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Abstract 
In this paper, the Laplace Transform is used to find explicit solutions of a 
family of second order Differential Equations with non-constant coefficients. 
For some of these equations, it is possible to find the solutions using standard 
techniques of solving Ordinary Differential Equations. For others, it seems to 
be very difficult indeed impossible to find explicit solutions using traditional 
methods. The Laplace transform could be an alternative way. An application 
on solving a Riccati Equation is given. Recall that the Riccati Equation is a 
non-linear differential equation that arises in many topics of Quantum Me-
chanics and Physics. 
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1. Introduction 

The concept of Laplace Transform has been intensively used in diverse areas of 
Science and Engineering, for instance in electric circuit analysis, in communica-
tion engineering [1] [2] [3] [4]. 

It is also a powerful mathematical tool to solve non-homogeneous constant 
coefficients linear differential equations, especially when the forcing represents a 
discontinuous function as the Heaviside function or Dirac function [5] [6]. 

Like many operators, the Laplace Transform has the ability to change any or-
dinary linear differential equations with constant coefficients into algebraic 
equations. 

It has been already used to find the explicit solutions of some non-constant 
coefficients linear differential equations. In [7], the authors used a new version 

How to cite this paper: Ndiaye, M. (2020) 
Laplace Transform, Non-Constant Coeffi-
cients Differential Equations and Applica-
tions to Riccati Equation. Applied Mathe-
matics, 11, 639-649.  
https://doi.org/10.4236/am.2020.117043  
 
Received: February 10, 2020 
Accepted: July 19, 2020 
Published: July 22, 2020 
 
Copyright © 2020 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/am
https://doi.org/10.4236/am.2020.117043
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/am.2020.117043
http://creativecommons.org/licenses/by/4.0/


M. Ndiaye 
 

 

DOI: 10.4236/am.2020.117043 640 Applied Mathematics 
 

of the Laplace Transform called the Sumudu Transform to find the explicit solu-
tion of the following non-constant coefficients differential equations along with 
their initial conditions: 

3 6 2yy ty′′ ′ − =+ , ( )0 0y = , ( )0 0y′ =  solution 2y t=  

2ty ty y′′ ′− + = , ( )0 2y = , ( )0 4y′ = −  solution 2 4y t= −  

A similar work was performed in [8] and [9], where the authors used a differ-
ent version of the Laplace Transform, this time called the Elkazi Transform, to 
find the explicit solutions of the initial value problems: 

0y ty y′′ ′+ − = , ( )0 0y = , ( )0 1y′ = , 0t >  solution y t=  

( )1 2 2 0ty t y y′′ ′+ − − = , ( )0 1y = , ( )0 2y′ =  solution 2e ty =  

2 24 2 12t y ty y t′′ ′+ + = , ( )0 0y = , ( )0 0y′ =  solution 2y t=  

It would be very difficult, indeed impossible, to find explicit solutions to some 
of these types of initial value problems using standard methods. In this paper, 
the Laplace Transform is used to solve analytically a family of non-constant coeffi-
cients second order linear differential equations. In general, non-constant coeffi-
cients differential equations are still very difficult to be solved analytically. All 
the initial value problems listed above are particular cases of the family of 
non-constant linear differential equations found in this paper. 

The paper is divided into five sections. 
In Section 2, the concepts, properties and the existence of the Laplace trans-

form are introduced. 
In Section 3, conditions under which a family of non-constant coefficients or-

dinary differential equations can be solved quantitatively by using the Laplace 
Transform will be discussed. Specific examples of non-constant coefficients dif-
ferential equations that satisfy those conditions will be given. 

Section 4 gives an application to the Riccati Equation. 
Section 5 is dedicated to the conclusion. 

2. Definition, Existence and Properties of Laplace Transform 

Definition 1. The Laplace Transform of a function f denoted ( )f  is given by 
the improper integral:  

( ) ( ) ( )
0

e dstf f t t F s
∞ −= =∫ . 

for all numbers s for which this improper integral converges. 
The existence of the Laplace Transform of a given function has been discussed 

in [1] [2]. 
The following theorem gives a large class of functions for which the Laplace 

Transform exists, that is the improper integral converges. 
Theorem 1. If f is continuous on ( )0,∞  and ( ) eatf t M≤  then the Laplace 

Transform of f, ( ) ( ) ( )
0

e dstF s f f t x
∞ −= = ∫  exists for s a> . 

