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Abstract 
In this paper, we are going to derive four numerical methods for solving the 
Modified Kortweg-de Vries (MKdV) equation using fourth Pade approxima-
tion for space direction and Crank Nicolson in the time direction. Two non-
linear schemes and two linearized schemes are presented. All resulting 
schemes will be analyzed for accuracy and stability. The exact solution and 
the conserved quantities are used to highlight the efficiency and the robust-
ness of the proposed schemes. Interaction of two and three solitons will be 
also conducted. The numerical results show that the interaction behavior is 
elastic and the conserved quantities are conserved exactly, and this is a good 
indication of the reliability of the schemes which we derived. A comparison 
with some existing is presented as well. 
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1. Introduction 

This article is concerned with, the numerical solution of non-linear MKdV equ-
ation [1]  

( ) [ ] ( )2 0, , , 0t x xxx l ru u u u x t D x x Tε µ+ + = ∈ = × ≤           (1) 

with the initial condition 

( ) ( ) [ ]0,0 , ,l ru x u x x x x= ∈                    (2) 

and boundary conditions 

( ), 0 at ,l ru x t x x x= =                       (3) 

where t and x denote the spatial and temporal variables, respectively, and 
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( ),u x t  is the unknown function, ε  and µ  are arbitrary constants. The 
MKdV equation admitted soliton solution which can be defined as a solitary 
wave solution, highly stable and retains its identity (shape and speed), upon in-
teraction. MKdV equation has a limited number of numerical studies in the lite-
rature. Kaya [2], was used the Adomian decomposition method to obtain the 
higher order modified Korteweg de-Vries equation with initial condition. MKdV 
equation has been solved by using Galerkin’s method with quadratic B-spline fi-
nite elements by Biswas et al. [3]. Raslan and Baghdady [4] [5], derived finite 
difference method and finite element method using collocation method with 
septic spline for solving the MKdV equation, they show that both schemes are 
unconditionally stable in the linearized sense. A new variety of (3 + 1)-dimensional 
MKdV equations and multiple soliton solutions for each new equation were es-
tablished by Wazwaz [6] [7]. A lumped Galerkin and Petrov-Galerkin methods 
were applied to solve the MKdV equation by AK et al. [8] [9]. 

In this paper, we will derive four numerical schemes for solving the MKdV 
equation are presented; based on the Padé approximation of fourth order accu-
racy in space, together with Crank-Nicolson scheme of second order accuracy in 
the time direction. We obtain two nonlinear implicit schemes and two linearly 
implicit. The resulting system produced is a nonlinear penta-diagonal system in 
case of the nonlinear method, where Newton’s method and Fixed point methods 
are used to solve these systems. To overcome this difficulty, the solution of the 
solution of the nonlinear systems, we introduced two linearized implicit schemes, 
which can be solved directly by using Crout’s method. The implicit schemes are 
unconditionally stable according to the von-Nueumann stability analysis. We 
have studied the motion of a single solitary wave, interaction of two and three 
solitary waves to show the performance and efficiency of the suggested methods. 
We will present a comparison between our methods and other research. 

The rest of the paper is organized as follows. In Section 2, we present four dif-
ferent schemes using fourth order Pade approximation in space direction and 
second order in time direction using Crank Nicolson. Also, we use the linearized 
methods to avoid nonlinear term. In Section 3, we present an explanation of the 
algorithm of the fixed point method. In Section 4, the accuracy of the proposed 
schemes is given. In Section 5, the stability analysis of schemes is derived using 
von-Neumann stability analysis. In Section 6, we present various numerical tests 
which validate the accuracy and the efficiency of the proposed schemes, and the 
dynamics of the breather solution. In Section 7, birth of solitons is presented by 
using two tests. Finally, concluding remarks are given Section 8. 

2. Numerical Methods 

In this section, we derive a high order compact finite difference method for the 
initial boundary value problem (1) - (3). We first describe our solution domain 
and its grids. The solution domain is defined to be ( ){ }, | ,0l rx t x x x t T≤ ≤ ≤ ≤ . 
Let r lx x

h
M
−

=  and Tk
N

=  be uniform step size in the spatial and temporal 
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directions respectively, also we denote ,m l nx x mh t nk= + =  for  
0,1,2, , ; 0,1, 2, ,m M n N= = 

. Let n
mu  and n

mU  denote respectively, the ex-
act and the numerical solution at the grid point ( ),m nx t . Using the generalized 
Pade approximation where the numerator and denominator of approximant 
are extended from polynomial functions to a series of any kind of functions or 
operators. The following Pade approximations of space derivatives are used 
[10] [11]  

( )
( )

( )
( )

