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Abstract 
The famous de Moivre’s Laplace limit theorem proved the probability density 
function of Gaussian distribution from binomial probability mass function 
under specified conditions. De Moivre’s Laplace approach is cumbersome as 
it relies heavily on many lemmas and theorems. This paper invented an al-
ternative and less rigorous method of deriving Gaussian distribution from 
basic random experiment conditional on some assumptions. 
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1. Introduction 

A well celebrated, fundamental probability distribution for the class of conti-
nuous functions is the classical Gaussian distribution named after the German 
Mathematician Karl Friedrich Gauss in 1809.  

Definition 1.1 Let µ  and σ  be constants with µ−∞ < < ∞  and 0σ > . 
The function  

( )
21

2

2

1; , e ; for < <
2

x

f x x
µ

σµ σ
σ

− −  
 = −∞ ∞

π
           (1) 

is called the normal probability density function of a random variable X with 
parameters µ  and σ . 

Both in theories and applications, without element of equivocation, the Gaus-
sian distribution function is the most essential and widely referencing distribu-
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tion in statistics. 
The well-known method of deriving this distribution first appeared in the 

second edition of the Doctrine of Chances by Abraham de Moivre (hence, de 
Moivre’s Laplace limit theorem) published in 1738 ([1] [2] [3] [4] [5]). The 
mathematical statement of the popular de Moivre’s theorem follows.  

Theorem 1.1 (de Moivre’s Laplace limit theorem) As n grows large ( n →∞ ), 
for x in the neighborhood of np, for moderate values of p ( 0p ≠  and 1p ≠ ), 
we can approximate  

( )2

21 e , 1, , 0.
2

x np
x n x npqn

p q p q p q
x npq

−
−

− 
≈ + = > 

π 
         (2) 

Explicitly, the theorem asserts that suppose n +∈ , and let p and q be proba-
bilities, with 1p q+ = . The function  

( ) ( ); , 1 for 0,1, 2, ,n xxn
b x n p p p x n

x
− 

= − = 
 

           (3) 

called the binomial probability function converges to the probability density 
function of the normal distribution as n →∞  with mean np and standard 
deviation ( )1np p− . 

Although, De Moivre proved the result for 
1
2

p =  ([6] [7]). [8] extended and 
generalized the proof to all values of p (probability of success in any trial) such 
that p is not too small and not too big. Feller result was expounded by [9]. [10] 
[11] [12] [13] used uniqueness property of moment generating function tech-
nique to proof the same theorem. 

In this paper, we attempt to find an answer to the question: is there any alter-
native procedure to the derivation of Gaussian probability density function apart 
from de Moivre’s Laplace limit theorem approach which relies heavily on many 
Lemmas and Theorems (Stirling approximation formula, Maclaurin series ex-
pansion etc.), as evidenced by the work of [8] and [9]? 

2. Existing Technique 

This section presents the summary proof of the existing de Moivre’s Laplace 
limit theorem. First and foremost, the study state with proof, the most important 
lemma of the de-Moivre’s Laplace limit theorem, Stirling approximation prin-
ciple. 

Lemma 2.1 (Stirling Approximation Principle) Given an integer ; 0n n > , 
the factorial of a large number n can be replaced with the approximation 

! 2
e

nnn n  ≈ π  
 

 

Proof 2.1 This lemma can be derived using the integral definition of the fac-
torial,  

( )
0

! 1 e dn xn n x x
∞ −= Γ + = ∫                    (4) 

Note that the derivative of the logarithm of the integrand can be written  

https://doi.org/10.4236/am.2020.116031


A. T. Adeniran et al. 
 

 

DOI: 10.4236/am.2020.116031 438 Applied Mathematics 
 

( ) ( )d dln e ln 1
d d

n x nx n x x
x x x

− = − = −                (5) 

The integrand is sharply peaked with the contribution important only near 
x n= . Therefore, let x n δ= +  where nδ ≤ , and write 

