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Abstract 
Explicit Exact and Approximate Inverse Preconditioners for solving complex 
linear systems are introduced. A class of general iterative methods of second 
order is presented and the selection of iterative parameters is discussed. The 
second order iterative methods behave quite similar to first order methods 
and the development of efficient preconditioners for solving the original li-
near system is a decisive factor for making the second order iterative methods 
superior to the first order iterative methods. Adaptive preconditioned Con-
jugate Gradient methods using explicit approximate preconditioners for 
solving efficiently large sparse systems of algebraic equations are also pre-
sented. The generalized Approximate Inverse Matrix techniques can be effi-
ciently used in conjunction with explicit iterative schemes leading to effective 
composite semi-direct solution methods for solving large linear systems of 
algebraic equations. 
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1. Introduction 

During the last decades, considerable research effort has been directed to the so-
lution of complex linear and nonlinear systems of algebraic equation by using a 
class of iterative methods. This class includes the conjugate gradient method and 
its hybrid multi-variants. The conjugate gradient method originally introduced 
by Hestenes and Stiefel [1], was a direct solution method but later on has been 
extensively used as an iterative method for solving efficiently large sparse linear 
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and nonlinear systems of complex computational problems [2] [3] [4]. The in-
complete factorization methods and various hybrid preconditioning techniques 
[5] [6] [7] [8] [9] are well known and have been efficiently applied for solving 
iteratively large sparse linear systems of algebraic equations [5] [10] [11] [12] [13] 
[14]. 

Certain theoretical issues on this subject, such as 1) the stability and condi-
tions of correctness of approximate system matrix in the form of product of tri-
angular matrix factors, and 2) the convergence analysis of the iterative methods 
and the quantitative evaluation of the convergence rate of the iterative schemes 
4, are of particular interest for the choice of the most efficient methods for sys-
tems with predetermined properties. 

In the framework of this research work and in order to substantiate the main 
motivation for the efficient usage of the second order iterative method for solv-
ing nonlinear systems, the following basic related questions will be considered: 1) 
are the second order iterative methods comparable (or even superior) to first 
order iterative methods for solving nonlinear systems? A survey of related re-
search work will be given; 2) are second order iterative schemes preferable than 
the first order iterative schemes for solving very large complex computational 
problems? The computational complexity per iterative step will be also ex-
amined. 

The structure of this research paper is as follows: in Section 2, several advan-
tages of second order iterative methods in comparison with the first order itera-
tive methods for solving nonlinear systems are presented. In Section 3, a class of 
general iterative methods of second order is described, while in Section 4, certain 
explicit iterative schemes and approximate inverse preconditioners are intro-
duced. In Section 5, exact and approximate inverse matrix algorithmic tech-
niques are introduced, while in Section 6, some aspects of stability and correct-
ness of incomplete factorization methods are presented. Finally, in Section 7, the 
convergence analysis and quantitative evaluation of convergence rate of incom-
plete factorization methods are discussed. 

2. General Iterative Methods of Second Order: Part I 

In recent years, considerable research effort has been focused in the topic of 
second order iterative methods. In order to substantiate our motivation in our 
research study, we present a synoptic survey of related computational methods 
developed on the subject. Several early iterative methods of second order with 
fixed parameters or variable parameters have been extensively studied [15] [16] 
[17] [18]. 

A class of (optimal) second degree iterative methods for accelerating basic li-
near stationary methods of first degree with real eigenvalues has been presented 
[18] [19] and has been extended as application of conformal mapping and sum-
mation techniques for the case when eigenvalues are contained in elliptical re-
gions in the complex plane [20] [21] [22]. Another similar contribution on op-
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timal parameters for linear second degree stationary iterative methods applied to 
unsymmetric linear systems have been computed by solving the minimax prob-
lem used to compute optimal parameters for Chebyshev iteration that is asymp-
totically equivalent to linear second-degree stationary method [23]. A nonsta-
tionary iterative method of second order for solving nonlinear equations without 
requiring the use of any derivative has been presented. This method for algebraic 
equations coincides with Newton’s method and is more efficiently [24]. Note 
that Newton’s methods and high order iterative schemes (Householder’s itera-
tive methods), under some conditions of regularity of the given function and its 
derivatives, have been used for the numerical treatment of single nonlinear equ-
ations [25]. 

A three-step iterative method for solving nonlinear equations by using Stef-
fensen’s method in the third step having eight order convergence has been re-
cently presented. This method requires a small number of calculations and does 
not require calculation of derivative in the third iterative step. A two-step itera-
tive method for solving nonlinear equations, a modified Noor’s method without 
computing the second derivatives and with fourth order convergence has been 
presented [26]. A second order iterative method for solving quasi-variational 
inequalities has been introduced and sufficient conditions for convergence rate 
have been given [27]. Two iterative methods of order four and five respectively 
by using modified homotopy perturbation techniques for solving nonlinear equ-
ations and the convergence analysis have been presented [28]. An efficient 
second order iterative method for IR drop analysis in power grid has been pre-
sented [29]. In this research study, they consider a first order iterative method 

*
1 1n nx Gx K+ = +                          (1) 

and the resulting second order iterative method 

( ) ( )*
1 1 1n n n n n nx x a x x b x x+ − += + − + − ,               (2) 

where *
1nx +  denotes the first-order iteration, and a and b are real accelerating 

parameters effecting the convergence rate. For the consistency and convergence 
of the second order iterative methods the following statements hold: 

Preposition 1: If the 1st-order iterative method converges to the exact solution, 
then the 2nd-order method will converge to the same solution for any values of 

0a ≠  and 0b ≠ . 
Preposition 2: The iterative matrix of the 2nd-order method is known. A ne-

cessary and sufficient condition that the iterative method converges for all initial 
conditions is that, if the spectral radius of matrix G is minimized then the con-
vergence rate is maximized [29]. 