7 7
6 4

7 7

1 1, ,
480 240x xxx

B E C Eu uu h u h
A E A Ex x

∂ ∂
≈ + ≈ +

∂ ∂
         (4) 

where  

( ) 2 1 1 21 26 66 26 ,
120

A E E E E E− − = + + + +   

( ) 2 1 1 21 10 10 ,
24

B E E E E E
h

− − = + − −   

( ) 2 1 1 2
3

1 2 2 ,
2

C E E E E E
h

− − = − + −   

and the shift operator E defined by  

, 2, 1,0,1, 2j
m m jE u u j+= = − −  

For more details see [12]. The Pade approximation is more accurate than the 
finite difference method and produced a highly compact difference scheme with 
small compact support. Now by using these approximations in MKdV Equations 
(1) - (3), we obtain the first order differential system in time  

( ) ( ) ( )3 0.
3m m mA E U B E U C E Uε µ+ + =                 (5) 

where mU  denotes the time derivative of U at mx ; and the boundary conditions  

1 0 10, 0M MU U U U− += = = =  

The first order differential system in (5) can be solved by Crank Nicolson 
method. It will lead us to a non-linear penta-diagonal system. This system can be 
solved by using any iterative methods, such as Newton’s method or fixed point 
method. The system in (5) can also be solved by using linearization techniques. 
It will give us a linear penta-diagonal system which can be solved by Crout’s 
method directly. In next subsections, details of the proposed schemes will be 
discussed. 

2.1. Scheme 1 (Nonlinear Scheme) 

The Crank Nicolson scheme for solving the first order differential system (5) can 
be displayed as  

( ) ( ) ( ) ( )
( ) ( ) ( )

11 3 3
1

1
2 0,

n nn n
m m m m

n n
m m

A E U U p B E U U

p C E U U

++

+

  − + +    
 + + = 

            (6) 
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where  

1 2, , 0,1, 2, , 1
6 2

k kp p m Mε µ
= = = −                (7) 

The derived scheme in (6) is a nonlinear implicit scheme (denoted by Scheme 
1). In order to find the numerical solution 

11

1

Mn
m m

U
−+

=
   , two iterative methods 

can be used, Newton’s method and fixed point method to solve the nonlinear 
penta-diagonal system obtained. We want to point out that Scheme 1, can be al-
so obtained using Petrov-Galerkin with cubic spline as the test functions and li-
near splines as trial function [13]-[18].  

2.2. A Linearly Implicit Scheme (Scheme 2) 

In the previous subsection, a nonlinear implicit finite difference method is ob-
tained, and at each time step, we need to solve a nonlinear penta-diagonal sys-
tem. To avoid this difficulty we will use linearization technique, Taylor series 
approximation of degree one for the nonlinear term in (6), to obtain the follow-
ing formula  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

13 3
3 2 1 3

2 1 3

1 3
2 2

1 3 .
2

n n
n n nn nm m

m mm m m

n nn
mm m

U U
U U U U U

U U U

+

+

+

+   = + − +    

 = −  

     (8) 

By making use of (8) into Equation (6), we obtain the linear implicit scheme  

( ) ( ) ( ) ( )
( ) ( ) ( )

1 2 1 3
1

1
2

3

0

n nn n n
m m mm m

n n
m m

A E U U p B E U U U

p C E U U

+ +

+

  − + −    
 + + = 

          (9) 

where  

1 2, , 1, 2, , 1
6 2
k kp p m Mµ

= = = −

               (10) 

The system in (9) now, is a linear penta-diagonal system which can be solved 
directly by Crout’s method directly (no need for iterations) to find the numerical 
solution 

11

1

Mn
m m

U
−+

=
   . 

2.3. Scheme 3 (Nonlinear Implicit Scheme) 

Another nonlinear implicit scheme for solving the first order differential system 
(5) is given by  

( ) ( ) ( ) ( )
( ) ( ) ( )

11 2 2 1
1

1
2 0,

n nn n n n
m m m mm m

n n
m m

A E U U p B E U U U U

p C E U U

++ +

+

     − + + +       
 + + = 

    (11) 

where 

1 2, , 1, 2, , 1
12 2
k kp p m Mµ

= = = −

              (12) 
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This type of approximation is used in numerical solution of the coupled non-
linear Schrodinger equation (see Ismail [19] [20] [21]). The resulting system is a 
nonlinear penta-diagonal system. A fixed point method is used to solve this sys-
tem, the details of this method will be discussed in the next section. The pro-
posed scheme is of second order accuracy in time and fourth order in space. 

