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Abstract 
In this study we use a boundary integral element-based numerical technique 
to solve the generalized Burger-Fisher equation. The essential feature of this 
method is the fundamental integral representation of the solution inside the 
problem domain by means of both the boundary and domain values. The oc-
currences of domain integrals within the problem arising from nonlinearity 
as well as the temporal derivative are not avoided or transferred to the boun-
dary. However, unlike the classical boundary element approach, they are re-
solved within a finite-element-type discrete domain. The utility and correct-
ness of this formulation are proved by comparing the results obtained herein 
with closed form solutions. 
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1. Introduction 

Burger-Fisher equation describes the interaction between linear diffusion, non-
linear convection and nonlinear logistic-reaction and has wide applications in 
several areas of engineering and applied science. Several numerical methods 
have been proposed for its solution. A few of them include cubic B-spline inter-
polation quasi-interpolation technique (Zhu and Wang [1]), variational iteration 
method (Abdou and Soliman [2], Zhao et al. [3]) non-standard finite difference 
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scheme (Mickens and Gumel [4]), spectral collocation approach (Javidi [5]), 
homotopic mapping methods (MO [6]), direct discontinuous Galerkin method 
(Zhang and Zhang [7]) and other methods (Wazwaz and Gorgius [8], Wazwaz 
[9]), Wazwaz [10]).  

A major thrust of this paper is to further display the utility of one of the 
emerging families of domain-based integro-differential numerical techniques 
(Onyejekwe [11] [12], and [13]) for the solution of transient nonlinear partial 
differential equations. The approach is based on discretizing the governing dif-
ferential equation into a local or element based system of equations which finally 
yield a sparse coefficient matrix thereby making it competitive with FEM for 
problems of similar rigor. 

For the problem set up, all the nodal points are inter-connected just like in 
the finite element method (FEM). In case of a linear element, only two nodal 
points are required for discretization in each sub-domain. Both the dependent 
variable and its spatial derivative constitute the two degrees of freedom at each 
node. Within each element, the problem constants and parameters represent 
those of the element under consideration. Thus, the method is completely do-
main-discretized and element based. It should however be realized that the im-
plementation of such an idea, requires a deeper numerical insight into the prop-
erties of the corresponding nonlinear integral operators and their application to 
elements resulting from a discretized problem domain. The paper is aimed at 
further strengthening this approach by applying these ideas to a highly nonli-
near, transient one-dimensional problem which more often than not, poses a 
considerable numerical challenge to classical boundary element method (BEM) 
application.   

In this paper, we consider the generalized Burger-Fisher equation described 
as: 

( )
2

2 1 , 0 1, 0d dD x t
x t x
θ θ θαθ µθ θ∂ ∂ ∂
= + + − ≤ ≤ >
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where, D is the diffusion coefficient, and ,α µ  and d are the equation parame-
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2. Mathematical Formulation 

The numerical approach adopted herein is initiated by implementing the 
integral replication of Equation (1). This is achieved by recasting the governing 
differential equation into its Poisson form and applying the Green’s second 
identity to obtain:  

( ) ( ) d d1 d
d d

L

x

x
d d

i
x

G Gx x x G
D x t x x

θ θ θθδ αθ µθ θ θ∂ ∂    − − + + − = −    ∂ ∂    
∫    (6) 

where, ( ),
2
i

i
x x K

G x x
− + 

=  
 

 represents the free-space Green’s function and  

K is an arbitrary constant. We may mention in passing that when the Poisson 
equation is solved using the boundary integral technique, a domain integral ex-
ists. The way and manner of handling the domain integral constitutes the theme 
of several boundary element method (BEM) solution techniques. Equation (6) is 
solved on each element of the problem domain and then assembled in a fi-
nite-element sense.  

Major aspects of the scheme are as follows: The formulation is motivated by 
two important characteristics with some inherent properties of BEM formula-
tion. The first is the “elementization” or discretization of the problem domain. 
This finite-element-like formulation guarantees local compact support. This 
attributes guarantees that a slim and banded coefficient matrix which can be 
stored efficiently even for large field problems and is easily amenable to numeri-
cal solution. The second characteristic is BEM’s straightforward formulation and 
accuracy 

The problem domain is discretized into elements and within each element, the 
dependent variables and their functions are approximated by interpolating func-
tions in space to guarantee the continuity of the dependent variable and its de-
rivative throughout the discrete elements. 
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Substitute Equation (7) into Equation (6) to give: 
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∫
  (8) 