2.1. Some Problems in Solving Very Large Complex  
Computational Problems 

It is known that due to the extremely large sizes of power grids, IR drop analysis 
has become a computationally challenging problem in terms of memory usage 
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and runtime, and second-order iterative algorithms that can significantly reduce 
the runtime have been proposed. Specifically, the main problems include the 
following: 

1) Very large-scale simulations (millions of elements in power grids) and run 
time is slow. 

2) Memory inefficiency (1 million nodes and trillion elements in matrix) 
3) Trade-off between runtime and predetermined accuracy 
4) Power delivery issues (increased complexity of VLSI circuits, increased 

power (current) consumption, decreasing supply voltage, reduced noise margin, 
increased gate delay) 

5) Modelling and analysis of power grid network must be accurate and power 
grid networks tend to be very large [22]. 

Typical applications include also a large class of initial-boundary value prob-
lems of general form in 3 space dimensions with strong nonlinearities: 

( ) ( )
1 1

, , , ,
N N

t i xi xi xi
i i

u a x t u u b x t u u uε
= =

+ + =∑ ∑               (2a) 

where the positive perturbation parameter tends to zero [30]. 
The discrete analogues of Equations (1) (2) lead to the solution of the general 

linear system  

Au s=                            (2b) 

where the coefficient matrix A is a large sparse unsymmetric real (n × n) matrix 
of irregular structure. 

2.2. Computational Complexity per Iterative Step 

Computational complexity of algorithms is an important subject in which con-
siderable research has been focused in the last decades [6] [31] [32] [33] [34]. 

An interesting topic in the framework of comparison of the number of flops 
per iteration to be performed for several classes of solution methods, i.e. 1) di-
rect second order methods (based on direct matrix decomposition), 2) iterative 
first order methods and 3) iterative second order methods, for the cases of dense 
and sparse problems reveals the following: 

1) In first order iterative methods, the number of flops per iteration is gener-
ally much smaller than that of second order methods, while the former generally 
need many iterations to converge (maybe few hundreds up to few thousands) 
and also have difficulties to obtain highly accurate optimal solutions. 

2) The second order iterative methods usually converge quickly (few tens ite-
rations) to highly accurate solutions.  

3) The first order iterative methods overall are considered to be much supe-
rior to second order methods based on direct factorization in solving large scale 
SDP problems. However, the latter methods in solving linear systems may be 
prohibitively expensive (even impossible) due to high number of flops required 
and the high amount of memory space needed for storing the coefficient matrix.  

4) The computational complexity of second order iterative methods has the 
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following characteristics:  
a) There is no need for computing and/or store the coefficient matrix 
b) The computational work and storage requirements of inner iterations are 

very comparable to that of iterations of log-barrier method 
c) The total number of inner iterations performed by iterative second order 

method depends on the choice of preconditioner used in the iterative algorithm 
of the original system. 

Note that a logarithmic barrier term, which emphasizes the improvement of 
poor quality elements, solves the constrained optimization problem using the 
gradient of the objective function [35] [36]. 

Conclusively, the second order iterative methods, as far as the inner iterations 
are concerned, behave quite similar to first order methods. Furthermore, the 
development of efficient preconditioners for solving the original linear system is 
a decisive factor for making the second order iterative methods superior to the 
first order iterative methods. 

3. General Iterative Methods of Second Order: Part II 

In this section, a class of iterative methods of second order for solving large sparse 
linear systems of the form Au = b is presented and explicit preconditioned me-
thods for approximating the solution of complex computational problems are 
given. Apart of the extensive research work that has been done for solving linear 
systems by using second order iterative methods as indicated in section 2, it is 
worthwhile to mention that the efficient usage of second order iterative schemes 
for solving nonlinear systems has been reported by Lipitakis (1990) and these 
iterative schemes are originated from the E-algorithm, a modified version of the 
well-known algorithm of Euclid, written in the form of a general second order 
iterative scheme [37]. This general iterative scheme is synoptically described in 
the following: 

Let us consider a class of non-stationary iterative methods of second order the 
form: 

1 1 , 0i i i i i iu u u iπ τ δ+ −= + + ≥                   (3) 

where iπ , iτ  are real parameters, the so-called E-parameters [37], and iδ  is a 
“correction” term. The iterative scheme is known as the E-iterative method [37]. 

