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Abstract 
A spectral difference method is applied to get numerical solutions for a flu-
id-lubricated herringbone grooved journal bearing with trapezoidal grooves 
by previous work of the authors. However, an inexpedience in which Fourier 
series of the film profile does not converge at jump points of groove start or 
groove end in the case of rectangle groove was still remained. In the paper, an 
inexpedience of numerical analysis under a special case at rectangle groove is 
challenged to solve. As a result, for compensation of which Fourier series 
does not converge at jump points in a special case of rectangle groove, Fouri-
er coefficient of fluid film thickness is proposed as taking the limit of which 
in a case trapezoidal groove at trapezoidal angle approaches 0. 
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1. Introduction 

Recently, herringbone grooves journal bearing is used extensively in small 
high-speed rotating mechanisms, due to their outstanding higher stability and 
lower leakage, in comparison with a plain journal bearing. 

Until now, numerical studies are carried out to investigate characteristics of 
herringbone groove journal bearing by many researchers. Vohr and Pan [1] 
proposed narrow groove theory for analysis of a herringbone grooved gas jour-
nal bearing in 1963, subsequently applied by Vohr and Chow [2] to get numeri-
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cal solutions at small eccentricity. In 1971, Hamrock and Fleming [3] deter-
mined the optimal parameters for self-acting herringbone grooved journal bear-
ings at the maximum radial load capacity. 

In 1980, the film in an incompressible fluid was analyzed numerically by Mu-
rata et al. [4] based on a potential flow theory. In 1984, Kawabata, Ashino, and 
Tachibana [5] treated a case of large eccentricity, using a narrow groove theory. 
In 1994, Bonneau and Absi [6] applied a finite element method to a compressi-
ble Reynolds equation to get aerodynamic characteristics for 4 through 16 
grooves with moderate eccentricity. 

In 2010, the authors employed a spectral difference scheme to analyze an 
oil-lubricated herringbone grooved journal bearing with trapezoidal groove [7]. 
The fluid film thickness with trapezoidal groove geometry is expressed in a 
Fourier series to the circumferential direction, and Reynolds equation is de-
composed into each component of the Fourier series, so that it can be integrated 
with respect to time independently of each component to get a steady-state solu-
tion [8] [9]. This process results in high resolution in space and high speed in 
computation. However, an inexpedience associated with Fourier series expan-
sion of fluid film thickness has be faced at the case of rectangle groove—the per-
sistent discrepancy, an overshoot (Gibbs phenomenon) between fluid film 
thickness and its approximation by a Fourier series at the number of terms in the 
series becomes indefinitely large. In the paper, an inexpedience of numerical 
analysis under a special case at rectangle groove is challenged to solve, and the 
spectral difference scheme will be extended as to be valid under a special case at 
rectangle groove. 

2. Analytical Model 

Consider a fluid-lubricated journal bearing equipped with herringbone grooves 
as shown in Figure 1. Let bearing length be 2l and groove be symmetric with 
respect to its center of bearing. The shaft itself rotates around its center Os with 
an angular velocity ω in the counter-clockwise direction, and revolves around 
the center Ob of the fixed-bearing with an angular velocity Ω in the coun-
ter-clockwise direction, the inner radius of the bearing is Rb0, the bearing clear-
ance Cr is defined as 0 0r b sC R R= − , and the radius of the shaft corresponding to 
the plane without grooves is Rs0, the groove depth, the groove width, ridge width, 
and grooves angle are denoted by Cg, ag, ar, and β respectively. 

The eccentricity of the shaft is given by b sO O e= , and the fluid film thick-
ness, h, is defined as b sh R R≡ − . 

Here two coordinate systems ( ), zθ  and ( ),ζ ϕ  which are fixed at the rota-
tion shaft, are introduced as shown in Figure 2, and relationship between the 
coordinates is given by 

( )cosθ ζ ϕ β= + ,                      (1a) 

( )sinz ϕ β= .                       (1b) 
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Figure 1. Herringbone-grooved journal bearing. 

 

 
Figure 2. Coordinate systems ( ), zθ  and ( ),ζ ϕ . 