( ) ( ) ( ) ( )

( ) ( )

ln e ln ln 1

ln ln 1

n xx n n n n n n
n

n n n
n

δδ δ δ

δ δ

−   = + − + = + − +    
  = + + − +    

      (6) 

Recall that the Maclaurin series of ( ) ( ) ( )21ln 1 0
2

f x x x x n= + = − + . There-
fore,  

( ) ( ) ( ) ( )
2 2

2

1ln e ln ln
2 2

n x nx n n n n n
n nn
δ δ δδ−   

= + − + − + = − − +  
   

    (7) 

Taking the exponential on both sides of the preceding Equation (7) gives  

( ) ( )
2 2 2

ln ln2 2 2e e e e e e
e
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δ δ δ
− − − −− −  ≈ = =  
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          (8) 

Plugging (8) into the integral expression for !n , that is, (4) gives  
2 2

2 2
0

! e d e d
e e

n n
n nn nn

δ δ

δ δ
− −∞ ∞

−∞

   ≈ =   
   ∫ ∫               (9) 

From (9), let 
2

2
0

e dnI
δ

δ
−∞

= ∫  and considering δ  and κ  as a dummy varia-

ble such that  

( )
2 2

2 21
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Transforming 2I  from algebra to polar coordinates yields ( )cosδ ρ θ= , 
( )sinκ ρ θ=  which implies 2 2 2δ κ ρ+ =  with Jacobian (J) of the transforma-

tion as  

( ) ( )
( ) ( )

cos sin
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J

δ δ
θ ρ θρ θ
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−∂ ∂

= = =
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          (11) 

Hence,  
2 2

2 22 2 2
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e d d 2
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I J

n n n

ρ ρ

ρ θ ρ ρ θ
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− −π ∞ π ∞

∞π π−

= =

 = − = = π 

∫ ∫ ∫ ∫

∫ ∫
          (12) 

Therefore, 2I I n= = π . Substituting for I in (9) gives  

! 2
e

nnn n  ≈ π  
 

                       (13) 

We now begin with proof of theorem (1.1) using the popular existing tech-
nique. 
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Proof 2.2 Using the result of lemma (2.1), Equation (3) can be rewritten as  
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Multiplying both numerator and denominator of Equation (14) by 
1
2n n≡  

to get 
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       (15) 

Since x is in the neighborhood of np, change variables x np ε= + , where ε  
measures the distance from the mean, np, of the binomial and the measured 
quantity x. Re-write (15) in terms of ε  and further simplify as follow  
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to get 
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Note that ( )exp lnx x= . Therefore, rewriting (16) in exponential form to 
have  
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Suppose ( ) ( )ln 1f x x= + , using Maclaurin series ( ) ( )21 0
2

f x x x n= − +  

and similarly ( ) ( ) ( )21ln 1 0
2

f x x x x n= − = − − + . So that,  

2
1ln 1
2np np np

ε ε ε   
+ ≈ −   

   
 and 

( ) ( ) ( )
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− ≈ − −      − − −   
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As a result,  
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2 2 2 2
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2 2 1 12 1

1 1exp
2 12 1
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− − π −  
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= −   −π −    

       (18) 

Recall that x np ε= +  which implies that ( )22 x npε = − . From binomial dis- 
tribution np µ= , and ( ) 21np p σ− =  which implies that ( )1np p σ− = . 
Making appropriate substitution of these in the Equation (18) yields  

( ) ( )
22 1

2
22

1 1 1; , exp e ; for
2 22

xx
f x n p x

µ
σµ

σ σσ

− −  
 

 −
≈ − = −∞ < < ∞ 

π π  
 (19) 

The theorem confirmed. 
We recommend that readers interested in the detailed proof of the theorem to 

consult the study expounded by [9]. 

3. The Proposed Technique 

Suppose a random experiment of throwing needle or any other dart related ob-
jects at the origin of the cartesian plane is performed with the aim of hitting the 
centre (see Figure 1). 