Definition 2. The functions that fit the requirement of the hypothesis of the 
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above theorem are said to be of exponential order a. 
Next are examples of functions of exponential order. 
Example 1. ( ) ebtf t = , ( ) ( )e sinbtf t tω= , ( ) ( )e cosbtf t tω= . 

Remark 1. The function ( ) 2
etf t =  is not of exponential order since 

2
elim
e

t

t atM→∞ = ∞  for all M, a +∈ . 

Remark 2. As a practical matter, most of the functions encountered in the ap-
plications are of exponential order. 

Theorem 2. If f  is of exponential order then ( )nf  is of exponential order 
for all n. 

Proof. We just have to show that if f  is of exponential order then f ′  is of 
exponential order. 

Suppose that f ′  is of exponential order. Then we have 

( ) ( ) ( ) ( ) ( )

( )

0 0

0 0

lim lim

e e e 1lim e lim .

h h

a t h at ah
at

h h

f t h f t f t h f t
f t

h h

M M M
h h

→ →

+

→ →

+ − + −
′ = =

− −
≤ =

 

Thus ( ) eatf t aM′ ≤ . By Induction, we can prove that ( ) ( ) en n atf t a M≤ , 
which shows that nf  is of exponential order.                            

Next are some important properties of the Laplace Transform: 
Property 1. The Laplace Transform is linear. That is, 

( ) ( ) ( )f g f g+ = +    and ( ) ( )f fα α=   

Property 2. If f is of exponential order then ( )lim 0s F s→∞ =  

Proof. ( ) ( )
0

e dstF s f t t
∞ −= ∫ . Since f  is of exponential order that is ( ) eatf t M≤  

therefore ( ) 1F s
s a

≤
−

, s a> . This shows that ( )lim 0s F s→∞ = .          

Property 3. If a continuous function f  on [ ]0,∞  has Laplace Transform 
( )F s  then f  is the only function whose Laplace Transform is ( )F s . 
Proof. We need to show that if ( ) ( )

0 0
e d e dst stf t t g t t

∞ ∞− −=∫ ∫  then ( ) ( )f t g t= , 
s a> , 0a > . 

( ) ( )
0 0

e d e dst stf t t g t t
∞ ∞− −=∫ ∫  then ( ) ( )( )0

e d 0st f t g t t
∞ − − =∫ . 

Let’s make the change e tx −= , 
1d dt x
x

= − , 

( ) ( )( ) ( ) ( )( )1

0 0
e d ln ln d .st sf t g t t x f x g x x

∞ − − = − − −∫ ∫  

, 1 0.s a s a> − − ≥  

( ) ( )( ) ( )1 11 1 1 1
0 0

ln ln d ln d 0,a s a a s ax f x g x x x x M x x x+ − − + − −− − − = − =∫ ∫  

where 
( ) ( ) ( )M t f t g t= −  

Define 
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( ) ( ) ( ]1 ln if 0,1aF x x M x x+= − ∈  

and 

( )0 0F =  

So 

( ) ( ) ( ) ( )11

0 0
lim lim ln lim e 0.a ta

tx x
F x x M x M t

+ +

− ++

→∞→ →
= − = =  

Since M is of exponent order. 
So ( ) ( )0

lim 0
x

F x F+→
=  then F is continuous on [ ]0,1 . According to the 

Weierstrass Approximation theorem, any continuous function can be approxi-
mated as closely as desired by a polynomial function. That is there exists a se-
quence of polynomials ( ) 2 3

0 1 2 3
n n n n n m

n mP x a a x a x a x a x= + + + + +  such that 
( ) ( )limn nP x F x→∞ = . 

( ) ( ) ( )1 1

00 0
d 0m n k

n kkF x P x x a F x x
=

= =∑∫ ∫  

then 

( ) ( ) ( ) ( ) ( )1 1 1 2

0 0 0
lim d lim d d 0n nn n

F x P x x F x P x x F x x
→∞ →∞

= = =∫ ∫ ∫  

( ) 0F x⇒ =   

We conclude that  

( ) ( )( ) ( ) ( )1 ln ln 0 ln ln 0ax f x g x f x g x+ − − − = ⇒ − − − =   

therefore ( ) ( ).f t g t=                                               
This property means that if f is continuous on [ )0,∞  and if ( )f F=  

then ( )f M F= . 
M is called the inverse of   and 1M −=  . 

1−  is also linear. 