In order to make Equation (8) amenable to element-by-element computation, 
we covert the spatial linear interpolating functions into local coordinate that has 
its origin at node 1 of any generic element. viz: ( )1 1ξ ξΩ = − , ( )2 ξ ξΩ = ,

( )ix x lξ = − , 0 1ξ≤ ≤ . The spatial derivative of the free space Green function 
is ( ) ( ) ( )d , d 0.5i i iG x x x H x x H x x= − − −   , where H(), is the Heaviside func-
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tion. A general representation of the numerical solution within the problem do-
main in discrete form is obtained by representing Equation (8) on each of the 
elemental nodes. 

For node 1 Equation (8) becomes: 
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Similarly at node 2 we obtain 

( )( ){ }

( ) ( )( )

( ) ( )( )

1 2 1 2

1

1 1 2 2 1 1 2 2
0

1 2
1 2 1 1 1 2 2 2

1
2

1 1 1
2

d d 1 1 d 0
d d

m

d d

d d

l l

l l a

t t

θ θ ϕ ϕ

ξ θ θ ϕ ϕ

θ θ µθ θ µθ θ ξ

− + + −

 
+ − + Ω +Ω Ω +Ω   


     + Ω +Ω + Ω − +Ω − =        

∫  (10)

 

Equation (9) and Equation (10) are put in compact matrix form to yield: 

( ) { }d
1 0 where , , 1,2

d
ij j d

ij j ij j ijk j k j j

T
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θ ϕ α θ ϕ µφ φ
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(11) 

Equation (11) is system of first order nonlinear differential equations in time 
which is solved for θ  and d dxθ  at the nodes. The temporal term in Equa-
tion (11) still needs to be discretized. There are several ways of achieving this but 
for the time being, we use a two-level time scheme. This approximates the time 
scheme, i.e., m mt t t z tα+= = + ∆ . As a result, Equation (11) becomes: 
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(12) 

where z is the weighting factor and subscripts m and m + 1 denote the previous 
and current time levels and the time step is defined as 1m mt t t+∆ = − . We elect to 
use the Newton Raphson’s technique to resolve the nonlinearity in Equation (12). 
The computational procedure starts with a known estimate (guessed estimate) of 
an unknown quantity say: 

( ) ( ){ }T1 1,m m
j jθ ϕ+ + , and update it to ( ) ( ) ( ) ( ){ }T1, 1, 1 1, 1, 1,m k m k m k m k

j j j jθ θ ϕ ϕ+ + + + + ++ ∆ + ∆ , 
eventually, the increment is accounted for by the solution of the matrix equation: 
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where ( )1,m k
ijJ +  is the coefficient or the Jacobian matrix. The key item here is the 

determination of the Jacobian matrix. The solution of Equation (13) yields the 
increments used in subsequent iterations.  

The Jacobian for Equation (12) is: 

( )
( ) ( ) ( )( ){ }

( )
( )

1 2 1
1

1
1

2 2 1 ,

, where , , 1,2

m di il
ij ijl jm
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α θ
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+ −
+

+
+

∂  = + + − + ∆∂  

∂  = + = ∂

      (14) 

The main advantage of these systems is that they have a direct construction, in 
addition they are local, in the sense that the dependent variables depend only on 
the values in the neighborhood of any specific node under consideration.  

3. Numerical Experiments and Discussion 

In order to test the accuracy and utility of the current formulation, numerical 
solutions of some test problems are compared with analytical results for differ-
ent problem parameters. The following parameters were found to provide stable 
and accurate results for all the problems tested herein. 0.001t∆ = , 1d = , 

( )total grid points 21N = . Relative and absolute errors ( )( )num exact numabs θ θ θ− , 
( )num exactabs θ θ−  are used to compute the error magnitude. 

Table 1 displays the characteristics of the scalar profile for equal weighting of 
the diffusion and nonlinear inertia terms. The ability of the integral formulation 
to deal with such cases is demonstrated by the magnitudes of the absolute and 
relative errors. It can be observed that at each computational point, the error 
magnitudes display a slight increase as time progresses. This is probably due to 
the influence of the reaction term. 

On the other hand, when the diffusion term is dominant, as shown in Table 2, 
the damping effect on the scalar profile is shown by the smaller magnitude of the 
relative and absolute errors. 