These iterative schemes with appropriate selection of the parameters can be 
used in conjunction with various explicit preconditioned methods, such as expli-
cit Richardson, Chebychev, fractional step iterative method, Grank-Nickolson, 
multiple explicit Jacobi, explicit preconditioned Conjugate Gradients, etc. for 
solving complex computational problems, such as 3D-initial boundary value 
problems. It is known that the corresponding approximate factorization algo-
rithms and the approximate inverse algorithms are tediously complicated, espe-
cially in the three-dimension space with complicated boundary conditions in ir-
regular domains. 
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Let us consider an unsymmetric large sparse linear system Au = b. Then, the 
choice of E-parameters: 

1 1, 0,i i iI H A H bπ τ δ− − = − = =                   (4) 

where the non-singular matrix H is chosen such that the computational work re-
quired for solving the linear system Hu = s (where s is given) is considerably 
small compared to that required to solve the system Au = b, leading to the itera-
tive procedure,  

1 1
1 , 0i iu I H A u H b i− −
+  = − + ≥                   (5) 

Note that several choices of matrix H lead to well-known iterative methods, i.e. 
Richardson, Block Jacobi, Gauss-Seidel, SOR, SSOR, etc. 

Consider the unsymmetric linear system Au = b, a family of ellipses of centred 
with foci d ± c and assuming that the E-parameters are selected as 

[ ]1 , , , 0i i ia A a b iι ι ι ιπ β τ β δ= − − = − = ≥               (6) 

where the acceleration parameters ,ia ιβ  are defined as 

( )
12

12 , 1, 1i i i ia d c a da iβ
−

−
 = − = − ≥                (7) 

with  

( )2 2
1 1 0 0 02 2 , 1, 1 , 0a d d c da a dβ β= − = − = =           (8) 

The iterative method (3) then can be equivalently written as a second order 
non-stationary iterative scheme (known as Chebychev iterative method): 

( )1 11 , 1i i i i i i iu a A u u a b iβ β+ −= + − − + ≥                (9) 

or equivalently 

( )1 1 , 1i i i i i iu u a r u u iι β+ −= + + − ≥                 (10) 

where r is the residual factor r b Au= − , and 0 1,u u  are arbitrary chosen initial 
values. 

The simplified choice of E-parameters 

[ ]1 , , , 0i aA ab iι ιπ β τ β δ= − − = − = ≥              (11) 

leads to second-order iterative scheme (known as the second-order Richardson’s 
method): 

( )1 1 , 1i i i i iu u ar u u iβ+ − = + + − ≥                  (12) 

where the parameters α, β are the asymptotic values of ,i ia β  [19]. 
Let us consider the approximate factorization s sA L U≈ , where sL  and sU  

are sparse decomposition factors [37] [38] and let us assume that M a 
non-singular real (n × n) matrix, is the inverse of ( )s sL U , i.e. ( )r r rM L U= , 

[ ]1, 1r m∈ − , where r is the “fill-in” parameter, i.e. the number of outermost-off 
diagonal entries which are retained in semi-bandwidth m. Then, the explicit iter-
ative methods based on the generalized approximate inverse matrix techniques 
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[39], can be obtained by determining the element of A-1 without inverting the 
decomposition factors ,r rL U . 

Note that the effectiveness of explicit iterative methods is mainly related to the 
fact that the exact inverse of the sparse matrix A, although is full, exhibits a simi-
lar “fuzzy” structure as A, i.e. the largest elements are clustered around the prin-
cipal diagonal and main diagonals [13]. 

The selection of the E-parameters 

[ ]1 ,
, , 0

i r

i i r

b aM A
aM b i

π
τ β δ
= + −

= − = ≥
                    (13) 

and 

[ ]1 ,
, , 0

i i i r

i i i i r

a M A
a M b i

π β

τ β δ

= + −

= − = ≥
                    (14) 

where rM  is an approximate form of the inverse of A and α, β and ia , iβ  are 
preconditioned parameters and sequences of parameters respectively, leads to the 
following explicit iterative schemes: 

( )1 11 , 1i r i i ru M A u u aM b iβ α β+ −= + − − + ≥             (15) 

( )1 11 , 1i i r i i i i ru M A u u a M b iβ α β+ −= + − − + ≥             (16) 

which are known as the Explicit second order Richardson and Explicit Chebychev 
methods respectively [13]. 

In these explicit iterative schemes several approximate forms of the inverse can 
be effectively used by retaining only Uδ  and Lδ  [ ] [ ]( )2, 1 , 1,U Ln nδ δ∈ − ∈  
diagonals in the upper and lower triangular parts of rM , the remaining elements 
being just not computed at all [13]. 

4. Explicit Iterative Schemes and Approximate Inverse  
Preconditioners 

4.1. A Class of Optimized Approximate Inverse Variants 

A class of optimized approximate inverse variants can be obtained by considering 
a (near) optimized choice of the approximate inverse M depends on the selection 
of related parameters, i.e. fill-in parameters r1, r2, retention parameters δl1, δl2 and 
entropy-adaptivity-uncertainty (EAU) parameters [30] (Figure 1). Note that the 
selection of retention parameter values as multiples of the corresponding 
semi-bandwidths of the original matrix leads to improved numerical results [40]. 
Then, the following sub-classes of approximate inverses, depending on the accu-
racy, storage and computational work requirements, can be derived 
 

 
Figure 1. Certain subclasses of approximate inverse matrices. 
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where 1 2
1 2