2.4. Scheme 4 (Linearly Implicit Scheme) 

As we have seen, the previous Scheme (11), leads us to a nonlinear pen-
ta-diagonal system, an iterative scheme is needed to get the numerical solution 
at each time step. This issue can be considered as a handicapped property of this 
method. To overcome this difficulty, we proposed a linearization technique for 
the nonlinear term in (11) in the following manner  

( ) ( ) ( ) ( )1 22 2 1 22
n n nn n

m mm m m
U U U U U

+ −+ = − +              (13) 

By using this approximation, we obtain the linearly implicit scheme  

( ) ( ) ( ) ( )
( ) ( ) ( )

21 1 2 1
1

1
2

2

0

nn n n n n n
m m m m m mm

n n
m m

A E U U p B E U U U U U

p C E U U

+ − +

+

     − + − + +       
 + + = 

   (14) 

where  

3 2, , 1, 2, , 1
12 2
k kp p m Mµ

= = = −

               (15) 

By collecting the similar terms in (14), this will lead us to the linear pen-
ta-diagonal system 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

21 1 2 1 1
1 2

21 2
1 2

2

2 .

nn n n n n
m m m m mm

nn n n n n
m m m m mm

A E U p B E U U U U p C E U

A E U p B E U U U U p C E U

+ − + +

−

 + − + +  
     = − − + −       

  (16) 

The system in (16) is a linear penta-diagonal system which can be solved by 
Crout’s method directly. Scheme (16) is a three time level scheme, and due to 
this we need two initial conditions ( ),0u x  and ( ),u x t k= , this can be easily 
obtained from the given initial condition at 0t = , and any two time level 
scheme of second order accuracy in time or higher and fourth order in space, 
like Scheme 1, Scheme 3, can be used to find the numerical solution at t k= . 
and then, we apply the linearized scheme directly for each time step. 

3. Fixed Point Method 

The nonlinear schemes (Scheme 1 and Scheme 3) we derived lead us to a nonli-
near system, To get the solution, we need to build up an iterative scheme. To 
accomplish this job the fixed point method is used in the following manner  

( ) ( )

( ) ( ) ( ) ( ) ( )

1, 1
2

1,3 3
1 2

n s
m

n s nn n
m mm m

A E p C E U

A E U p B E U U p C E U

+ +

+

+  
 = − + −  

        (17) 
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for Scheme 1, and  

( ) ( )

( ) ( ) ( ) ( ) ( )

1, 1
2

1,2 2 1,
1 2

n s
m

n s nn n s n n
m m m mm m

A E p C E U

A E U p B E U U U U p C E U

+ +

+ +

+  
    = − + + −     

  (18) 

for Scheme 3. We apply the two iterative Schemes (17) and (18) independently 
till the following condition  

1, 1 1, 1010 .n s n s+ + + −− ≤U U  

The initial guess vector for Scheme 1 and Scheme 3 is given by  

( )1, 0n n+ =U U  

We note (17) and (18) can be written in a matrix vector form as  

( )1, 1 1,,n s n n s
m mHU + + += G U U                    (19) 

where  

( ) ( )2H A E p C E= +                      (20) 

where H is a matrix of penta-diagonal structure of constant coefficients. To solve 
this system, we apply Crout’s method by factoring the matrix H as a product of 
Lower and upper triangular matrices, at the beginning of the calculations, and 
then at each iteration, we need to solve lower and upper triangular systems 
which is very cheap and easy. 

4. Accuracy of the Proposed Schemes 

To study the accuracy of Scheme 1, we replace the numerical solution n
mU  by 

the exact solution n
mu  in (6) to get the following equation  

( ) ( )
( ) ( )

( )
13 31 1

0.
3 2 2

n n
n n n n
m m m m m m

u uu u u u
A E B E C E

k
ε

+
+ + +   − + + + =         

  (21) 

Taylor’s expansion for all terms in Equation (21) about the grid point ( ),m nx t , 
the following expressions are obtained 

1 2 2 3 2 3 2 4

2 2 3 2 22 4 6 8

n n u k u h u k u kh u
k t t t x t t x

+ − ∂ ∂ ∂ ∂ ∂
= + + + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

u u
      (22) 

( ) ( )13 3 3 2 3 2 3 3 2 4 3 4 5 3

3 3 5

7
2 2 4 8 120

n n

x

u k u h u kh u h u
x t x x t x x

+ + ∂ ∂ ∂ ∂ ∂  = + + + + +
  ∂ ∂ ∂ ∂ ∂ ∂ ∂
  

u u
  (23) 

1 3 4 2 6 2 5

3 3 5 52 2 8 4

n n

xxx

u k u kh u h u
x t x t x x

+ + ∂ ∂ ∂ ∂
= + + + + 
∂ ∂ ∂ ∂ ∂ ∂ 

u u
         (24) 

By using these expressions into (21), and collecting similar terms, we will get 
the local truncation error (LTE)  
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

3 3

3

3 3

3

2 3 3 3

2 3

2 2 3 3

2 3

2 3 4 5 3

3 5

3

2 3

8 3

4 3

7
6 120

u u uLTE A E B E C E
t x x

k u u uA E B E C E
t t x x

kh u u u uA E B E C E
t xt x x

h u u uA E B E C E
t xx x

k u h u
t x

ε

ε

ε

ε

 ∂ ∂ ∂
= + + ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂
+ + + ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂
+ + + ∂ ∂∂ ∂ ∂ 

 ∂ ∂ ∂ ∂
+ + + ∂ ∂∂ ∂ 
 ∂ ∂

+ + + ∂ ∂ 


        (25) 

The first four brackets (25) are zero by the MKdV equation, and the LTE will 
be reduced into 