Due to human nature of inconsistency or lack of perfection, varying results in 
the throwing generate random errors. To make the derivation possible and less 
rigorous, we make the following assumptions: 

1) The errors are independent of the orientation of the coordinate system. 
2) Errors in perpendicular directions are independent. This means that being 

too high doesn’t alter the probability of being off to the right. 
 

 
Figure 1. The possible results of the dart experiment. 
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3) Small errors are more likely than large errors. That is, throwings are more 
likely to land in region P than either Q or R, since region P is closer to the target 
(origin). Similarly, for the same reason, region Q is more likely than region R. 
Furthermore, there is higher possibility or tendency of hitting region V than ei-
ther S or T, since V has the wider or bigger surface area and the distances from 
the origin are approximately the same. 

From Figure 2, let the probability of the needle falling in the vertical strip 
from x to x x+ ∆  be denoted as ( )p x x∆ . Similarly, the probability of the 
needle falling in the horizontal strip from y to y y+ ∆  be ( )p y y∆ . Obviously, 
the function cannot be constant, due to the stochastic nature of the experiment. 
In this study, our interest is to know and obtain the form and characteristics of 
the function ( )p x . From second assumption, the probability of the needle fall-
ing in the shaded region ABCD (see Figure 2) is  

( ) ( )p x x p y y∆ ⋅ ∆  

Note that any regions r unit from the origin with area x y∆ ∆  has the same 
probability which is a consequence of the assumption that errors do not depend 
on the orientation. We can say that 

( ) ( ) ( ) ( ) ( )p x x p y y p x p y x y g r x y∆ ⋅ ∆ = ∆ ∆ = ∆ ∆         (20) 

where 

( ) ( ) ( )g r p x p y=                      (21) 

from fundamental rule of Calculus, differentiating (using product rule) both 
sides of Equation (21) with respect to θ  gives 

( ) ( ) ( ) ( )d d0
d d

p x p y p y p x
θ θ

= +               (22) 

Here, ( ) 0g r′ =  since ( ).g  is independent of orientation. By transforma-
tion to polar coordinates, cosx r θ=  and siny r θ= , we can rewrite the de-
rivatives in Equation (22) as 
 

 
Figure 2. The typical example of the experiment. 
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( ) ( ) ( ) ( )d d0 sin cos
d d

p x p y r p y p x rθ θ
θ θ

= = + =        (23) 

Using chain rule of differentiation, (23) becomes 

( ) ( ) ( ) ( )0 cos sinp x p y r p y p x rθ θ′ ′= −            (24) 

Rewriting Equation (24) again by replacing cosr θ  with x and cosr θ  with 
y yields 

( ) ( ) ( ) ( )0 p x p y x p y p x y′ ′= −                 (25) 

The above differential equation can be put in a form such that it can be solved 
using variable separable technique as 

( )
( )

( )
( )

p x p y
p x x p y y
′ ′

=                       (26) 

This differential equation can only be true for any x and y, x and y are  

independent, if and only if the ratio 
( )
( )

( )
( )

p x p y
p x x p y y
′ ′

=  defined by (26) is a con-

stant. That is, if 

( )
( )

( )
( )

.
p x p y

c
p x x p y y
′ ′

= =                     (27) 

Consider 
( )
( )

p x
c

p x x
′

=  in (27) and rearrange to have 

( )
( )

.
p x

cx
p x
′

=                         (28) 

Integrating Equation (28) gives 

( ) ( )
2

1
2

2
1ln so that e ; where e .