,
1, 1

l l
r m r pM δ δ
= − = −  of sub-class I is a banded form of the exact inverse retaining 

1 2,l lδ δ  elements along each row and column respectively, while its elements are 
equal to the corresponding elements of the exact inverse. The term 

1 2
1 2

,
1, 1

l lS
r m r pM δ δ
= − = −  of sub-class II is a banded form of M, retaining only 1 2,l lδ δ  

elements along each row and column during the computational procedure of the 
approximate inverse and under certain hypotheses can be considered as a good 
approximation of the original inverse, while the entries of the approximate in-
verse in sub-class III have been retained after computing M* ( 1 1r m< −  and 

2 1r p< − ) and are less accurate than the corresponding entries of 1 2
1 2

,*
,
l l

r rM δ δ

. Fi-

nally, in sub-class IV the elements of the approximate inverse can be computed.  
Note that the generalized Approximate Inverse Matrix (AIM) techniques can 

be efficiently used in conjunction with explicit iterative schemes leading to effec-
tive composite semi-direct solution methods solving large linear systems of alge-
braic equations on multiprocessor systems. 

4.2. Explicit Iterative Schemes 

Analogous relationships can be derived for various explicit CG-type methods as 
indicated in the following. The generalized alternating group explicit (AGE) iter-
ative methods, based on the known ADI methods [12] [17] [41] [42], can be de-
rived as follows: consider the splitting  

1 2A D G G= + +                        (18) 

where D is a non-negative diagonal matrix and D, 1G , 2G  satisfy the condi-
tions 

1) The matrices ( ) , 1, 2iG D pI iθ+ + =  are non-singular for any 0θ ≥ , 
0ρ > , 

2) The system  
1

1x G v−=  and 1
2y G z−=                     (19) 

can be easily solved explicitly for any vectors v and z. Note that this statement 
holds only to certain model problems. Then, the following generalized AGE 
scheme can be obtained 

( ) ( )1 1 2 1 2i i i i iG p I u p I G u b+ + ++ = − +                   (20) 

( ) ( )( ) ( )1 1 2 1 1 1 22i i i i i i iG p I u G I p I u p uω ω+ + + + ++ = − − + −        (21) 

where ω is a non-negative acceleration parameter [1]. 
In an analogous manner can be derived the explicit preconditioned me-

thods 1) Richardson + AGE method and 2) Chebychev semi-iterative method 
+ AGE method [43]. Note that the AGE method which is based on the com-
bination of certain elementary first order difference processes permitting the 
reduction of a given complicated problem into a sequence of simpler prob-
lems, can be considered as a fractional (splitting-up) method [44] [45]. 

The multiple explicit Jacobi (μ-EJ) method and its several parametric forms, 
provided that their spectral radius ρ satisfies the corresponding convergence 

https://doi.org/10.4236/am.2020.114023


A.-D. Lipitakis 
 

 

DOI: 10.4236/am.2020.114023 315 Applied Mathematics 
 

condition, in combination with the Lanczos economized Chebychev polyno-
mials of degree μ, has proved to be effective for solving elliptic boun-
dary-value problems in parallel processors [39]. The multiple explicit Jacobi 
method in conjunction to economized Chebychev polynomial and Neumann 
series of certain degree can be effectively applied for solving explicitly large 
sparse linear systems resulting from the discretization of initial boun-
dary-value problems [39]. 

4.3. Explicit Preconditioned Conjugate Gradients Method of  
Second Order 

Let us assume that the E-parameters are selected as follows: 

( )2 2 1 1 11 , 1 , , 0i i i i i i ip M A p p M b iµ ι µπ γ τ δ γ+ + + + += + = − = ≥       (22) 

where  

( )1 1 1 11 , , 0,1, 2, , 1i i i i i ip a a p i kιβ γ α+ − + += + = = −          (23) 

with k the smallest integer such that 0k kr b Au= − = , 1ip =  and ,i ia β  are 
the scalar quantities as defined in the original CG paper [1]. 

The iterative scheme (21) then becomes 

( ) ( )1 1 1 1 1 1 11 1 , 1i i i i i i i iu p M A u p u p M b iµ µγ γ+ + + + − + += + + − + ≥      (24) 

or equivalently the second order explicit preconditioned CG scheme can be 
obtained as 

( )1 1 1 1 1 , 1i i i i i i iu u p M r u u iµγ+ − + + −= + + − ≥             (25) 

In the following, the selection of E-parameters for various explicit precon-
ditioned methods is presented. 

The proposed explicit iterative methods can be used for solving large sparse 
linear systems and the E-iterative schemes can generate useful explicit itera-
tive schemes of higher order with suitable selection of E-parameters for solv-
ing a wide class of very large sparse linear systems in multiprocessor systems.  

Typical applications include a large class of initial-boundary value prob-
lems of general form in three space dimensions with strong nonlinearities 

( ) ( )
1 1

, , , ,
N N

t i xi xi xi
i i

u a x t u u b x t u u uε
= =

+ + =∑ ∑            (25a) 

where the positive perturbation parameter tends to zero [46]. 
The discrete analogues of Equation (25a) lead to the solution of the general 

linear system  

Au s=                           (25b) 

where the coefficient matrix A is a large sparse unsymmetric real (n × n) ma-
trix of irregular structure. 