3. Explicit Solutions for a Family of Non-Constant  
Coefficients Linear Second Order Differential Equations 

The goal in this section is to solve analytically non-constant coefficients linear 
second order differential equations: 

( ) ( ) ( ) ( )2 1 0 ,q t y q t y q t y g t′′ ′+ + =  

using the Laplace Transform where ( )0q t , ( )1q t  and ( )2q t  are functions of 
t. Specifically, conditions on 0q , 1q  and 2q  will be stated so that the second 
order differential equations will have explicit solutions, that is expressed in term 
of elementary functions. 

Proposition 1. If ( ) ( ) ( )2, ,q t y t C a b∈  then 

( )( ) ( )( ) ( )( ) ( ) ( )0 0q t y q t y s q t y q y′ ′= − + −               (1) 

( )( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

22

0 0 0 0 0 0

q t y q t y s q t y s q t y

q y q y sq y

′′ ′′ ′= − +

′ ′− + −

   
          (2) 
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Proof. ( )( ) ( ) ( )
0 0

e d lim e d
bst st

bq t y q t y t q t y t
∞ − −

→∞′ ′ ′= =∫ ∫ . 
Using integration by part and the fact that y is of exponential order, we obtain 

( )( ) ( )( ) ( )( ) ( ) ( )0 0 .q t y q t y s q t y q y′ ′= − + −    

We can use (1), the fact that y′  is of exponential order and Theorem 2 to 
find (2). 

First, we have the following 

( )( ) ( )( ) ( )( ) ( ) ( )0 0q t y q t y s q t y q y′′ ′ ′ ′ ′= − + −    

Using (1) on ( )( )q t y′ ′  and on ( )( )q t y′ , we obtain (2). That is 

( )( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

22

0 0 0 0 0 0

q t y q t y s q t y s q t y

y q y q sq y

′′ ′′ ′= − +

′ ′− + −

   
 

Theorem 3. Let (E): ( ) ( ) ( ) ( )2 1 0q t y q t y q t y g t′′ ′+ + =  be a non-constant 
coefficients non-homogeneous linear differential equation with ( )0q t , ( )1q t , 

( )2q t  and ( ) ( )2 ,g t C a b∈ . 
Under the following conditions: 

( ) ( ) ( ) ( ) ( ) ( )0 1 2 2 3 4 2 2 5 ,q t c t c q t c t c q t q t c′ ′′= + + + + +           (3) 

( ) ( ) ( ) ( )1 3 4 2 6 2 7q t c t c q t c q t c′= + + +                 (4) 

5 7 6 1 30, 0 , 2, 0 or 0c c c c c= = = = =/ /                (5) 

and ( )2q t  is neither a constant nor a linear function, where 1 2 3 4 5 6, , , , ,c c c c c c  
and 7c  are constant real numbers, the Laplace transform of ( )2q t y  is given 
by 

( )( ) ( ) ( )( ) ( ) ( )
2

3 1

e e d eh s h s h sf s
q t y s c

c s c
−= − +

+∫             (6) 

where 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 10 0 0 0 0 0 0 0f s g t q y q y sq y q y′ ′= + − + +    (7) 

( )
2

4 2 3

3 1

d
s c s c c

h s s
c s c

+ + −
=

+∫  

and c is a constant. 
Therefore the explicit solution of (E) is given by: 

( ) ( )
( ) ( )( ) ( ) ( )1

2 3 1

1 e e d eh s h s h sf s
y t s c

q t c s c
−−  

= − + 
+ 

∫  

Proof. The first step is to take the Laplace Transform of both sides of (E). 
Using the linearity of the Laplace Transform, we get: 

( )( ) ( )( ) ( ) ( )( )2 1 0 ( )q t y q t y q t y g t′′ ′+ + =     

Now using proposition 1, we have 

( )( ) ( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )( )

2
2 2 2 1 1

0 2 2 2 1

2

0 0 0 0 0 0 0 0

q t y s q t y s q t y q t y s q t y

q t y q y q y sq y q y

g t

′′ ′ ′− + − +

′ ′+ − + − −

=

    





    (8) 
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Using (3), (4) and (5) in (8), and after simplification, we obtain the following 
equation: 

( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

2
3 1 2 4 2 3 2

2 20 0 0 0

c s c tq t y s c s c c q t y

y q y q g t

+ + + + −

′ ′− + =

 


          (9) 

Since ( )( ) ( )( )2 2
d
d

tq t y q t y
s

= −   therefore (9) implies the following first 

order differential equation:  

( ) ( )( ) ( ) ( )( ) ( )2
3 1 2 4 2 3 2

d
d

c s c q t y s c s c c q t y f s
s

− + + + + − =   

where  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 10 0 0 0 0 0 0 0f s g t y q y q sq y q y′ ′= + − + +  

Using the integrating factor method, we can find ( )( )2q t y  and therefore 
the solution of (E) under the conditions stated in the theorem. 