2

cx
kcxp x k p x k k= + = =      (29) 

By third assumption, c must be negative so that we write the probability func-
tion (29) 

( )
2

2e ; where
c x

p x k c
− += ∈                 (30) 

If there is a horizontal shift of target from the origin to an arbitrary point µ  
which now mark the new center/target, then the probability function in (30) be-
comes  

( ) ( )2
2e
c x

p x k
µ− −

=                      (31) 

Differentiating (31) and set the derivative equal to zero gives  

( ) ( )
( )2

2e 0
c x

p x ck x
µ

µ
−

−
′ = − − =                (32) 

since 
( )2

2e 0
c x µ−

−
≠  implies x µ= . Therefore, Equation (31) has maximum 

value at x µ=  and point of inflexion at 1x
k

µ= ± . Obviously, (31) has given  
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us the basic form of the Gaussian distribution with constants k and c, and do-
main of X as −∞  to ∞ . Therefore, for Equation (31) to be regarded as a prop-
er probability density function, the total area under the curve must be 1. That is  

( )2
2e d 1
c x

k x
µ− −∞

−∞
=∫                     (33) 

For a symmetric function ( )f x , ( ) ( )
0

d 2 df x x f x x
∞ ∞

−∞
=∫ ∫ . Applying this 

property to Equation (33) yields  

( )2
2

0

1e d .
2

c x
x

k
µ− −∞

=∫                     (34) 

Squaring both sides of (34) to get  

( ) ( )2 2
2 2

0 0

1 1e d e d
2 2

c cx y
x y

k k
µ µ− − − −∞ ∞

⋅ = ×∫ ∫             (35) 

This is possible since x and y are just dummy variables. Recall that x and y are 
also independent, so we can write the product in LHS of (35) as a double integral 
to produce  

( ) ( )2 2
2

20 0

1e d d .
4

c x y
x y

k
µ µ − − + −∞ ∞    =∫ ∫                 (36) 

Putting d dx z x zµ− = ⇒ =  and d dy w y wµ− = ⇒ =  in the preceding 
Equation (36) gives  

2 2
2

20 0

1e d d .
4

c z w
z w

k

 − +∞ ∞   =∫ ∫                   (37) 

The double integral (37) can be evaluated using polar coordinates as cosz r θ=  
and siny r θ=  with Jacobian (J) of the transformation as  

( )
( )

d d
, cos sind d ,

d d sin cos,
d d

z z
z w rrJ r

w w rr
r

θ θθ
θ θθ

θ

∂ −
= = = =

∂
         (38) 

and 

( ) ( )2 22 2 2cos sin .z w r r rθ θ+ = + =              (39) 

So, Equation (37) now becomes  
2 2

2 22 2
20 0 0 0

1e d d e d d .
4

cr cr

J r r r
k

θ θ
π π− −∞ ∞

= =∫ ∫ ∫ ∫           (40) 

Evaluating the double integral 
2

22
0 0

e d d
cr

r r θ
π −∞

∫ ∫  in Equation (40) by first let-

ting 
2

2
cru = , and solving for k in the resulting equation yields  

2
ck =
π

                         (41) 

Putting (41) in (31), the probability density function, ( )p x , becomes  

https://doi.org/10.4236/am.2020.116031


A. T. Adeniran et al. 
 

 

DOI: 10.4236/am.2020.116031 444 Applied Mathematics 
 

( ) ( )2
2e

2

c xcp x
µ− −

=
π

                     (42) 

Again, integration of probability function over its domain gives 1. Therefore, 
from (42) 

( ) ( ) ( )2 2
2 2

0
d e d 2 e d 1

2 2

c cx xc cp x x x x
µ µ− − − −∞ ∞ ∞

−∞ −∞
= = =

π π∫ ∫ ∫        (43) 

Further simplification of the preceding Equation (43) gives 

( )2
2

0
e

2

c x

c
µ− −∞ π

=∫                       (44) 

One of the important goals in mathematical theory of statistics is to obtain the 
mean and variance of any probability function under study. The mean, µ , is 
defined to be the value of the integral ( )dxp x x

∞

−∞∫ . The variance, 2σ , is the 
value of the integral ( ) ( )2 dx p x xµ

∞

−∞
−∫ . Therefore, using Equation (42), 
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2 22 2 2

