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Abstract 
The present study deals with the analysis of heat transfer of the unsteady 
Maxwell nanofluid flow in a squeezed rotating channel of a porous extensile 
surface subject to the velocity and thermal slip effects incorporating the 
theory of heat flow intensity of Cattaneo-Christov model for the expression of 
the energy distribution in preference to the classical Fourier’s law. A set of 
transformations is occupied to renovate the current model in a system of 
nonlinear ordinary differential equations that are numerically decoded with 
the help of MATLAB integrated function bvp4c. The effects of various flow 
control parameters are investigated for the momentum, temperature and dif-
fusion profiles, as well as for the wall shearing stress and the heat and mass 
transfer. The results are finally described from the material point of view. A 
comparison of heat flux models of Cattaneo-Christov and Fourier is also per-
formed. An important result from the present work is that the squeezing pa-
rameter is strong enough in the middle of the channel to retard the fluid flow. 
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1. Introduction 

The heat transfer phenomenon is of great concern because of its impact on in-
dustrial applications, including cooling of space and nuclear reactors, heat con-
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duction in tissues pasteurization of milk, magnetic targeting of drugs, etc. 
Fourier [1] proposed a heat flux model, named as heat conduction law that pro-
duces a parabolic energy equation that advocates an instantaneous change in the 
temperature of considered system at the beginning of any process. Cattaneo [2] 
introduced thermal relaxation time so as to produce the hyperbolic energy equa-
tion which permitted the heat transport through the transmission of thermal 
waves with finite speed. The theory of Cattaneo was further improved by Chris-
tov [3] who replaced the time derivative in the Cattaneo’s model by the Ol-
droyd’s upper-convective derivative [4] that preserved the material-invariant 
formulation and that became prominent as Cattaneo-Christov heat flux. Ciarlet-
ta and Straughan [5] analyzed the stability and uniqueness of the solution of the 
energy equation for Cattaneo-Christov heat flux model. Thermal relaxation time 
can be interpreted physically as the time needed for accumulating the thermal 
energy essential for generating heat flux [6] [7]. The inclusion of the thermal in-
ertial in heat prorogation has effects in the heat transport in nano-material, na-
nofluids and many areas of ballistics and astrophysics [8] [9] [10]. 

The practice of adding polymers to mineral oils, known as multi-grade oils, 
has become recognized since the middle of 1990s [11] [12] [13]. These additions 
force the resulting lubricants to become non-Newtonian and viscoelastic exert-
ing shear-rate dependent viscosity [14] [15]. The highly non-linear relationship 
between shear stress and strain rate of non-Newtonian fluids cannot be demon-
strated by the classical Newtonian fluid model enclosing Navier-Stokes equa-
tions [16] [17]. The non-Newtonian fluids include polymer solutions, certain 
lubricants and oils, suspension and colloidal solutions, blood, melts, condensed 
milk, emulsions, soaps, shampoos, tomato paste, and many others containing 
the properties of both elasticity and viscosity. Researchers have proposed several 
viscoelastic fluid models incorporating different features of non-Newtonian flu-
ids [18] [19] [20]. Models of viscoelastic fluids, including second-order fluids 
and/or Walter-B fluids, are ideal for slow motion of low elastic fluids [21]. To 
carry out an effective theoretical work in the industrial sector, the most realistic 
and practical viscoelastic fluid models, such as the Maxwell fluid or the Ol-
droyd-B fluid, should be considerable for efficient analysis [22] [23]. The Max-
well fluid, a simple class of rate- type viscoelastic material, eliminates the com-
plex effects of shear-reliant viscosity and accordingly permits one to highlight 
the influence of fluids elasticity on the characteristics of its boundary layer [24]. 
Harris [25] first developed the constitutive equation of upper convected Maxwell 
(UCM) fluid to model the lubricant behavior of the non-Newtonian fluid. Due 
to the rising practical applications in industrial and manufacturing procedures, 
researchers have paid their attention to the study of boundary layer flow of 
non-Newtonian fluids [26] [27]. 