4.4. Selection of Explicit Iterative Solver and Algorithmic  
Implementation 

In this section an iterative solver of second order for solving linear and non-
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linear systems of irregular structure is presented in pseudo algorithmic form:  
Algorithm SOIS-1 (EXSOM, SEIS, U-1, U0, NMAX, Π, R, Δ, U) 
Purpose: This algorithm describes the general selection of an iterative 

solver of second order for solving linear and nonlinear nonsymmetric systems 
of irregular structure and the selection of corresponding parameters. 

Input: the computational module EXSOM selecting the explicit iterative 
solver SEIS and corresponding parameters, the initial values 1u− , 0u , max 
number of iterations NMAX. 

Output: final explicit iterative solver SEIS and approximate iterative solu-
tion U. 

Computational Procedure: 
step 1: Call the explicit iterative module EXSOM and determine the explicit 

iterative solver to be used  
step 2: Select initial vectors 1u−  and 0u  and set the max number of itera-

tions NMAX  
step 3: Select the corresponding E-parameters π, r and correction term δ 
step 4: For 0,1,2,i =   
step 5: Compute approximate vector 1iu +  as 1 1i i i i i iu u ruπ δ+ −= + +  
// the E-parameters π, r and correction term δ are selected from the cor-

responding explicit iterative scheme of computational module EXSOM // 
step 6: If the convergence criterion is satisfied and the max number of ite-

ration NMAX is hold,  
then go to step 7, 
else go to step 4 and  
continue 
step 7: Print the explicit iterative solver SEIS  
step 8: Form approximate solution u  
The explicit computational module EXSOM can be used for solving an ex-

plicit iterative solver as follows: 
module EXSOM (ERI, ECH, GAGE, RAGE, CHAGE, GFSI, MEJ, 

EPCGSO, SEIS) 
Purpose: this module determines the explicit iterative solver that will be 

used for solving the given linear nonsymmetric system of irregular structure 
Input: the explicit iterative solvers ERI, ECH, GAGE, RAGE, CHAGE, 

GFSI, MEJ, EPCGSO, IS integer (=1, 2, 3, 4, 5, 6, 7, 8) is the number of expli-
cit iterative solver to be used 

Output: The selected explicit iterative solver SEIS = IS  
Computational Procedure: 
step 1: Consider one of the following available explicit iterative solvers and 

set the corresponding value of IS 
step 1.1: If IS==1, 
then the explicit Richardson method ERI is to be used; 
return 
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step 1.2: If else IS==2, 
then the explicit Chebychev ECH is to be used 
return 
step 1.3: If else IS==3, 
then the generalized AGE method GAGE is to be used; 
return 
step 1.4: If else IS==4, 
then the Richardson + AGE method RAGE is to be used; 
return 
step 1.5: If else IS==5,  
then the Chebychev + AGE method CHAGE is to be used; 
return 
step 1.6: If else IS==6, 
then the general fractional step iteration GFSI is to be used; 
return 
step 1.7: If else IS==7,  
then the multiple explicit Jacobi MEJ is to be used; 
return 
step 1.8: If else IS==8,  
then the explicit preconditioned CG of second order is to be used 
return 
step 2: return the selected explicit iterative solver (SEIS)  
Additional explicit iterative solvers can be used in module EXSOM for 

solving the given linear system. The algorithm SOIS-1 can be used as a gener-
al explicit iterative solver of second order for solving linear and nonlinear 
non-symmetric systems of irregular structure by selecting the corresponding 
parameters. 

5. The Exact and Approximate Inverse Matrix Algorithmic  
Techniques  

5.1. On the Selection of Approximate Inverse Preconditioners 

The selection of an efficient approximate inverse preconditioner for solving 
explicitly complex computational problems is an interesting research topic of 
critical importance. Let us assume that a non-singular large sparse unsymme-
tric matrix of irregular structure can be factorized as A = LU (Figure 2), 
where L and U are triangular matrices and s sA L U≈  is an approximate fac-
torization with sL  and sU  the corresponding sparse decomposition factors 
(Figure 3 and Figure 4). The elements of the decomposition factors can be 
efficiently computed [39]. Let us assume that *

SM  is an approximate inverse 
of A, i.e. 1 *

sA M− ≈ . 
In the following, a class of adaptive exact and approximate inverse solvers 

based on exact/approximate LU decompositions and approximate inverse 
methods is described. Let us assume the general linear system  
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Figure 2. Structure of the unsymmetric coefficient matrix A. 
 

 

Figure 3. Structure of the lower triangular factor Ls. 
 

 

Figure 4. Structure of the upper triangular factor Us. 
 

Au s=                          (25b) 

where the coefficient matrix A is a large sparse real (n × n) matrix of irregular 
structure.  

The structure of A is shown in the following diagram: 
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Note that such regular matrix structures occur only for certain model type 
problems. 