3. A Spectral Finite Difference Scheme for Reynolds Fluid 
Lubrication Equation 

In coordinate system ( ),ζ ϕ , assuming a steady state, e const=  and 0Ω = , 
the dimensionless Reynolds equation can be written as 

( ) ( )3 3 6 6s sH P H P V H H Vσ σΦ Φ Ψ Ψ Φ Φ∇ ∇ +∇ ∇ = − ∇ − ∇ ,       (2) 

where 

( ) ( )
1 1,    

tan sinβ β ψΦ Ψ
∂ ∂ ∂

∇ = ∇ = − +
∂Φ ∂Φ ∂  

0 0

,   ,   ,   ,   ,
b a b a

p hP H
R P R p
ϕ ωηζ σΦ = Ψ = = = =

 
the dimensionless velocities, Vs, at the surface of the rotating shaft are given by 

/
0

s
s s b

b

R
V R

R
ω
ω

≡ = .                       (3) 

In a spectral finite difference scheme, the Equation (2b) is decomposed into 
each component of the Fourier series to the circumferential Φ -direction. 

( ) ( ) ( ) ( ) ( )
0 1

, cos sincn sn
n n

H H n H n
∞ ∞

= =

Ψ Φ = Ψ Φ + Ψ Φ∑ ∑ ,       (4a) 

( ) ( ) ( ) ( ) ( )
0 1

, cos sincn sn
n n

P P n P n
∞ ∞

= =

Ψ Φ = Ψ Φ + Ψ Φ∑ ∑ ,        (4b) 

at 0Ψ = , the groove shape is symmetric, the boundary conditions of pressure 
are 

( ) ( )cos    0cn
sn

P
nP nβ

∂
= ≥

∂Ψ
,                  (5a) 
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( ) ( )cos    1sn
cn

P
nP nβ

∂
= − ≥

∂Ψ
,                 (5b) 

and it is assumed that the fluid is open to the atmosphere at tanL βΨ = , so 
that boundary conditions of pressure are 

( )1.0 0cnP n= = ,                      (5c) 

( )0,   0 1cn snP P n= = ≥ .                   (5d) 

4. Fourier Series of Fluid Film Thickness Geometry 

The dimensionless fluid film thickness of herringbone grooves journal bearing 
can be rewritten as 

( ) ( ) ( )0, cos cosH H E βΨ Φ = Φ + Φ +Ψ   ,            (6) 

where 0H , is fluid film thickness without eccentricity, E is dimensionless ec-
centricity as 0bE e R= . 

1) In the Case of Trapezoidal Groove 
As for a trapezoidal groove which was assumed as shown in Figure 3, ∆Φ  is 

defined as trapezoidal angle of groove. 
In case of 1.0r ga a = , the fluid film thickness with trapezoidal grooves, 0H , 

is given by 

( )
( )

( )

/

/
/

0
/

/ /

/ /

                                                ridge

               ridge groove

    groove ridge

                                    groove

r b

g b
r b i

g b
r b g b i

r b g b

C
C

C
H

C
C C

C C



 + Φ −Φ → ∆ΦΦ = 
 + − Φ −Φ → ∆Φ
 +

,       (7) 

where, / /
0 0

, gr
r b g b

b b

CCC C
R R

= = . 

The Fourier cosine and sine coefficient of fluid film thickness are obtained as 

/
0 _ 0 / 2

g b
c r s

C
H C= + ,                     (8a) 

 

 
Figure 3. Cross-section perpendicular to the trapezoidal surface of groove. 
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( )
2

/
0 _ 2

1

2 1 sin sin
2 2

gN
kg b

cn
k g

C nk n nH
Nn =

  π ∆Φ ∆Φ = − −     π ∆Φ     
∑ ,      (8b) 

( )
2

/
0 _ 2

1

2 1 cos sin
2 2

gN
kg b

sn
k g

C kn n nH
Nn =

  π ∆Φ ∆Φ = − − −     π ∆Φ     
∑ ,      (8c) 

where gN  is number of grooves. 
The “error” in the partial Fourier series at n = N in case of trapezoidal grooves 

is given as follows, 

( ) ( ) ( ) ( )