Nanofluids are the new-generation heat transfer fluids that contain higher 
thermal conductivity at very low particle concentrations than the conventional 
fluids. This idea of nanofluid was first developed by Choi [28]. Recent research-
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ers have identified that the substitution of usual coolants with nanofluids may be 
advantageous in processes like improving heat transfer efficiency in nuclear 
space and engineering, domestic refrigerators/freezers; and cooling of engine 
and micro-electronics [29]. Moreover, electromagnetic nanoparticles are playing 
important role in bio-medicinal applications as compared to other metallic par-
ticles, because these can be used to control and manipulate the nanofluid 
through magnetic force [30] [31]. As a part of these researches, Buongiorno [32] 
composed a mathematical model to study the convective heat transfer in nanof-
luids taking two important effects, namely the Brownian and thermophoresis 
diffusions into account. 

While Stefan [33] carried out this pioneering work and basic formulations on 
flow phenomena, so far the analysis of the compression flow process is receiving 
considerable attention by the researchers because of its purposes in the fields of 
biomechanics and chemical engineering [34]. Reciprocating engine bearing per-
formance, injection and compression molding, polymer processing, and model-
ing of lubrication system are realistic applications of squeezing flows [35] [36]. 

The boundary velocity, proportional to the shearing stress at the solid surface, 
is playing an important role in boundary value problems. For viscoelastic fluids, 
the slip condition is considerably important [37]. This feature has many applica-
tions in medical science, for example, polishing artificial heart valves [38]. There 
are several situations that include polymer fluids with high weight molecules, 
heavy suspensions, and lubrication problems flowing through multiple interfaces. 
Navier [39] initially proposed the general boundary condition which illustrates 
the fluid slip at the surface. 

So far, few attempts have been made to study the transfer of heat and mass 
through a three-dimensional compression flow in a rotating channel, and there-
fore, the objective of the current work is to analyze the effect of thermal relaxa-
tion factor on the flow flux of time dependent Maxwell viscoelastic nanofluid 
that is squeezed in rotating parallel plates with porous stretched surface incor-
porating Cattaneo-Christov heat flux model. 

2. Mathematical Model  

The governing model equations consisting of conservation of mass, momentum, 
energy and concentration are given by  

( ) 0
t
ρ ρ∂
+ ∇ ⋅ =

∂
V                        (1) 

d
dt

ρ τ= ∇ ⋅
V

                         (2) 

d
dp p s Qc p c
t

ρ = −∇ ⋅ − ∇ ⋅ − ⋅∇ + +
T q V J T SΦ             (3) 

d 1
d st ρ

= − ∇ ⋅
C J                         (4) 

here, ( ), ,u v w=V  is the three-dimensional velocity of the viscous fluid, τ  is 
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the Cauchy stress tensor, T  is the temperature of the fluid, q  is the heat flux, 
Φ  is the viscous dissipation term that describes the conversion of mechanical 
energy to heat. Also, QS  represents the heat sources, sJ  is the sum of Brow-
nian and thermophoresis diffusions, ρ  and pc  are the density and specific 
heat respectively. 

The elastico-viscous behavior of fluid will be realized if elastic stress is applied 
to the fluid, and the resulting strain will be time dependent characterized by re-
laxation time. The constitutive equation considering time dependent stress re-
laxation is [34]  

pIτ = − + S                            (5) 

The extra stress tensor S  satisfies the upper convected Maxwell model given 
by  

( )tr trd
dS t

λ µ + + ⋅∇ − − = + 
 

SS V S LS SL L L            (6) 

here, tr = ∇L V  (i.e., ij i jL u x= ∂ ∂ ) is the velocity gradient and the superscript 
tr indicates a transpose, µ  is the viscosity, 0Sλ >  is the stress relaxation time 
where 0Sλ =  describes the Newtonian fluids. 