Let us consider, the factorization A = LU and an approximate factorization 
of the coefficient matrix A, 

s sA L U≈                           (27) 

where sL  and sU , are lower and upper sparse triangular matrices of irregu-
lar structures of semi-bandwidths m and p retaining 1r  and 2r  fill-in terms 
respectively. The decomposition factors sL  and sU  are banded matrices 
with l1 and l2 the numbers of diagonals retained in semi-bandwidths m and p 
respectively, of the following form: 

The elements of the decomposition factors Ls and Us can be obtained from 
the algorithmic procedure FELUBOT [39]. 

A class of exact and approximate inverse matrix techniques can be consi-
dered containing several sub-classes of approximate inverses according to 
memory requirements, computational work, accuracy, as indicated in the fol-
lowing scheme: 

Let us assume that 
1 2,r rM , a non-singular (n × n) matrix, is an approximate 

inverse of A, i.e. { } [ ]1 2

1 2

,
, , , , 1,

r r
r r i jM M i j n= ∈ . Note that if 1 1r m= −  and 

2 1r p= −  non-zero elements have been retained in the corresponding de-
composition factors, then 

1 2,r rM M= , where M is the exact inverse of A. The 
elements of M can be determined by solving recursively the systems 

1 1andML U UM L− −= =                     (28) 

having main disadvantages, i.e. high storage requirements and computational 
work involved particularly in the case of solving very large unsymmetric li-
near systems.  

A class of approximate inverses 1 2,l lM δ δ  can be obtained by retaining only 
δl1 and δl2 diagonals in the lower and upper triangular parts of inverse respec-
tively, the remaining elements being just not computed at all. Optimized 
forms of this algorithm are particularly effective for solving banded sparse FE 
systems of very large order, i.e. [ ]1 2 2l l nδ δ+ >  or in the case of nar-
row-banded sparse FE systems of very large order, i.e. [ ]1 2 2l l nδ δ+  . Then 
an explicit approximate inverse preconditioner can be described in the fol-
lowing adaptive algorithmic form. 

5.2. The Exact and Approximate Inverse Preconditioners 

The elements of the exact and approximate inverse of a given unsymmetric 
and irregular structure can be obtained as follows and the explicit banded ap-
proximate inverse algorithm can be described by the following algorithmic 
procedure in pseudocode form: 

Algorithm EBAIM-1 (A, n, εEM, r1, r2, m, p, l1, l2, δl1, δl2, M) 
Purpose: This algorithm computes the elements of the exact inverse of a 

given real unsymmetric (n × n) matrix of irregular structure arising in FE/FD 
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discretization of elliptic and parabolic boundary value in three space dimen-
sions. The algorithm can also compute approximate inverse matrices of the 
given coefficient matrix. 

Input: given matrix A; n order of A; submatrices F, H, Γ, Z; parameter εEM 
(indicating the exact inverse or approximate inverse matrix), s m, p; l1 and l2 
numbers of diagonals retained in semi-bandwidths m and p respectively, δl1 
and δl2 widths of bands in A 

Output: elements μi,j of the exact inverse M 
Computational Procedure: 
Step 0: Read the value of adaptive parameter εEM 
//for the appropriate value of adaptive parameter εEM the algorithm com-

putes the exact inverse matrix or approximate inverse matrices// 
Call module exactmode-1(εEM) 
//If the module exactmode-1is activated then the algorithm EBAIM-1 

computes the exact inverse of a given unsymmetric matrix of irregular struc-
ture using an exact LU factorization, otherwise the algorithm can be used for 
computing an approximate inverse matrix of the given coefficient matrix// 

step 1: Let 1 11rl r l= + ; 2 22rl r l= + ; 11 1 1rl rl= − ; 21 2 1rl rl= − ;

11mr m r= − ; 11ml m l= + ; 22pr p r= − ; 22pl p l= + ; 11nmr n m r= − + ; 

22npr n p r= − +  
step 2: For i = n:1 
step 3: For ( ): max 1, l 1j i i δ= − +  
step 4: If 1j nmr>  then 
step 5: If i = j then 
step 6: If i = n then 
step 7: , 1n nµ =  
step 8: else 
step 9: , , 11i j j i jgµ µ += −  
step 10: , , 1i j n j i jµ ω β µ += −  
step 11: else 
step 12: , , 1i j j i jgµ µ += −  
step 13: , , 1i j j i jµ β µ += −  
step 14: else 
step 15: If 2j npr>  and 1j nmr≤  then 
step 16: If i = j then 

step17: 
1

, , 1 11 , 1 1 , 1
0

1
nmr j

i j j i j rl k j k r i j mr k
k

g hµ µ µ
−

+ − + + − + +
=

= − − ∑  

step18: 
1

, 1 , 1 11 , 1 1 , 1
0

nmr j

i j j i j rl k j k r i j mr k
k

µ ω β µ γ µ
−

+ − + + − + +
=

= − − ∑
 

step 19: else 

step 20: 
1

, , 1 11 , 1 1 , 1
0

nmr j

i j j i j rl k j k r i j mr k
k

g hµ µ µ
−

+ − + + − + +
=

= − − ∑  

step 21: 
1

, , 1 11 , 1 1 , 1
0

nmr j

i j j i j rl k j k r i j mr k
k

µ β µ γ µ
−

+ − + + − + +
=

= − − ∑  
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step 22: else 
step 23: If 1j rl≥  and 2j npr≤  then 
step 24: If i = j then 
step 25:  