( )

1 1

2
/

1

error cos sin

cos cos
1 1

g

cn sn
n N n N

N
g gkg b

k

g

g g g

H n H n

Nk Nk N N
N NC

N N

NkSi N
N

k Nk NkSi N Si N N
N N N

δ

δ

δ δ δ

∞ ∞

= + = +

=

= Ψ Φ + Ψ Φ

    π π
− ∆Φ − Φ           = − −

π ∆Φ 



  π
+ ∆Φ − ∆ Φ      

     π π π
+ − Φ − Φ − − ∆Φ − Φ          
     

∑ ∑

∑




 
 
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2
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1

1 21 sin sin
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=

     π ∆Φ ∆Φ π= − − − + ∆Φ         π ∆Φ       
      π π π

+ − − ∆Φ                  

∑

 
where ( )Si x  is sinc function. Figure 4 plot the maximum error in case of Ng = 
5 with the partial Fourier series term number increases, and obviously, the 
maximum error decays rapidly in case of trapezoidal grooves. 

2) In a Special Case at Rectangle Groove 
More generally, for the Fourier series expansion of fluid film thickness in case 

of rectangle groove, the nth partial Fourier series will overshoot this jump by 
 

 
Figure 4. The maximum error with variation of the partial Fourier series term number in 
case of trapezoidal grooves. 
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approximately at a point of groove start or groove end (Gibbs phenomenon), the 
“error” in the partial Fourier series will be about 8.95% and 14.11% of groove 
depth larger than the jump in the original fluid film thickness in two cases, in the 
limits of increasing many terms and of increasingly high node densities, respec-
tively, see Figure 5 by Bengt Fornberg [10]. 

How to reduce the Gibbs phenomenon, is an interesting and important topic 
in mathematics, several mathematician deal with this topic, and obtained some 
method for its field, e.g. filtering and spectral re-projection. Filtering is a classic-
al tool for mitigating the Gibbs phenomenon in Fourier expansions, however 
filtering does not completely remove the Gibbs phenomenon. To completely 
remove the Gibbs phenomenon, one can re-expand the function in a carefully 
chosen different basis, it is spectral re-projection method, which is given by Got-
tlieb and Shu [11]. In 1990, Gottlieb, together with Shu and other co-works, 
showed that it is possible to completely remove the Gibbs phenomenon by 
post-processing the Fourier expansion in regions in which the function is ana-
lytic, using a re-expansion of the partial sums fN(x) in a different basis (“Gibbs 
complementary”). But understanding that needs high mathematic knowledge, 
and it is not easy for industrial applications, an easy analysis method always re-
quested from engineer, and so for compensation of its defect, the following me-
thod which is proposed. 

Since Equation (8) are continuity and differentiable at a point 0∆Φ = , then 
Fourier coefficient of fluid film thickness in the case of rectangle groove can 
been replaced as taking the limit of Equation (8) at trapezoidal angle ∆Φ  ap-
proaches 0, which are given as 

/
0 _ 0 /0

lim
2
g b

c r b

C
H C

∆Φ→
= + ,                   (9a) 

( )
2

/
0 _0 1

lim 1 sin
gN

kg b
cn

k g

C nkH
n N∆Φ→ =

  π
= −   π    

∑ ,             (9b) 

 

 
Figure 5. The Gibbs Phenomenon for Fourier series by Bengt Fornberg & Natasha Flyer 
(2006). 
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( )
2

/
0 _0 1

lim 1 cos
gN

kg b
sn

k g

C nkH
n N∆Φ→ =

  π
= − −   π    

∑ ,            (9c) 

and the maximum “error” at n = N of proposed method which is Equation (9) 
can be obtained 

( ) ( ) ( ) ( )

( )

( )

1 1

2
/

1
1

2
/

1

error cos sin

11 sin d

1

g

g

cn sn
n N n N

N
kg b

N
k g

N
kg b

k g

H n H n

C nk n n
n N

C kSi N
N

δ

δ

∞ ∞

= + = +

∞

+
=

=

= Ψ Φ + Ψ Φ

  π ≈ − − Φ   π    
   π  = − − Φ    π     

∑ ∑

∑ ∫

∑

        (10) 

and since gk N δπ Φ , thus 

( )
2

/

1
1

gN
kg b

k g

C N kerror Si
N=

 π
= −   π  

∑ .                (11) 

Figure 6 plots the maximum error in case of Ng = 5 with the partial Fourier 
series term number increases, and obviously, the maximum error decays rapidly 
in case of trapezoidal grooves. 