0
e d 2 e d
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µ µ

σ µ µ
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or equivalently as 
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0

2 e d
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µ
σ µ µ
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∫               (46) 

consider Equation (46) and using integration by part ( d du v uv v u= −∫ ∫ ) with 

d du x u xµ= − ⇒ =  and ( ) ( ) ( )2 2
2 21d e d e
c cx x

v x x v
c

µ µ
µ

− − − −
= − ⇒ = − , we have 
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( ) ( ) ( )

( ) ( )

2 2

2 2

2 2

2 2

2 2 2
0

2 2
0

0

2 2
0

2 2
0 0

2 1e e d

2 1 1lim e d

2 1 1lim e e d

2 1 1 20 e d e d

c cx x

nc cx x

n

c cn x

n

c cx x

c x x
c c

c x e x
c c

c n x
c c

c cx x
c c

µ µ

µ µ

µ µ

µ µ

µσ

µ

µ

− − − −∞

− − − −∞

→∞

− − − −∞

→∞

− − − −∞ ∞

 −
= − − − π  

 
 = − − +

π   
 

= − − + π  
 

= + = π π 

∫

∫

∫

∫ ∫

 

putting (44) in the preceding equation above, gives  

2
2

1 2 1
2

c c
c c

σ
σ

π
= × × ⇒ =

π
                 (47) 

Substituting (47) in (42), the derived probability density function has form  

( )
( )

2
2

2
1 1

22
2

1 1e e , .
2 2

xx
p x x

µµ
σσ

σ σ

− − − −  
 = = −∞ < < ∞

π π
     (48) 

Based on the three aforestated basic assumptions, we have easily derived Equ-
ation (48) famously known anywhere in the whole world as Normal or Gaus-
sian distribution function with mean µ  and standard deviation σ . 
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To verify that Equation (19) is a proper probability density function with pa-
rameters µ  and σ  is to show that the integral  

21 1exp d
22

xI xµ
σσ

∞

−∞

 − = −  π    
∫  

is equal to 1. 
Change variables of integration by letting 

xz µ
σ
−

= , which implies that 
d dx zσ= . Then  

2 2 2

2 2 2
0 0

1 2 2e d e d e d
2 2

z z z

I z z zσ
σ

− − −∞ ∞ ∞

−∞
= = =

ππ π∫ ∫ ∫  

so that 
2 2 2 2

2 2 2 2
0 0 0 0

2 2 2e d e d e d d
x y x y

I x y x y
+

− − −∞ ∞ ∞ ∞   
   = =

π π π      
∫ ∫ ∫ ∫  

Here ,x y  are dummy variables. Switching to polar coordinate by making the 
substitutions cosx r θ= , siny r θ=  produces r as the Jacobian of the trans-
formation. So  

2

2 22
0 0

2 e d d
r

I r r θ
π −∞

=
π ∫ ∫  

Put 
2 dd

2
r aa r

r
= ⇒ = . Therefore, 

2 2 2 2
0 0 0 00

2 d 2 2e d e d d 1a aaI r
r

θ θ θ
π π π∞∞ − − = = − = = π π π∫ ∫ ∫ ∫  

Thus 1I = , indicating that (48) is a proper probability density function. 
Other properties of the distribution such as; moments, moments generating 
function, cumulant generating function, characteristics function, parameter es-
timation and the likes can be found in [14] [15] [16]. 

4. Conclusion 

While working with the outlined objective, we are able to establish that there ex-
ists an approach that is not only serving as an alternative proof of derivation of 
the Gaussian probability density function but also free from rigorous mathemat-
ical analysis and independent of Lemmas and Theorems. This paper can be clas-
sified as a theoretical study of Gaussian distribution and can serve as an excellent 
teaching reference in probability and statistics classes where only basic calculus 
and skills to deal with algebraic expressions, Maclaurin series expansion and Eu-
ler distribution of second kind (gamma function) are the only background re-
quirements. 
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