1 2

, , 1 11 , 1 1 , 1 12 , 1 2 , 2
0 0

1
nmr j npr j

i j j i j rl k j k r i j mr k rl k j k r i j pr k
k k

g h fµ µ µ µ
− −

+ − + + − + + − + + − + +
= =

= − − −∑ ∑  

Step 26:  
1 2

, 1 , 1 11 , 1 1 , 1 2 , 2 , 2
0 0

nmr j npr j

i j j i j rl k j k r i j mr k rll k j k l r i j pr k
k k

zµ ω β µ γ µ µ
− −

+ − + + − + + − + + − + +
= =

= − − −∑ ∑
 

Step 27: else 
Step 28:  

1 2

, , 1 11 , 1 1 , 1 12 , 1 2 , 2
0 0

nmr j npr j

i j j i j rl k j k r i j mr k rl k j k r i j pr k
k k

g h fµ µ µ µ
− −

+ − + + − + + − + + − + +
= =

= − − −∑ ∑
 

Step 29:  
1 2

, , 1 11 , 1 1 , 1 2 , 2 , 2
0 0

nmr j npr j

i j j i j rl k j k r i j mr k rll k j k l r i j pr k
k k

zµ β µ γ µ µ
− −

+ − + + − + + − + + − + +
= =

= − − −∑ ∑
 

Step 30: else 
Step 31: If i = j then 
Step 32: If i = 1 then 

Step 33: 
1 2

1,1 1 1,2 1, 1, -1 1, 1, -1
1 1

1
l l

k m k k p k
k k

g h fµ µ µ µ+ +
= =

= − − −∑ ∑  

Step 34: 
1 2

1,1 1 1 1,2 1, 1, 1 1, 1, 1
1 1

l l

k m k k p k
k k

zµ ω β µ γ µ µ+ − + −
= =

= − − −∑ ∑
 

Step 35: else 

Step 36: 
11

, , 1 , , 1 , 1 , 1 1
1 1 1

1
jl

i j j i j j k i m k j k l k i ml k
k j r k

g h hµ µ µ µ
−

+ + − − + + −
= + − =

= − − −∑ ∑  

Step 37: 

11

, 1 , 1 , , 1 , 1 , 1 1
1 1 1

1 2

, 2 , 2 1 , , 1
1 1 2

jl

i j j i j j k i m k j k l k i ml k
k j r k

j l

j k l k i pl k j k i p k
k k j r

z z

µ ω β µ γ µ γ µ

µ µ

−

+ + − − + + −
= + − =

−

− + + − + −
= = + −

= − − −

− −

∑ ∑

∑ ∑
 

Step 38: else 

Step 39: 

11

, , 1 , , 1 , 1 , 1 1
1 1 1

1 2

, 2 , 2 1 , , 1
1 1 2

jl

i j j i j j k i m k j k l k i ml k
k j r k

j l

j k l k i pl k j k i p k
k k j r

g h h

z z

µ µ µ µ

µ µ

−

+ + − − + + −
= + − =

−

− + + − + −
= = + −

= − − −

− −

∑ ∑

∑ ∑
 

Step 40: 

11

, , 1 , , 1 , 1 , 1 1
1 1 1

1 2

, 2 , 2 1 , , 1
1 1 2

jl

i j j i j j k i m k j k l k i ml k
k i r k

j l

j k l k i pl k j k i p k
k k j r

z z

µ β µ γ µ γ µ

µ µ

−

+ + − − + + −
= + − =

−

− + + − + −
= = + −

= − − −

− −

∑ ∑

∑ ∑
 

Step 41: For j = i − 1 to [ ]max 1, 1i lδ− +  
Step 42: , ,i i i jµ µ=  

Step 43: Print out the inverse elements ,i iµ  
Step 44: End 
Note that if the computational module exactmode-1 is activated, as indi-
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cated below, then the algorithm EBAIM-1 computes the elements of the exact 
inverse of a given unsymmetric matrix of irregular structure using an exact 
LU factorization. 

Module exactmode-1 (εEM) 
/If this module is activated (εEM = 1), then the algorithm EBAIM-1 com-

putes the exact inverse of a given unsymmetric matrix of irregular structure 
using an exact LU factorization, otherwise the algorithm can be used for 
computing an approximate inverse matrix of the given coefficient matrix/ 

If εEM = 1 then 
Set 1 1r p= − ; 2 1r m= −  
Set 1 2l n= − ; 2l n p= −  
Set 1 2l nδ = − ; 2 2l nδ = −  
else 
exit 
end module exactmode-1 
The computational work of the EBAIM-1 algorithm is  

( )( )1 2 1 2 1 2 2O n l l r r l lδ δ≈ + + + + +    multiplications, while the memory re-
quirements are (n × n) words. In the case of very large systems, the memory 
requirements could be prohibitively high and the usage of efficient memory 
requirements of approximate inverse matrices is desirable. 