2 3 4 5 3

3 5

7
6 120
k u h uLTE

t x
 ∂ ∂

= + + ∂ ∂ 
                  (26) 

So, Scheme 1 is of second order accuracy in time and fourth order in space; 
( )2 4O k h+ . Similar analysis can be also applied for the other schemes. We con-

clude that all the derived schemes are of second order accuracy in time and 
fourth order accuracy in space. All schemes derived in this paper are consistent 
with MKdV equation, because  

2 3 4 5 3

3 5

7 0 as and 0
6 120
k u h uLTE h k

t x
 ∂ ∂

= + + → → ∂ ∂ 
  

5. Stability of the Scheme 

In this section, we want to study the stability of the proposed schemes [16]. Our 
stability analysis is based on the Von Neumann theory in which the growth fac-
tor of atypical Fourier mode defined as  

e en nk i mh
iU α β=                          (27) 

where 1i = − , β  is real number and ( )α α β=  in general complex. To im-
plement the Fourier stability analysis, the MKdV equation needs to be linearized 
by assuming the nonlinear term 2u  in 2

xu u  is locally constant. Using this, we 
will get the linear version of (6) and this can be given as  

( ) ( ) ( )1 1 1
1 2 0.n n n n n n

m m m m m mA E U U p B E U U p C E U Uω+ + +     − + + + + =          (28) 

where  

( )2
1 2, , max

6 2
n

m

k kp p Uε µ ω= = =                (29) 

By substituting (27) into (28), we get after some manipulation the following 
equation  

1 2 1 2e kA ip B ip C A ip B ip Cαω ω   + + = − −   
                  (30) 

where  
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( ) ( )1 2cos 2 52cos 66 ,
120

A θ θ= + +  
  

( ) ( )1 2 sin 2 20 sin ,
24

B i i
h

θ θ= +                   (31) 

( ) ( )3

1 2 sin 2 4 sin ,
2

C i i
h

θ θ= −  
  

By solving Equation (30) for e kα , we can get  

( )
( )

1 2

1 2

e k
A i p B p C

A i p B p C
α

ω

ω

 − + =
 + + 

 

 

                    (32) 

It is easy to see that, e 1kα ≤ , thus we can say that Schemes 1, 2, 3 and 4, are 
unconditionally stable according to Von-Neumann stability analysis. We con-
clude that all schemes are convergent because of their consistency and uncondi-
tional stability. The rate of convergence is calculated and agrees with the order of 
convergence of all methods, fourth order in space and second order in time. 

6. Numerical Results 

To study the behavior of the derived schemes, rewrite Equation (1) as  

( ) ( ) [ ] ( ]3 0, , , 0
3t xxx l rx

u u u x t D x x Tε µ+ + = ∈ = × ≤          (33) 

with the homogenous boundary 0u →  as x → ±∞  and the initial condition  

( ) ( ) [ ]0,0 , ,l ru x u x x x x= ∈                  (34) 

The exact solution of the MKdV (33) is  

( ) ( )( )0, sech ,u x t A x t xβ λ= − −                (35) 

where A is amplitude and β  is the width of the single solitary wave, they are 
defined as  

6 ,A λ λβ
ε µ

= =                     (36) 

where , ,ε µ λ  and 0x  are arbitrary constants. The MKdV equation satisfies 
the conserved quantities:  

( )1 , dI u x t x
∞

−∞
= ∫                      (37) 

( )2
2 , dI u x t x

∞

−∞
= ∫                     (38) 

( ) ( )4 2
3

6, , dxI u x t u x t xµ
ε

∞

−∞

 = − 
 ∫                (39) 

The exact values of the conserved quantities (37) - (39) using the exact solu-
tion (35) are  

2

1 2 3 2

126 24, , ,I I I
µλµ λ µ

ε ε λε
π= = =           (40) 

To demonstrate the efficiency and accuracy of the presented methods for 
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solving the MKdV equation, we use the L∞  error norm  

1
max ,n n n n

m m m mm M
L U u U u∞ ≤ ≤

= − = −                  (41) 

and the 2L  error norm  

2

2 2 1
.

M
n n n n
m m m m

n
L U u h U u

=

= − −∑                 (42) 

Two values of ε  are used. The first case: 6ε =  and 1µ = , in this case we 
test the efficiency of the proposed methods by conducting different experiments. 
The motion of single soliton and the interactions of two solitons will be consi-
dered. Trapezoidal rule is used to calculate the conserved quantities. In the 
second case, we choose 3ε =  and 1µ = , and in this case, a comparison be-
tween our methods with [1]. 