Let’s turn now our attention to simple examples for which the conditions of 
the theorem 3 are satisfied. 

Example 2. We suppose the 1 0c = , 1 0c = , 3 1c = , 4 2c = − , ( )0 0y = , 
( )0 0y′ =  and ( ) 1 2g t t= − +  so 

( ) ( ) ( ) ( ) ( )0 2 2 22 2q t q t t q t q t′ ′′= − + − + . 

( ) ( ) ( ) ( )1 2 22 2q t t q t q t′= − + . 

We deal with the family of non-constant coefficients linear ordinary differen-
tial equations: 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

2 2 2

2 2 2

2 2

2 2 1 2

q t y t q t q t y

q t t q t q t y t

′′ ′ ′+ − +

′ ′′+ − + − + = − +
 

We can see that the explicit solution of this equation is given by:  

( ) ( )
2

22
ty t

q t
= . 

Using (6) we obtain:  

( )( ) ( )
2

2 2

2
2

2
2 23 32 2

1 2 e d

e e

s s

s ss s

cq t y s s

s s

− +

− + − +

= − + +∫  

where c is given by the initial conditions. Therefore ( )( )
2

2
2

2 3 3

1 e
s s

q t y c
s s

−

= + . 

So using the linearity of 1−  

( )

2
2

2
1 1

3 3
2

1 1 e
s s

y c
q t s s

−

− −

 
  = +   

   
 

   

2
1

3

1
2
t

s
−   = 
 

  but 

2
2

2
1

3

e
s s

s

−

−

 
 
 
 
 

  seems to be very complicated to be found, 
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however we can use the following argument to find c. We know that 

3

1lim 0s s→∞ = , 

2
2

2

3

elim

s s

s s

−

→∞ = ∞  and according to property 2, 

( )( )2lim 0s q t y→∞ =  therefore 0c =  and ( ) ( )
2

22
ty t

q t
= . 

Example 3. Choosing 1 1c = , 2 2c = − , 3 1c = , 4 2c = , ( )0 0y = , 
( )0 0y′ =  and then 

( ) ( ) ( ) ( ) ( ) ( )0 2 22 2q t t q t t q t q t′ ′′= − + + + . 

( ) ( ) ( ) ( )1 2 22 2q t t q t q t′= + + . 

and we get the following equation: 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

2 2 2

2 2 2

2 2

2 2 e t

q t y t q t q t y

t q t t q t q t y t −

′′ ′ ′+ + +

′ ′′+ − + + + =
 

Using the same procedure as in example 2, The explicit solution can be written 
as:  

( ) ( )
3

2

e
3!

tty t
q t

−

= −  

Theorem 4. Under the conditions (3), (4), 5 0c = , 7 0c = , 6 2c = , 1 0c = , 

3 0c =  and ( )2q t  is not linear function, the Laplace Transform of ( )2q t y  is 
given by: 

( )( ) ( )
2 2

4 2

f s
q t y

s c s c
=

+ +
  

where ( )f s  is given by (7) therefore 

( ) ( )
( )1

2
2 4 2

1 f s
y t

q t s c s c
−  

=  
+ + 

                  (10) 

and under the conditions (3), (4), 1 0c = , 3 0c = , ( )2 9 10q t c t c= +  

( ) ( ) ( )( ) ( ) ( )
2

9 4 9 2 9

e e d ev s v s v sf s
y s k

c s c c s c c
−= − +

+ +∫  

where 

( ) ( )2
10 9 4 10 6 9 7 2 10 5

2
9 4 9 2 9

2
d

c s c c c c c c s c c
v s s

c s c c s c c
+ − + + + + +

=
+ +∫  

and where ( )f s  is given by (7). 
Therefore the solution to (E) is given by: 

( ) ( ) ( )( ) ( ) ( )1
2

9 4 9 2 9

e e d ev s v s v sf s
y t s k

c s c c s c c
−−  

= − + 
+ + 

∫        (11) 

Proof. The proof is straightforward and is done the same way as in theorem 3. 
  