Let shows an example of the film thickness at rectangle groove by Fourier’s 
series using the limit of trapezoidal angle ∆Φ  approaches 0 in Figure 7, the 
“error” in the partial Fourier series in the case of rectangle groove was cut off, 
and the inexpedience which Fourier series of the film profile does not converge 
at jump points of groove start or groove end in the case of rectangle groove 
would be avoided. 

5. Analyzed Examples 

To confirm the applicability of the above method, Hirs model [12] which is Ng 
= 20, β = 21.8 deg., ar/ag = 1.0, L = Rb, Ω = 0, ( )26 0.21b rR CσΛ ≡ × =  was 
picked, the relation between load capacity and eccentricity are numerical ana-
lyzed, and which compare to experiments of Hirs as shown in Figure 8, it 
shows that those numerical results are in good agreement with the experimen-
tal data. 

 

 
Figure 6. The maximum error with variation of the partial Fourier series term number in 
case of rectangle grooves. 
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Figure 7. The film surface profile at rectangle groove was displayed using the limit of 
trapezoidal angle ∆Φ  approaches 0. 

 

 
Figure 8. Variations of load capacity with eccentricity increases, where, W is the dimen-
sionless load capacity. 

6. Conclusions 

As analysis of a fluid-lubricated herringbone grooved journal bearing under a 
spectral difference scheme, for compensation of which Fourier series does not 
converge at jump points in a special case of rectangle groove. Fourier coefficient 
of fluid film thickness is proposed as taking the limit of which in a case trape-
zoidal groove at trapezoidal angle approaches 0. In addition, the difference of the 
film thickness and the number of terms of its Fourier series are investigated with 
the ratio of the Fourier’s series terms number to grooves number. 

A spectral difference method is applied to get numerical solutions for a flu-
id-lubricated herringbone grooved journal bearing with trapezoidal grooves, and 
then the numerical analysis scheme will be extended to be suitable for a special 
case of rectangle groove. 

Fourier coefficients of fluid film can be replaced as taking the limit of the tra-
pezoidal angle approaches 0. 
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Nomenclature 

ag, ar,= grooves width, ridge width 
Cg, Cg/b = groove depth, dimensionless groove depth 
Cr = bearing clearance 
e, E = eccentricity, dimensionless eccentricity 
H = dimensionless fluid film thickness 
l, L = bearing length, dimensionless bearing length 
Ng = number of grooves 
p, P = pressure, dimensionless pressure 
Pa = atmospheric pressure 
r, θ, z = inertial coordinates 
Rb = radius of bearing 

Rs = radial component of coordinate at surface of shaft 
Rs0 = radius of shaft without grooves 
Rs/b = dimensionless radial component of coordinate at surface of shaft 
t, τ= time, dimensionless time 
us = circumferential velocity at surface of rotating shaft 
Us = dimensionless circumferential velocity at surface of rotating shaft 
vs = radial velocity at surface of rotating shaft 
Vs = dimensionless radial velocity at surface of rotating shaft 

, ,r zv v vθ  = velocity components of lubricant fluid 
W = dimensionless load capacity of bearing 
β = groove angle 
η = viscosity of fluid 
Λ = bearing number 
σ = dimensionless number 
ϕ  = attitude angle of shaft 
∆Φ  = trapezoidal angle of groove 

,φ Φ  = angle between the fixed axis of abscissa (θ = 0) and the axis of eccentric-
ity, dimensionless angle 
ω = rotation velocity of shaft 
Ω = swirl velocity of shaft 
superscript*: non-inertial coordinate 
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