample is shown. On the installation SPM 
Femtoscan, the change in the topography of the crystal surface under the influ-
ence of a pulsed magnetic field in the contact regime was studied by the method 
of scanning atomic force microscopy (AFM). Cantilevers Micromasch CSC-12 
with a nominal tip radius of no more than 10 nm were used for scanning. Sam-
ples of a single-crystal KCl with dimensions 5 × 5 × 2 mm were obtained by 
cleavage along the cleavage planes, and were subjected to treatment with a weak 
pulsed magnetic field with induction B = 0.12T at room temperature in the time 
interval ~30 s. The maximum result of this action was found after the after effect 
time 48 hours and corresponded to the appearance of linear defects in the form 
of Frank-Read sources near the cleavage surface. To obtain an AFM image by 
atomic force microscopy, we used the contact quasistatic regime, where the tip 
of the probe was at a distance of 0.1 - 0.3 nm from the surface. Here, the source 
dislocation segment occupies a common field of view of 5 × 103 nm × 5 × 103 
nm. AFM image includes three cross-sections of a common field: one central in 
the middle of the segment, two others near the attachment points. We give a 
qualitative analysis of the AFM image: 

1) The surface relief on the AFM image consists of valleys and protrusions of 
various depths and widths. Cross-sections of the general field reflect the redis-
tribution of the substance at the time of passage of the probe; 

2) An insulated dislocation core, in the environment of which there are no 
linear (dislocations) and flat (interface, ledges, steps of terraces) defects, has a 
central trough relief with a depth of 4 - 6 nm and a width of 100 - 140 nm, which  
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Figure 1. AFM-image of the Frank-Reed source. The general field of view and three 
cross-sections: the central and two extreme near the fixation points. 
 
corresponds to a vacancy valley, and two protrusions, the dislocation cores cor-
responding to the cationic protrusions are of approximately the same parame-
ters, while the distribution of the protrusions and troughs of relief is symmetri-
cal with respect to the axial plane passing through the minimum of the central 
relief trough (dislocation line) and has an approximately oscillatory character; a 
line approximately parallel to the abscissa axis, relative to which the sum of the 
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areas above and below it is equal to zero, will be called the average level of the 
profile prL ; 

3) The approach of a dislocation to a deep step leads to a decrease in prL  
from the dislocation line to this step and to an increase in the wavelength and  
profile amplitude in this interval; 

4) The convergence of two dislocations of the same sign near the source fixa-
tion points leads to a significant deepening: up to 9 - 10 nm, and expansion: up 
to 200 - 300 nm, the troughs of the vacancy valleys of the nuclei of the disloca-
tions, separated by a wide protrusion, while prL  monotonically rises upward 
from both the left and on the right. 

3. Discussion of the Results 

1) Here a natural question arises: What is the reason for the appearance of the 
plasma model of linear defect nuclei? First, the impossibility of sufficiently relia-
bly representing the essence and mechanisms of electroplastic and magnetoplas-
tic effects [13]. Secondly, within the framework of the theory of atom-vacancy 
states, using the continuum model of concentration waves, it was shown that a 
dislocation is born as a solution of a nonlinear wave equation ([14], p. 23) with-
out revealing the structure of the defect nucleus. Third, the well-known atomic 
models [15] are based on the consideration of displacement fields caused by the 
introduction or removal of excess atoms into the crystal lattice without taking 
into account the density of charged particles, and the discrete model of the Reed 
dislocation core [1] [2] in semiconductors does not allow displaying generation 
and slip defect nuclei without corresponding displacements of excess atoms. 
Fourth, over the past 30 years, a number of new experimental methods have 
been created and tested, including atomic force microscopy, which allow us to 
take a fresh look at the problem of generation and slip of linear defect nuclei. It 
is clear that for a reliable experimental substantiation of the plasma model, a suf-
ficiently large data set will be required. 

2) There is a fundamental difference between the Reed model and the plasma 
model. In the Reed model, conduction electrons captured by unsaturated bonds 
of a chain of atoms along the edge of the half-plane inserted into the crystal form 
a linear charge. In the plasma model, as a result of the internal photoelectric 
effect, pairs of cations and valence electrons knocked out from semiconductor 
atoms are formed, as well as pairs of cations of alkali halide crystals, other 
dielectrics and bond electrons under the influence of an alternating field. In this 
case, the distribution of conduction electrons forms short-wave non-propagating 
harmonics of plasma waves, forming the structure of the defect nucleus and, at 
the same time, an additional potential relief of the crystal in which the 
distribution of the above pairs moves. 
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