We can also notice that while the conditions (3), (4), 1 0c = , 3 0c = , 

https://doi.org/10.4236/am.2020.117043


M. Ndiaye 
 

 

DOI: 10.4236/am.2020.117043 646 Applied Mathematics 
 

( )2 9 10q t c t c= +  lead to a first order differential equation, the conditions (3), (4), 

5 0c = , 7 0c = , 6 2c = , 1 0c = , and ( )2q t  is not linear function simply lead 
to an algebraic equation. 

Example 4. Under the conditions (3), (4), 5 0c = , 7 0c = , 6 2c = , 1 0c = , 

3 0c = , 2 3c = − , 4 2c =  and ( )2q t  is not a linear function, we get the fol-
lowing non-constant linear differential equation: 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )2 4 2 2 2 2 4 2 22q t y c q t q t y c q t c q t q t y g t′′ ′ ′ ′ ′′+ + + + + =    (12) 

Letting ( ) 2.g t =  Using (10), we find 

( ) ( ) ( )
1

2

1 2 1 1 1 1 1
3 2 1 6 3

y
q t s s s

−  
= − + +  − + 

  

then 

( )
3

2

1 2 1 1e e
3 2 6

t ty
q t

− = − + + 
 

 

Notice that this solution could be easily found by changing Equation (12) into 
this following linear equation: 

( )( ) ( )( ) ( )( ) ( )
2

2 4 2 2 22

d d
dd

q t y c q t y c q t y g t
tt

+ + =  

So using a traditional method, we can find exactly the same result. 
Now focusing on the example listed in the introduction, we can show that 

they all can be obtained using the conditions described in the theorem 4 or the-
orem 5 given later. 

Example 5. Under the conditions (3), (4), 5 0c = , 7 0c = , 6 2c = , 1 0c = , 

3 0c = , 2 0c = , 4 0c = , ( ) 212g t t= , ( )0 0y = , ( )0 0y′ = , we obtained one of 
the initial problem listed in the introduction: 

( ) ( )2 24 2 12 , 0 0, 0 0t y ty y t y y′′ ′ ′+ + = = =  

Using (10), we obtain the same solution 2y t= . 
Example 6. Under the condition (3), (4), 1 0c = , 3 0c = , ( )2 9 10q t c t c= +  

and the additional ones: 2 0c = , 4 1c = − , 9 1c = , 10 0c = , 5 2c = , 6 7 0c c+ = , 
( ) 2g t = , ( )0 2y = , ( )0 4y′ = − , we get one of the equation listed in the intro-

duction: 2ty ty y′′ ′− + = . 
We obtain 2 4y t= −  by using (11). 
Same thing for the initial value problem listed in the introduction: 

( ) ( ) ( )1 2 2 0, 0 1, 0 2,ty t y y y y′′ ′ ′+ − − = = =             (13) 

we use the same above conditions (3), (4), 1 0c = , 3 0c = , ( )2 9 10q t c t c= +  and 
the additional conditions: 2 0c = , 4 2c = − , 9 1c = , 10 0c = , 5 0c = , 

6 7 1c c+ = , ( ) 0g t = , Using (11), we find ( ) 2e ty t = . 
Theorem 5. Under the conditions (3), (4), 1 0c ≠  or 3 0c ≠  and ( )2q t  is a 

constant function, that is ( )2 8 0q t c= ≠  then  

( ) ( ) ( )( ) ( ) ( )

3 8 1 8

e e d ew s w s w sf s
y s k

c c s c c
−= − +

+∫  
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where ( )f s  is given by (7). 

( ) ( )2
8 4 8 7 3 8 2 8 5

3 8 1 8

d
c s c c c s c c c c c

w s s
c c s c c

+ + − + +
=

+∫  

and k a constant. 
Therefore 

( ) ( ) ( )( ) ( ) ( )1

3 8 1 8

e e d ew s w s w sf s
y t s k

c c s c c
−−  

= − + 
+ 

∫           (14) 

Now under (3), (4), 1 0c = , 3 0c =  and ( )2q t  is a constant function, that is 
( )2 8 0q t c= ≠  then 

( ) ( )
( )2

8 4 8 7 2 8 5

f s
y

c s c c c s c c c
=

+ + + +
  

therefore 

( )
( )

1
2

8 4 8 7 2 8 5

f s
y

c s c c c s c c c
−  

=   + + + + 
               (15) 