6.1. The First Case: ( 6, 1ε µ= = ) 

6.1.1. Single Soliton 
To test our numerical methods, we choose the initial condition  

( ) ( )( )0,0 sech , 0 80u x A x x xβ= − ≤ ≤              (43) 

subject to the homogenous boundary conditions. In order to generate the nu-
merical solutions, the following parameters are used  

10
06, 1, 0.1, 0.01, 40, 0.25, 10 ,h k x TOLε µ λ −= = = = = = =     (44) 

The exact values of the conserved quantities using (40) are  

3
1 2 3

2, 2 , .
3

I I Iλ λ= =π=                    (45) 

In Table 1, we display the errors for Schemes 1 using Newton’s method and 
Fixed point method and the cpu time for each method is 0.4 and 0.3, respectively. 
The results show that two methods have the same results but Newton’s method 
takes more time than Fixed point method. In Table 2, we display the errors for 
Schemes 1, 2, 3 and 4. The results show that the derived methods produced a 
highly accurate results. 

In Tables 3-6, we display the conserved quantities for Schemes 1, 2, 3 and 4. 
The results show that the method conserves the conserved quantities exactly. 
The simulation of the single soliton is given in Figures 1-3. The cpu time re-
quired to produce Tables 3-6 is 0.4, 0.2, 0.7 and 0.3 seconds, respectively. We  
 
Table 1. Error norms calculated of Scheme 1. 

Scheme 1 

Time 
1.0 10.0 20.0 

L∞ L2 L∞ L2 L∞ L2 

Newton’s method 9.75E−08 1.40E−07 1.17E−07 1.96E−07 1.68E−07 2.77E−07 

Fixed point method 9.75E−08 1.40E−07 1.17E−07 1.96E−07 1.68E−07 2.77E−07 
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Figure 1. The evolution of the numerical solution of Scheme 1 with ε = 6, μ = 1, h = 0.1, k 
= 0.01, λ = 0.25. 
 

 

Figure 2. The evolution of the numerical solution of Scheme 3 with ε = 6, μ = 1, h = 0.1, k 
= 0.01, λ = 0.25. 
 

 

Figure 3. The evolution of the numerical solution of Schemes (2, 4) with ε = 6, μ = 1, h = 
0.1, k = 0.01, λ = 0.25. 
 
note that, Scheme 3 takes more time than the other method. In Scheme 1, three 
iterations are needed for convergence with tolerance 10−10, while Scheme 3 needs 
seven iterations for convergence. 
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Table 2. Error norms calculated of Schemes 1, 2, 3 and 4. 

Time 
1.0 10.0 20.0 

L∞ L2 L∞ L2 L∞ L2 

Scheme 1 9.75E−08 1.40E−07 1.17E−07 1.96E−07 1.68E−07 2.77E−07 

Scheme 2 1.37E−07 2.23E−07 2.28E−07 4.04E−07 3.40E−07 6.28E−07 

Scheme 3 1.11E−07 1.66E−07 1.07E−07 2.14E−07 1.27E−07 2.17E−07 

Scheme 4 3.26E−07 4.72E−07 1.08E−06 2.11E−06 1.81E−06 3.74E−06 

 
Table 3. Scheme 1 (Single soliton with ε = 6, μ = 1, h = 0.1, k = 0.01, λ = 0.25). 

Time I1 I2 I3 

1.000000 3.1415926 1.0000000 0.0834305 

5.000000 3.1415926 1.0000000 0.0834305 

10.000000 3.1415926 1.0000000 0.0834305 

15.000000 3.1415926 1.0000000 0.0834305 

20.000000 3.1415924 1.0000000 0.0834305 

 
Table 4. Scheme 2 (Single soliton with ε = 6, μ = 1, h = 0.1, k = 0.01, λ = 0.25). 

Time I1 I2 I3 

1.000000 3.1415926 1.0000000 0.0834305 

5.000000 3.1415926 1.0000000 0.0834305 

10.000000 3.1415926 1.0000000 0.0834305 

15.000000 3.1415925 1.0000000 0.0834305 

20.000000 3.1415926 1.0000000 0.0834305 

 
Table 5. Scheme 3 (Single soliton with ε = 6, μ = 1, h = 0.1, k = 0.01, λ = 0.25). 

Time I1 I2 I3 

1.000000 3.1415926 1.0000000 0.0834305 

5.000000 3.1415926 1.0000000 0.0834305 

10.000000 3.1415926 1.0000000 0.0834305 

15.000000 3.1415926 1.0000000 0.0834305 

20.000000 3.1415925 1.0000000 0.0834305 

 
Table 6. Scheme 4 (Single soliton with ε = 6, μ = 1, h = 0.1, k = 0.01, λ = 0.25). 