 
Table 1. Comparison of numerical and analytic results for 0 1, 1.0x α≤ ≤ =  and 

1.0, 1.0Dµ = = . 

x--coordinate Time Numerical Analytical Abs. Error Rel. Error 

0.1 0.001 0.4780415 0.4878149 9.7734034e−03 2.044676e−02 

 0.005 0.4787573 0.4890642 1.0306984e−02 2.1528622e−02 

 0.01 0.4858720 0.4906261 4.7540963e−03 4.7846678e−03 

0.5 0.001 0.4380772 0.4381312 5.3942204e−05 1.2313406e−04 

 0.005 0.4391986 0.4393624 1.6385317e−04 3.7307307e−04 

 0.01 0.4405147 0.4409025 3.8778782e−04 8.8030612e−04 

0.8 0.001 0.4013811 0.4016127 2.3162365e−04 5.7706668e−04 

 0.005 0.3992964 0.4028149 3.5184920e−03 8.8117300e−03 

 0.01 0.4008402 0.4043193 3.4790635e−03 8.6794281e−03 
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Table 3 and Table 4 are for cases where the diffusion term again plays a more 
prominent role that than the nonlinear inertia term. For both cases there is a 
damping effect extends to the negative nonlinear reaction term as well. The error 
terms for both cases are significantly less than the two previous cases. 

The ability of the formulation to handle relatively steep gradients as the value 
of the reaction term is significantly increased is shown in Table 5. Convergent 
results are noticeable as can be seen by the homoclinic decrease of error magni-
tudes as time increases. 

For Table 6 and Table 7, the diffusion coefficient was set at 0.5; 1.0α =  in 
Table 6. This results in the dominance of the inertia term over diffusion and the 
equation adopts a more hyperbolic form. The reverse is the case in Table 7 
where 0.001α = . The previous case results in a more computational challenge, 
because of the overarching influence of the nonlinear inertia term. This effect is 
displayed by the magnitudes of the errors displayed in Table 6 and Table 7. As 
can be seen greater errors are displayed in Table 6 than the Table 7. The influ-
ence of the reaction terms remain the same for both cases. 
 
Table 2. Comparison of numerical and analytic results for 0 1, 1.0x α≤ ≤ =  and 

0.0, 1.0Dµ = = . 

x--coordinate Time Numerical Analytical Abs. Error Rel. Error 

0.1 0.001 0.4777927 0.4875651 9.7723305e−03 2.0453075e−02 

 0.005 0.4775103 0.4878149 1.0304570e−02 2.1579785e−02 

 0.01 0.4833752 0.4881272 4.7520101e−03 9.8308930e−03 

0.5 0.001 0.4378311 0.4378850 5.3912401e−05 1.231351e−02 

 0.005 0.4379676 0.4381312 1.6358495e−04 2.7350925e−04 

 0.01 0.4380523 0.4384389 3.8659573e−04 8.825332e−04 

0.8 0.001 0.4011410 0.4013724 2.3144484e−04 5.7696633e−04 

 0.005 0.3980983 0.4016127 3.5144389e−04 8.8280691e−04 

 0.01 0.3984419 0.4019131 3.4712255e−03 8.7119932e−03 

 
Table 3. Comparison of numerical and analytic results for 0 1, 0.1x α≤ ≤ =  and 

0.0025, 1.0Dµ = − = . 

x--coordinate time Numerical Analytical Abs. Error Rel. Error 

0.1 0.001 0.4892023 0.4987500 0.9547681e−03 3.1482705e−03 

 0.005 0.4886842 0.4987500 1.0065764e−02 2.0597685e−02 

 0.01 0.4942080 0.4987500 4.5419931e−03 9.1904486e−03 

0.5 0.001 0.4937497 0.4937503 6.2584877e−07 1.2675425e−06 

 0.005 0.4937465 0.4937503 3.7848949e−03 7.6656834e−06 

 0.01 0.4936377 0.4937503 1.1262298e−04 2.2814906e−04 

0.8 0.001 0.4897544 0.4900013 2.4694204e−04 5.0421612e−04 

 0.005 0.4855816 0.4900013 4.4197142e−03 9.1018975e−03 

 0.01 0.4857789 0.4900013 4.2223930e−03 8.6920056e−03 
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Table 4. Comparison of numerical and analytic results for 0 1, 0.001x α≤ ≤ =  and 
0.0025, 1.0Dµ = − = . 