Cattaneo-Christov model is proposed by adding thermal relaxation time in 
Fourier’s Law, also called the modified Fourier heat conduction law, presented 
by [7]  

( )T t
λ κ∂ + + ⋅∇ − ⋅∇ + ∇ ⋅ = − ∇ ∂ 

qq V q q V V q T            (7) 

here, κ  is the thermal conductivity and Tλ  is the thermal relaxation time pa-
rameter for the heat flux where 0Tλ =  simplifies the expression (7) to classical 
Fourier’s law. 

Buongiorno [32] disclosed the combination of Brownian and thermophoresis 
diffusions given by  

s B T
a

D D
T

ρ ρ ∇
= − ∇ −

TJ C                    (8) 

here, BD  is the Brownian diffusion coefficient, TD  is the thermal diffusion 
coefficient and aT  is the reference temperature. 

To demonstrate the physical model of present analysis, it is considered that 
the flow is laminar, unsteady and three dimensional. An incompressible 
(∇⋅ =V 0 ), electrically conducting elastico-viscous Maxwell nanofluid is being 
squeezed between two infinite parallel plates rotating about y-axis. To explain 
the physical configuration, the Cartesian coordinate system is introduced such a 
way that x-axis is measured along the plate surface and y-axis is perpendicular to 
the plates, shown in Figure 1. There is a vital consideration that fluid properties  

will not deviate of in the z-direction i.e., 0
z
∂
=

∂
. The gap width between those  

plates in the minimal separation region is taken as time dependent given by 
( ) 1h t l tα= − , where l is the steady gap width and α  is a constant having  
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Figure 1. Physical model. 

 
dimension time−1. For 0α >  the two plates are squeezed until they touch 

1t α=  and for 0α <  the two plates are always separated. The upper plate 
placed at ( )y h t=  is squeezing towards the lower plate with a vertical velocity  

( )d
dh
h t

v
t

= . This plate is stretched with a velocity ( )1h hu x tα α= −  in the  

positive x-direction with velocity slip parameter 1r  and thermal slip parameter 

2r . The lower plate is fixed at 0y =  assumed to be porous in which the fluid 
flows with suction velocity ( )0 0 1v V tα= − − . A uniform magnetic field of den-
sity 0B  is applied to along y-direction and the external electric field is assumed 
zero.  

The boundary conditions of the present physical models are  

( )1 2

0

, , 0, , at

0, , 0, 0, 0, at 0

h h H H
u Tu r u v v w T r T C C y h t
y y

u v v w T C y

∂ ∂ − = = = − = = = ∂ ∂ 
= = = = = = 

     (9) 

Now in order to find the approximate solutions of the model it is essential to 
make the model equations dimensionless using the following non-dimensional 
variables [35] [36]:  

( ) ( ) ( )
1 1
2 2

, , ,
2 11 2 1

, ,
2(1 ) H H

y x lu f v f
tl t t

xw g T T C C F
t

α αη
αα α

α θ
α

−′= = =
−− −

= = =
−

         (10) 

Using the above transformations, the Equation (1) is satisfied and the Equa-
tions (2)-(4) are reduced to  

( )( )
( )

( )( )
( )

2 2

2 2 2

1 2

9 2 2 2 8 4 15

3

3 2 0

iv
S

S

S

Sq f f f

Sq f f f f f f f f f f f

M f f f f f f f

Sq f f f f f f g

β η η

β η η

β η

η ω

− − +

′′′ ′′ ′′ ′ ′′ ′′′ ′ ′′ ′′− + − − − + +

′′ ′′′ ′′ ′′′ ′ ′′− + + − −

′′′ ′′ ′ ′′ ′′′ ′− + + − + =

(11) 

( )( )
( )

( )
( )( )

2 21 2

7 2 4 6 2 8

2 2

2 0

S

S

S

Sq f f g

Sq g f g f g fg f f g g

Sq g g f g fg f

M g g g fg

β η η

β η η

η ω

β η

′′− − +

′ ′ ′ ′ ′ ′ ′− + + − − +

′ ′ ′ ′− + + − −

′ ′− + + − =

        (12) 
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( )( ) ( )
( )