Time I1 I2 I3 

1.000000 3.1415926 1.0000000 0.0834305 

5.000000 3.1415927 1.0000000 0.0834305 

10.000000 3.1415927 1.0000000 0.0834305 

15.000000 3.1415926 1.0000000 0.0834305 

20.000000 3.1415924 1.0000000 0.0834305 
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6.1.2. Rate of Convergence 
To calculate the order of the proposed numerical schemes. We calculate the rate 
of convergence (RTC) using the formula 

( )
1

2

1
1

2

ln
, max .

ln

n n
m mm M

E
E

RTC E h U u
h
h

≤ ≤

 
 
 = = −
 
 
 

              (46) 

To calculate the rate convergence of Scheme 1 and Scheme 2 in space using 
(46), we choose 0.01k = , for different values of h. we calculate the L∞  error 
norm and the (RTC), we displayed the results in Table 7, the fourth order con-
vergence rate in space is observed. To calculate the rate convergence in time for 
Scheme 1 and Scheme 2, we choose 0.1h = , for different values of k, we calcu-
late the L∞  error norm and hence the (RTC), we displayed the results in Table 
8, second order convergence rate in time is observed. The same procedure can 
be applied for Schemes 3 and 4, to calculate the rate of convergence for space 
and time. 

6.1.3. Two Solitons Interaction 
To study the interaction of two solitons, we choose the initial condition 

( ) ( )( )
2

1
,0 sech ,j j j

j
u x A x xλ

=

= −∑                  (47) 

jλ  and jx  are arbitrary constants. To ensure an interaction of two solitary 
waves for Schemes 1, 2, 3 and 4, we choose the set of parameters 6ε = , 1µ = , 

0.1h = , 0.01k = , 1 2.0λ = , 2 1.0λ = , 1 15x =  and 2 25x = , over the interval  
 
Table 7. Rate of convergence in space with k = 0.01, λ = 0.25. 

T = 1.0 

h 
Scheme 1 Scheme 2 

L∞ P L∞ P 

1.0 0.0008635  0.0008635  

0.5 0.0000530 4.025964828 0.0000530 4.025964828 

0.25 0.0000033 4.005454430 0.0000033 4.025964828 

0.125 0.0000002 4.044394119 0.0000002 4.025964828 

 
Table 8. Rate of convergence in space with h = 0.1, λ = 0.25. 

T = 1.0 

k 
Scheme 1 Scheme 2 

L∞ P L∞ P 

0.5 0.0000282  0.0001329  

0.25 0.0000068 2.052088511 0.0000310 2.100000984 

0.125 0.0000016 2.087462841 0.0000073 2.086299846 
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0 80x≤ ≤ . From the numerical results, we have found that the two solitons re-
cover their shapes after the interaction and the computed conserved quantities 
are in a very good agreement with the exact ones. See Tables 9-12 for Schemes 1, 
2, 3 and 4. The interaction scenario is displayed in Figures 4-6. 
 

 

Figure 4. Two solitons interaction for Scheme 1 with ε = 6, μ = 1, h = 0.1, k = 0.01, λ1 = 2.0, 
λ2 = 1.0. 
 

 

Figure 5. Two solitons interaction for Scheme 3 with ε = 6, μ = 1, h = 0.1, k = 0.01, λ1 = 2.0, 
λ2 = 1.0. 
 

 

Figure 6. Two solitons interaction for Schemes 2 and 4 with parameters ε = 6, μ = 1, h = 
0.1, k = 0.01, λ1 = 2.0, λ2 = 1.0. 
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Table 9. Scheme 1: Interaction of two solitons (Conserved quantities). 

Time I1 I2 I3 

1.000000 6.283187 4.829692 2.575332 

5.000000 6.283167 4.829747 2.571600 

10.000000 6.283228 4.829714 2.573846 

15.000000 6.283203 4.829691 2.575410 

20.000000 6.283171 4.829690 2.575421 
 
Table 10. Scheme 2: Interaction of two solitons (Conserved quantities). 

Time I1 I2 I3 

1.000000 6.283195 4.829816 2.575653 

5.000000 6.283456 4.829960 2.572330 

10.000000 6.282722 4.830328 2.575234 

15.000000 6.283282 4.830980 2.578029 

20.000000 6.283771 4.831552 2.579198 
 
Table 11. Scheme 3: Interaction of two solitons (Conserved quantities). 

Time I1 I2 I3 

1.000000 6.283190 4.829691 2.575334 

5.000000 6.283170 4.829709 2.571520 

10.000000 6.283229 4.829699 2.573812 

15.000000 6.283201 4.829691 2.575414 

20.000000 6.283169 4.829691 2.575426 
 
Table 12. Scheme 4: Interaction of two solitons (Conserved quantities). 

Time I1 I2 I3 

1.000000 6.283193 4.829680 2.575318 

5.000000 6.283243 4.829589 2.571266 

10.000000 6.283162 4.829603 2.573618 

15.000000 6.283119 4.829577 2.575195 

20.000000 6.283122 4.829524 2.575101 

6.1.4. Three Solitons Interaction 
In this test, we want to study the interaction scenario of three solitons. Accor-
dingly, we choose the initial condition  

( ) ( )( )
3

1
,0 sech ,j j j

j
u x A x xλ

=

= −∑                (48) 

subject to the homogenous boundary conditions. We have considered the 
Schemes 1, 2, 3 and 4 with the set of parameters 6ε = , 1µ = , 0.1h = , 

0.01k = , 1 2λ = , 2 1λ = , 3 0.5λ = , 1 10x = , 2 25x =  and 3 35x =  over the 
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interval 0 80x≤ ≤ . In Tables 13-16, we display the conserved quantities for 
Schemes 1 - 4 respectively. All methods showed the conservation of the con-
served quantities. In Figures 7-9, we display the interaction scenario of three so-
litons. We have noticed that the three solitons recover their original shapes after 
the interaction. 
 