5.3. An adaptive Preconditioned Conjugate Gradient Method  
Using the Explicit Approximate Preconditioner 

The preconditioned PCG method can solve the problem 1min b AR x−− , 
where R is the sparse, non-singular QR factor, while the preconditioned 
CGLS method can solve the equations:  

TM R R= , T T 1 T TR A AR u R A b− − −=  and u Rx= .        (29) 

Note that the factor Q cannot be stored, while the only additional compu-
tational work is solving the two equations TR w v=  and Rz w= . All the fac-
torization processes are numerically stable. It should be pointed out that the 
sparse preconditioner M* used in the modified PCG method is the approx-
imate inverse of factor R, which using is closely related with the so-called 
mrTIGO method.  

In order to compute efficiently the solution of the linear system Ax = b, a 
modified Preconditioned Conjugate Gradient (mPCG) method in conjunc-
tion to the modified rTIGO method [47] is applied in the following algorith-
mic form. 

Algorithm mPCG (A, b, tol, x0, M*, x) 
Purpose: a modified PCG method is used for solving a given system of li-

near equations  
Input: A is a symmetric and positive definite coefficient matrix, b is the 

right hand side vector, tol is the predetermined tolerance, 0x  is the initial 
guess, M* is the required preconditioner 
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Output: x the solution vector 
Computational Procedure: 
Step 1: Given 0x  and preconditioner M* 
Step 2: Set 0 0r Ax b= −  
Step 3: Solve 0 0My r=  
Step 4: Set 0 0 , 0p y k= − =  
Step 5: While 0kr ≠  
Step 6: Compute a step length ( ) ( )T T

k k k k ka r y p Ap=  
Step 7: Update the approximate solution 1k k k kx x a p+ = +  
Step 8: Update the residual 1k k k kr r a Ap+ = +  
Step 9: Solve *

1 1k kM y r+ +=  
Step 10: Compute a gradient correction factor ( )( )T T

1 1 1k k k k kr y r yβ + + +=  
Step 11: Set the new search direction 1 1 1k k k kp y p p+ + += − +  
Step 12: 1κ κ= +  
Step 13: End (while) 
This algorithm requires the additional work that is needed to solve the li-

near system  
*

n nM y r=                          (29) 

once per iteration. Therefore, the preconditioner M* should be chosen such 
that can be done easily and efficiently. 

The preconditioner M* = G that results in a minimal memory use. The sto-
rage requirement was the vectors r, x, y, p and the upper triangular matrix G, 
in the data implementation. The convergence rate of preconditioned CG is 
independent of the order of equations and the matrix vector products are or-
thogonal and independent. The preconditioned CG method in not 
self-correcting and the numerical errors accumulate every round. Therefore, 
to minimize the numerical errors in the pCG, it was used double precision 
variables at the cost of memory use. The explicit pCG method of second order 
can be alternatively used in conjunction with the explicit approximate inverse 
Mμ* for solving complex computational problems with the appropriate selec-
tion of the E-parameters of Table 1. Note that the topics of stability and cor-
rectness of incomplete factorization methods have been discussed in a recent 
research work [48]. 

The presented second order iterative schemes can be efficiently used for 
solving 2d and 3d initial and boundary value problems. 

6. Conclusion 

A class of general iterative methods of second order is described. Explicit adap-
tive iterative schemes and exact/approximate inverse preconditioners have been 
introduced and the selection of iterative parameters has been discussed. Exact 
and Approximate Inverse Matrix Algorithmic Techniques have been presented. 
Exact and Approximate Inverse Preconditioners have been described in adaptive 
algorithmic form. Explicit preconditioned Conjugate Gradients methods of  
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Table 1. Certain cases of the E-iterative scheme which are no more than various explicit preconditioned methods. 

E-parameters   
Explicit 
Preconditioned Methods 

iπ  iτ  iδ   

1 rM Aβ α+ −  β−  rM bα  Explicit Richardson (Lipitakis and Evans, 1987) 

1 i i rM Aβ α+ −  iβ−  i rM bα  Explicit Chebychev (Lipitakis and Evans, 1987) 

( ) ( )1 1

1 2i iI G I Gρ ρ− −
− −  0 ( ) 12 i i iI Gρ ρ −

+  Generalized AGE method (Lipitakis and Evans, 1981) 

( ) ( )1 1

1 1 21 i i iI G I G Aω ρ ρ− −

++ + +  0 ( ) ( )1 1

1 1 2i i iI G I G bω ρ ρ− −

+− + +  Richardson + AGE method (Evans, 1985) 

i iHω  1 iω−  ( ) ( )1 1

1 22 i i i iI G I G bω ρ ρ ρ− −
+ +  

Chebychev + AGE method 
(Evans, 1985) 

( ) ( ) ( )( ){ }1 1

1 2 1 2I G I G I G I G Aθ θ θ θ η− −
+ + + + −  0 bη  General fractional step iteration (Marchuk, 1975) 

( )1

0i
I M Aν

µα
−

=
−∏  0 iM bµα  Multiple explicit Jacobi (Lipitakis, 1984) 

( )1 11i i M Aµρ γ+ ++  11 iρ +−  1 1i i M bµρ γ+ +  Explicit Preconditioned Conjugate Gradients of 
second order (Lipitakis et al., 2017) 

 
second order are given. An Adaptive Preconditioned Conjugate Gradient Me-
thod using explicit approximate preconditioners has been also presented. Future 
research work will be focused on the implementation of the presented methods 
to parallel computer environments and related applications. 
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