Proof. The proof is straightforward and is done the same way as in theorem 3. 
Example 7. Under the conditions (3), (4), 1 0c ≠  or 3 0c ≠  and ( )2q t  is a 

constant function, that is ( )2 8 0q t c= ≠  and additional conditions 1 0c = , 

3 3c = , 2 5 6c c+ = − , 4 7 6c c+ = − , ( ) 2g t = , ( )0 0y = , ( )0 0y′ =  we get one 
of the initial value problems listed in the introduction: 

( ) ( )3 6 2, 0 0, 0 0y ty y y y′′ ′ ′+ − = = =  

Using (14), we have the solution: 2y t= . 
Example 8. Under the conditions (3), (4), 1 0c ≠  or 3 0c ≠  and ( )2q t  is a 

constant function, that is ( )2 8 0q t c= ≠  and additional conditions 1 0c = , 

3 1c = , 2 5 1c c+ = − , 4 0c = , 7 0c = , ( ) 0g t = , ( )0 0y = , ( )0 1y′ =  we ob-
tain one of the initial value problems listed in the introduction: 

( ) ( )0, 0 0, 0 1y ty y y y′′ ′ ′+ − = = =  

Using (14), we get the solution: y t= . 

4. Application to the Riccati Equation 

The Riccati Equation named after the mathematician Jacopo Francesco Riccati 
[10] is the simplest non-linear differential equation. It can be written as: 

( ) ( ) ( )2d
d
y A t y B t y C t
t
= + +  

where ( ) ( ),A t B t  and ( )C t  are functions of the independent variable t. The 
Riccati Equation naturally arises in many fields. Many equations in Physics, 
Cosmology and Quantum mechanics involve or can be changed into a Riccati 
Equation [11]. It is well known that there is no general way to solve the Riccati 
equation. When a particular solution 1y  is found for the Riccati equation, we 
can use the change 1u y y= −  to find the general solution of the Riccati Equa-
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tion. This change of variable turns the Riccati into a Bernouilli Equation with u 
the unknown variable: 

( ) ( )( ) ( ) 2
1

d 2
d
u A t y B t u A t u
t
+ − − =  

There are several ways to find a particular solution of a Riccati equation uti-
lizing relations between the coefficients ( )A t , ( )B t  and ( )C t . In general, a 
change of variable is performed that turned the Riccati equation to a separable 
equation. There are several methods that can be found in [12]. 

It is also well-known that the Riccati Equation can be reduced to the 
non-constant coefficients homogeneous second order differential equation: 

( ) ( ) ( ) ( ) ( )
2

2

d d d 0
d dd

u A uA t A t B t A t C t u
t tx

 + − − + = 
 

 

by using the substitution: 
( )
uy

A t u
′

= − . 

The purpose of this application is to show an example as to how to solve the 
Riccati Equation using the Laplace Transform. 

Example: Solving the Riccati Equation: 

2
2

d 2 22
d
y ty y
t t t

 = + − + − 
 

 

In this case: ( )A t t= , ( ) 2 2B t
t

= − + , ( ) 2

2C t
t

= − . Using the substitution 

( )
uy

A t u
′

=  where ( )A t t= , we obtain the non-constant coefficients nonho-

mogeneous second order differential equation: 

( )
2

2

d d1 2 2 0
dd

u ut t u
tt

+ − − =  

which correspond to Equation (13). A solution of this equation is given by 

( ) 2e tu t =  therefore a solution of the Riccati equation is given by: 1
2uy

tu t
′

= = − . 

Using the substitution: 
2w y
t

= + , we find the general solution of the Riccati 

equation: 

( ) 2 2 2 2
2

1 2e e
e

t t
ty t t dt ct

tt
= − + −∫  

where c is a constant. 

5. Conclusion 

In this paper, explicit solutions of non-constant coefficients ordinary differential 
equations are given by using the Laplace Transform. In fact, the main challenge 
at this point is to compute the inverse of the Laplace Transform of a given func-
tion. For most functions, the inverse of the Laplace transform is not listed in the 
table of Laplace Transform and it seems to be very difficult to evaluate. I was 
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very fortunate to find cases in which the inverse of the Laplace Transform can be 
found easily and therefore, an explicit solution follows. Now for further research, 
we can try to figure out what change of variable would turn the Riccati Equation 
into a non-homogeneous non-constant coefficients second order differential 
equation. This would lead to more applications in solving the Riccati equation 
using the results from Section 2. 
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