 

Figure 7. Three solitons interaction for Scheme 1 with ε = 6, μ = 1, h = 0.1, k = 0.01, λ1 = 
2.0, λ2 = 1.0, λ3 = 0.5. 
 

 

Figure 8. Three solitons interaction for Scheme 3 with ε = 6, μ = 1, h = 0.1, k = 0.01, λ1 = 
2.0, λ2 = 1.0, λ3 = 0.5. 
 

 

Figure 9. Three solitons interaction for Schemes (2, 4) with ε = 6, μ = 1, h = 0.1, k = 0.01, 
λ1 = 2.0, λ2 = 1.0, λ3 = 0.5. 
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Table 13. Scheme 1: Three solitons interaction (Conserved quantities). 

Time I1 I2 I3 

1.000000 9.424778 6.259969 2.828230 

5.000000 9.424705 6.260033 2.823314 

10.000000 9.424020 6.260150 2.812149 

15.000000 9.425439 6.259982 2.826665 

20.000000 9.425912 6.259970 2.828046 
 
Table 14. Scheme 2: Three solitons interaction (Conserved quantities). 

Time I1 I2 I3 

1.000000 9.424785 6.260149 2.828508 

5.000000 9.424928 6.260240 2.824042 

10.000000 9.423444 6.259762 2.812426 

15.000000 9.425504 6.260859 2.828521 

20.000000 9.426220 6.261479 2.831085 
 
Table 15. Scheme 3: Three solitons interaction (Conserved quantities). 

Time I1 I2 I3 

1.000000 9.424781 6.259969 2.828131 

5.000000 9.424588 6.259990 2.823227 

10.000000 9.424734 6.260029 2.811910 

15.000000 9.424417 6.259973 2.826677 

20.000000 9.425157 6.259969 2.828058 
 
Table 16. Scheme 4: Three solitons interaction (Conserved quantities). 

Time I1 I2 I3 

1.000000 9.424785 6.259957 2.828114 
5.000000 9.424723 6.259858 2.822954 

10.000000 9.423987 6.259735 2.811342 
15.000000 9.425437 6.259878 2.826484 

20.000000 9.425883 6.259838 2.827799 

6.2. The Second Case ( 3ε =  and 1µ = ) 

Single Soliton 
In order to compare our results with [1], we choose the initial condition 

( ) ( )( )0,0 sech , 0 80,u x A x x xβ= − ≤ ≤             (49) 

The following parameters are used 
10

03, 1, 0.1, 0.01, 20, 0.845, 10h k x TOLε µ λ −= = = = = = =     (50) 

The exact values of the conserved quantities in this case are 
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3
1 2 3

82, 4 ,
3

I I Iλ λ= =π=                  (51) 

In Table 17, we display the errors for 1t = , 10 and 20. It is very easy to see 
that our methods are more accurate than [1]. The simulation of the single soli-
ton for all proposed methods are given in Figures 10-12. 
 

 

Figure 10. The evolution of the numerical solution of Scheme 1 with ε = 3, μ = 1, h = 0.1, 
k = 0.01, λ = 0.845. 
 

 

Figure 11. The evolution of the numerical solution of Scheme 3 with ε = 3, μ = 1, h = 0.1, 
k = 0.01, λ = 0.845. 
 

 

Figure 12. The evolution of the numerical solution of Schemes 2 and 4 with ε = 3, μ = 1, h 
= 0.1, k = 0.01, λ = 0.845. 
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Table 17. Comparison of error norms for single soliton with ε = 3, μ = 1, h = 0.1, k = 0.01, 
λ = 0.845. 

Time 
1.0 10.0 20.0 

L∞ L2 L∞ L2 L∞ L2 

Scheme 1 2.47E−06 2.47E−06 1.11E−05 1.11E−05 1.65E−05 1.65E−05 

Scheme 2 1.56E−05 1.56E−05 1.18E−04 1.18E−04 2.35E−04 2.35E−04 

Scheme 3 6.78E−06 9.20E−06 4.80E−05 7.78E−05 8.92E−05 1.49E−04 

Scheme 4 7.00E−05 7.00E−05 4.56E−04 4.59E−04 9.20E−04 9.20E−04 

[1] 1.43E−05 2.03E−04 2.00E−04 3.24E−04 6.79E−04 3.98E−04 

6.3. Breather Dynamics for MKdV Equation 

In this section, we want to study the dynamics of the breather solution for the 
MKdV equation which conserve their energy during propagation. Sometimes 
breathers are called pulsating solitons because they propagate as isolated pertur-
bations without losses. The exact breather solution for Equation (1) has the fol-
lowing form [22] 