( ) ( )

2 2

2 2 2 2 2 2 2

1 2

3 3

4 0

T

T

B T

PrSq f f SqPr f

SqPr f f ff

Pr N F N EcPr f f g g

β η η θ ηθ θ

β ηθ η θ θ θ

θ θ δ δ

′′ ′ ′− − + − −

′ ′ ′ ′ ′ ′− − − +

′ ′ ′ ′ ′′ ′+ + + + + + =

   (13) 

( ) 0NtF SqLe F f F
Nb

η θ′′ ′ ′ ′′− − + =                  (14) 

The dimensionless boundary conditions are  

1, , 0, 1 , 1, 1
, 0, 0, 0, 0 at 0

u u u

w

f f f g F at
f f f g F

γ ε θ ε θ η
θ η

′ ′′ ′= = + = = + = = 
′= = = = = = 

      (15) 

here, ( )2 1 tα
ω

α
−

= Ω  is the rotation parameter; 
( )2 1

S
S t

λ αβ
α

=
−

 is the Max-

well parameter; 
2

2
lSq α
ν

=  is the squeeze number; 
2 2
0B hM σ
µ

=  is the Magnetic 

field parameter; 
f

CpPr νρ
κ

=  is the Prandtl number; 
2
a

H

uEc
CpT
ρ

ρ
=  is the Eck-

ert number; h
u

αγ
α

=  is the stretching parameter; 1
u

r
h

ε =  is the velocity slip 

parameter; 2
T

r
h

ε =  is the thermal slip parameter; 
h
x

δ =  is the characteristic 

length ratio; 02Vfw
hα

=  is the suction parameter. 

Finally, the physical attentions in the existing study are the skin friction coef-
ficient fC , the local Nusselt number Nu and the Sherwood number (Sh) de-
fined as 

, andfC f Nu Sh Fθ′′ ′ ′∝ ∝ − ∝ −               (16) 

3. Numerical Methods 

Equations (11)-(14) combined with the boundary conditions (15) are solved 
numerically using finite difference code developed by a MATLAB boundary 
value problem solver, known as bvp4c. The analysis is made for various values of 
the pertinent parameters such as Brownian motion parameter BN , squeezing 
parameter Sq , Maxwell parameter Sβ , thermal relaxation parameter Tβ , ro-
tation parameter ω , stretching parameter uγ , velocity slip parameter uε  and 
thermal slip parameter Tε . The step size is taken as 0.01η =  and the tolerance 
criteria are set to 10−6. On the basis of the present model, [ ]0,1  is measured as 
the domain of a channel. First of all, comparison of the current model is ar-
ranged with [35], shown in Table 1. 

4. Results Discussions 

Figure 2(a) and Figure 2(b) are devoted to the analysis of the impact of the 
Brownian motion parameter BN  on the temperature and concentration pro-
files, respectively. These figures allow us to conclude that the temperature and 
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concentration distributions are enhanced with BN . The Brownian motion pa-
rameter illustrates a significant variation in temperature profiles, while com-
pared to concentration profiles. These outcomes express a similar result re-
markable with the work of Reddy et al. [40]. These figures also reveals that the 
temperature of the fluid is lifted and the concentration is reduced for thermal 
relaxation parameter Tβ . 

Figure 3(a), Figure 3(b) and Figure 4(a), Figure 4(b) express the behavior of 
squeezing parameter Sq. When plates are coming closer the values of Sq are con-
sidered positive. Figure 3(a) shows that, with the increase of the values of Sq 
fluid velocity decreases. Clearly the flow velocity decreases in the channel when 
fluid is clutched inside. But the secondary velocity profiles increase with Sq, 
shown in Figure 3(b). Furthermore, there is no variation in velocity profiles due 
to the classical Fourier’s heat flux model ( 0Tβ = ) and the Cattaneo-Christov 
heat flux model ( 0.3Tβ = ). Figure 4(a) and Figure 4(b) demonstrate the influ-
ence of Sq parameter on the heat and solutal distributions respectively. From the 
above representations, it can be revealed that the deviation of the fluid properties 
for the classical Fourier and Cattaneo-Christov heat fluxes approaches for the 
higher value of squeezing parameter. 