x--coordinate time Numerical Analytical Abs. Error Rel. Error 

0.1 0.1 0.4995117 0.4998131 3.0145049e−04 6.0349039e−04 

 0.5 0.4995601 0.4995656 5.4836275e−06 1.0976911e−05 

 1.0 0.4992565 0.4992563 2.0861626e−07 4.1785391e−07 

0.5 0.1 0.4983398 0.4993131 9.7331405e−04 1.9531132e−03 

 0.5 0.4990464 0.4990656 1.9192697e−05 3.8458737e−05 

 1.0 0.4987555 0.4987563 8.0466270e−07 1.6133412e−06 

0.8 0.1 0.4983643 0.4989381 5.738772e−04 1.1514554e−03 

 0.5 0.4986793 0.4986906 1.1384487e−05 2.2829277e−05 

 1.0 0.4983808 0.4983813 4.7683716e−07 9.5677274e−07 

 
Table 5. Comparison of numerical and analytic results for 0 1, 1.0x α≤ ≤ =  and 

10.0, 1.0Dµ = = . 

x--coordinate time Numerical Analytical Abs. Error Rel. Error 

0.1 0.1 0.7307805 0.7310488 2.6834011e−04 3.6719661e−04 

 0.5 0.9933019 0.9933066 4.7087669e−06 6.8407649e−06 

 1.0 0.9989547 0.9999546 1.1920929e−07 1.1921469e−07 

0.5 0.1 0.7301725 0.7310095 8.3696842e−04 1.1462121e−03 

 0.5 0.9932919 0.9933053 1.3470650e−05 1.3561623e−05 

 1.0 0.9999547 0.9999546 1.1920929e−07 1.1921469e−07 

0.8 0.1 0.7304779 0.7309800 5.0204992e−04 6.8728963e−04 

 0.5 0.9932957 0.9933043 8.6426735e−06 8.7010076e−06 

 1.0 0.9999546 0.9999546 0.0000000e+00 0.000000e+00 

 
Table 6. Comparison of numerical and analytic results for 0.5 0.5, 1.0x α− ≤ ≤ =  and 

0.01, 0.5Dµ = = . 

x--coordinate time Numerical Analytical Abs. Error Rel. Error 

−0.4 0.1 0.6083902 0.6108770 2.4868251e−03 4.0875496e−03 

 0.5 0.6545661 0.6581360 3.5698414e−03 5.4537524e−03 

 1.0 0.7091637 0.7129992 3.8354993e−03 5.4084826e−03 

−0.2 0.1 0.5722150 0.5624226 5.2011013e−03 9.3339924e−03 

 0.5 0.6032375 0.6118270 8.5895658e−03 1.4239112e−02 

 1.0 0.6609223 0.6704001 9.4777346e−03 1.4340163e−02 

0.4 0.1 0.4115621 0.4136249 2.0627677e−03 5.0120442e−03 

 0.5 0.4598642 0.4638130 3.9488375e−03 8.5869646e−03 

 1.0 0.5228702 0.5274711 4.6008825e−03 8.7992819e−03 
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Table 7. Comparison of numerical and analytic results 0.5 0.5, 0.001x α− ≤ ≤ =  and 
0.01, 0.5Dµ = = . 

x--coordinate time Numerical Analytical Abs. Error Rel. Error 

−0.4 0.1 0.4997850 0.5003500 5.6499243e−04 1.6263075e−03 

 0.5 0.5012816 0.5013500 6.8426132e−05 1.3650438e−04 

 1.0 0.5025941 0.5026001 5.9604645e−06 1.1859400e−05 

−0.2 0.1 0.4989803 0.5003000 1.3196468e−03 2.6446870e−03 

 0.5 0.5011207 0.5013126 1.7929077e−04 3.5777959e−04 

 1.0 0.5025345 0.5025501 1.5556812e−05 3.0956704e−05 

0.4 0.1 0.4995852 0.5001500 5.6484342e−04 1.1306248e−03 

 0.5 0.5010815 0.5011501 6.8604994e−05 1.3691376e−04 

 1.0 0.5023942 0.5024001 5.9008598e−06 1.1745477e−05 

4. Conclusion 

In the work reported herein, a boundary-integral domain-discretized formula-
tion with uniform grids and time steps is applied for the solution of the Burg-
er-Fisher equation. The formulation is straightforward and amenable to han-
dling nonlinearity. Encouraging results are obtained for different parameter val-
ues with relatively small number of elements. This numerical experience, further 
justifies the need to amend and adapt BEM to become a more competitive nu-
merical tool. 
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