( ) ( ) ( ) ( ) ( )
( ) ( )2 2 2

cos sin tanh
, 4 sech ,

1 sin sech
f z f R

u x t q R
z f R

 −
= −  

+  
         (52) 

where 

( )
( )

2 2

2 2

2 8 3 ,

2 8 3 , ,

R qx q p q t

pf px p p q t z
q

= + −

= + − =
                  (53) 

and p and q are arbitrary constants. A breather has nontrivial time periodic be-
havior. To study the behavior of the breather we choose our initial condition as  

( ) ( ) ( ) ( ) ( )
( ) ( )2 2 2

cos 2 sin 2 tanh 2
,0 4 sech 2 ,

1 sin 2 sech 2
px z px qx

u x q qx
z px qx

 −
= −  

+  
     (54) 

with the set of parameters  

0.0, 0.0001, 0.2, 1, 0,2,4, ,10h k p q t= = = = =          (55) 

The exact values of the conserved quantities I1 and I2 are 0.0 and 8q, respec-
tively. The conserved quantities are given in Table 18.  

Which is exactly conserved, and this is a credit for our proposed schemes. The 
simulation of the breather is given in Figure 13 and Figure 14. 

7. Birth of Solitons 
7.1. Birth of Solitons Test 1 

To study the birth of solitons, we choose the initial condition  

( ) ( )2,0 exp 0.01u x x= −                     (56) 

together with set of parameters 
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Figure 13. The simulation of the breather solution. 
 

 

Figure 14. Contours of the breather solution of the MKdV equation. 
 
Table 18. Conserved quantities (breather solution with h = 0.0, k = 0.0001, p = 0.2, q = 1). 

T I1 I2 

0.0 0.00000 8.00000 

2.0 0.00002 8.00000 

4.0 0.00001 8.00000 

6.0 0.00002 8.00000 

8.0 0.00002 8.00000 

10.0 0.00005 8.00000 
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0.1, 0.001, 0,0.4,0.8, , 20h k t= = =                  (57) 

By using (56), we have noticed that the conserved quantities are almost con-
served after the creation of five solitons and the results are presented in Table 19. 
The simulation of this test is given in Figure 15. 

7.2. Birth of Solitons Test 2 

In this second test, we use the initial condition  

( ) ( ),0 sech ,u x xω=                       (58) 

where w is a free parameter. 
In order to study the behavior of the solution using the initial condition (58) , 

we choose the set of parameters  

0.1, 0.001, 0.5,0.25, 0,0.4, , 20h k tω= = = =            (59) 

The results of the conserved quantities for 0.25w =  and 0.5w =  are given 
in Table 20 and Table 21. The simulation of this test is given in Figure 16 and 
Figure 17. 
 
Table 19. Brith of solitons test 1 with h = 0.1, k = 0.001. 

T I1 I2 I3 

0.0 17.72454 12.53314 8.73695 

5.0 17.72454 12.53314 8.82446 

10.0 17.72454 12.53314 8.84243 

15.0 17.72545 12.53314 8.84407 

20.0 17.72453 12.53314 8.84431 
 
Table 20. Brith of solitons test 2 with w = 0.25. 

T I1 I2 I3 

0.0 12.5663408 8.0000 5.1667153 

5.0 12.5663494 8.0000 5.2171530 

10.0 12.5663545 8.0000 5.2257194 

15.0 12.5663584 8.0000 5.2267330 

20.0 12.5663622 8.0000 5.2269813 
 
Table 21. Brith of solitons test 2 with w = 0.5. 

T I1 I2 I3 

0.0 6.2831853 4.00000 2.333431 

5.0 6.2831853 4.00000 2.339116 

10.0 6.2831853 4.00000 2.339248 

15.0 6.2831853 4.00000 2.339249 

20.0 6.2831853 4.00000 2.339179 
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Figure 15. Birth of ve. solitons using test 1. 
 

 

Figure 16. Birth of solitons using test 2 with w = 0.25. 
 

 

Figure 17. Birth of solitons using test 2 with w = 0.5. 
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In this test we have noticed, a birth of two solitons in case of 0.5w =  and 
four solitons in case of 0.25w = . The conserved quantities are almost conserved. 
A very interesting thing we can anticipate the number of created solitons by us-
ing the formula  

( ) 1 .Ns ω
ω

=                         (60) 

8. Concluding Remarks 

In this work, we have derived four numerical methods for solving the MKdV 
equation. All methods are of fourth order accuracy in space and second order in 
time, the schemes are unconditionally stable. The exact solution and the con-
served quantities are used to check the efficiency and the robustness of the pro-
posed methods. The dynamics of the interaction of two and three solitons are 
discussed. Also we study the simulation of the breather solution of the MKdV, 
finally we study the birth of solitons using two different tests. We conclude that 
the schemes we have derived are highly accurate and can be easily generalized to 
solve any KdV like equation as well as the coupled KdV equation. 
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