 
Table 1. Comparison for skin friction coefficient, local Nusselt number and local 
Sherwood numbers for different values of Sq when 1.0, 0.1uPr Ec γ δ= = = = . 

Lightaqua Lightaqua Mustafa et al. [35] Lightaqua Present work 

Lightaqua Pr ( )1f ′−  ( )1θ ′−  F ′  ( )1f ′−  ( )1θ ′−  F ′  

−1.0 3.026324 3.02632355855 3.026323 2.170091 3.319899 0.804559 

−0.5 5.98053 5.98053039715 5.98053 2.617404 3.129491 0.781402 

0.01 14.43941 14.4394132325 14.439411 3.007133 3.047091 0.761225 

0.5 1.513162 1.51316180648 1.513161 3.336448 3.026327 0.744224 

2.0 3.631588 3.63158826816 3.631587 4.167387 3.118553 0.701813 

 

 

Figure 2. NB effect on the profiles of (a) temperature and (b) concentration. 
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Figure 3. Sq effect on the profiles of (a) primary velocity and (b) transverse velocity. 
 

 

Figure 4. Sq effect on the profiles of (a) temeperature and (b) concentration. 
 
When the elastic stress is applied to the non-Newtonian fluid, the time during 

which the fluid achieves its stability is the relaxation time, which is greater for 
highly viscous fluids. The Maxwell parameter Sβ  deals with the fluid relaxation 
time to its characteristic time scale. Here 0Sβ =  gives the result for Newtonian 
viscous incompressible fluid. The fluid with a small Maxwell parameter exhibits 
liquid-like activities but large Maxwell parameter communicates with solid-like 
materials able to conduct and retain heat better. Therefore, it is observed physi-
cally that gradually increasing the Maxwell parameter can increase the fluid vis-
cosity, which enhances resistance to flow and, as a result, the hydrodynamic 
boundary layer thickness reduces for Maxwell fluid, as shown in Figure 5(a). 
There is also declining effect of Sβ  on the secondary velocity, displayed in 
Figure 5(b). 

Figure 6(a) presents the significant effect of rotation parameter ω  on sec-
ondary velocity. The rotation of the plates generates higher z-momentum. Fig-
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ure 6(b) and Figure 7(a), Figure 7(b) depict the stretching parameter uγ  ef-
fects on x-momentum, z-momentum and energy distributions, respectively. 
From Figure 6(b), it is observed that the stretching velocity enhances strength to 
the fluid velocity to increase the x-momentum distribution with the increase of 
stretching effect uγ  at the stretching upper surface. Figure 7(a) expresses that 
the z-momentum decreases with the higher values of stretching parameter uγ . 
Figure 7(b) exhibits the fact that The energy distribution is an increasing func-
tion of uγ . 

The result found from Figure 8(a) expresses the fact that the velocity increas-
es with the mounting value of velocity slip parameter uε  but after the cross 
flow situated at 0.656η =  the velocity reverses the flow tendency and decreases 
at the upper wall indicated in the Figure 8(a). In Figure 8(b), it is found that the 
secondary velocity increases with the positive values of slip parameter uε . A 
significant depiction, portrayed from the above observations, the fluid velocity is 
higher for the velocity slip parameter uε . The energy distribution rises with the 
velocity slip parameter uε , found in Figure 9(a). But Figure 9(b) shows that 
the temperature profile is a decreasing function of the thermal slip parameter 

Tε . 
Finally, from the point of view of physical interest, the skin friction coefficient 

is useful to estimate the total frictional drag exerted on the surface. The Nusselt 
Number is used to characterize the heat flux from a heated solid surface to a flu-
id. Additionally, Table 2 displays the skin friction ( fC ) for squeezing parame-
ters and Maxwell parameter at the upper ( 1η = ) and lower ( 0η = ) plates for 
classical Fourier ( 0Tβ = ) and Cattaneo-Christov ( 0.3Tβ = ) heat fluxes. The ef-
fect of squeezing parameter Sq and Maxwell parameter Tβ  on the local Nusselt 
number Nu and are arranged in Table 3 classical Fourier ( 0Tβ = ) and Catta-
neo-Christov ( 0.3Tβ = ) heat fluxes considering  

1; 2; 0.1; 6.838; 0.02; 0.1; 0.1u uM Pr Ecω δ γ ε= = = = = = = . 
 

 

Figure 5. Sβ  effect on the profiles of (a) primary velocity and (b) secondary velocity. 
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Figure 6. (a) uε  effect on transverse velocity profile and (b) uγ  effect on primary velocity profile. 
 

 

Figure 7. uγ  effect on the profiles of (a) transverrse velocity and (b) temperature. 
 

 

Figure 8. uε  effect on the profiles of (a) primary velocity and (b) secondary velocity. 
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Figure 9. (a) uε  effect on the temperature profile and (b) Tε  effect on the temperature profile. 

 
Table 2. Skin friction ( fC ) for different values of Sq and Sβ  at the upper ( 1η = ) and 

lower ( 0η = ) plates for classical Fourier ( 0Tβ = ) and Cattaneo Christov ( 0.3Tβ = ) heat 
fluxes. 

  0Tβ =  0.3Tβ =  

Sq Sβ  
1fC

η=
 

0fC
η=

 
1fC

η=
 

0fC
η=

 

0.1 0.5 −4.659543 4.056332 −4.659543 4.056332 

0.2  −4.757606 4.214218 −4.757606 4.214218 

0.3  −4.861431 4.377962 −4.861431 4.377962 

 0.6 −4.921623 4.486911 −4.921623 4.486911 

 0.7 −4.983358 4.598035 −4.983358 4.598035 

 
Table 3. Nussult number (Nu) for different values of Sq and Sβ  at the upper ( 1η = ) 
and lower ( 0η = ) plates for classical Fourier ( 0Tβ = ) and Cattaneo Christov ( 0.3Tβ = ) 
heat fluxes. 

  0Tβ =  0.3Tβ =  

Sq Sβ  1Nuη=  0Nuη=  1Nuη=  0Nuη=  

0.1 0.5 0.253098 −4.942629 0.261092 −5.325179 

0.2  0.269455 −5.387022 0.283571 −6.271893 

0.3  0.286328 −5.861222 0.304701 −7.396247 

 0.6 0.290002 −5.867768 0.308438 −7.405840 

 0.7 0.293886 −5.874447 0.312386 −7.415598 

5. Conclusions 
The present paper is to study the effect of thermal relaxation factor on the flow 
of Maxwell nanofluid squeezing in the parallel rotating plates with porous 
stretched surface incorporating Cattaneo-Christov heat flux model. The major 
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outcomes drawn from the study of the present model can be summarized as fol-
lows:  

1) The thermal boundary layer thickness rises for the Brownian motion para-
meter, squeezing parameter, stretching parameter and velocity slip parameter.  

2) The thermal boundary layer thickness decreases for the thermal slip para-
meter.  

3) The hydrodynamic boundary layer thickness is reduced for the squeezing 
parameter, Maxwell parameter and stretching parameter.  

4) The velocity distributions are higher for the velocity slip parameter.  
5) The concentration is elevated for Brownian motion parameter and squeez-

ing parameter.  
In conclusion of the current study, it can be argued that the squeezing para-

meter and the stretching parameter that have the velocity control phenomena, 
can improve the heat transfer in the nanofluid. This study will provide a great 
opportunity to develop the cooling performance of mechanical system like au-
tomotive radiators and nuclear reactors. 
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