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ABSTRACT

Wavelet methods are a very useful tool in solving integral equations. Both scaling functions and wavelet functions are
the key elements of wavelet methods. In this article, we use scaling function interpolation method to solve Volterra in-
tegral equations of the first kind, and Fredholm-Volterra integral equations. Moreover, we prove convergence theorem
for the numerical solution of Volterra integral equations and Freholm-Volterra integral equations. We also present three
examples of solving Volterra integral equation and one example of solving Fredholm-Volterra integral equation. Com-
parisons of the results with other methods are included in the examples.
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1. Introduction

The study of finite-dimensional linear systems is well
developed. As an infinite-dimensional counter part of
finite-dimensional linear systems, one can view integral
equations as extensions of linear systems of algebraic
equations. An integral equation maybe interpreted as an
analogue of a matrix equation which is easier to solve.
There are many different ways to transform integral
equations to linear systems. Many different methods have
been used for solving Volterra integral equations and
Freholm-Velterra integral equations numerically.

In this paper, we first recall the method of scaling
function interpolation. Then we solve linear Volterra inte-
gral equation of the form:

f(x)=.[:k(x,t)y(t)dt (1)
and Fredholm-Volterra integral equations of the form:
y(x)=g(x)+ J': ky (x,t)y(t)de
+Lbk2 (x,0)y(¢)ds

where the functions k(x,t), k (x,¢) and k,(x,t) are
known functions and called kernels. The function f(x)
is known, and the function y(¢) is to be determined.
One of the motivations in this study arose from equations
in theoretical physics. In fact, there are many applica-
tions in several disciplines as well. We will use scaling
function interpolation method to solve integral equations.
As a natural question, one would wonder any possible
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convergence properties and how this method would com-
pare with other methods. We will prove two convergence
theorems and present several examples.

2. Approximation

Wavelets and scaling functions are a useful tool in ap-
proximation methods of solutions of differential and in-
tegral equations [1]. We first recall Multiresolution analy-
sis (MRA) [2]. We assume the scaling function and
wavelet function ¢, ¥ are sufficiently smooth and satisfy
MRA with compact support and ¥ has N vanishing mo-
ments (defined below). The scaling function @(x) is
defined as

#(x)=2ad(2x-p)=Ta,(x) O

for some coefficients {ap, pez } . By using this dilation
and translation we defined a nested of sequence spaces
{Vj,jeZ} which is called MRA of L*(R) with the
following properties:

VieVi.jeZ @)
Ve =1 =10 )
ﬂZVj is dense in L’(R) (©6)
| #(x)eV, & ¢(2x)eV,, . )

For the subspace V; is built by ¢#(2x—p), peZ
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then V, = {¢(x—
$(x)=2 a,4(2x—p)=> a,4 ,(x).In general,

p(x)=Zag(2r-p)=Tad,x). ®

In fact, for each j we define the orthogonal subspace

p).peZ} and ¥, cV¥, we can write

W, of ¥V, in the subspace V., the or thogonal basis
of W, is denoted by
v, =v(2'-p). ©
and the wavelet function can be obtained by
V/(x)zzﬁp¢j,p (x) (10)

for some coefficients f,. Some interesting properties of
scaling and wavelet functions make wavelet method
more efficiently than other methods such as spline ap-
proximations in solving an equation. A lot of computa-
tional time and storage capacity can be saved since we do
not require a huge number of arithmetic operations partly
due to the following properties.
Vanishing moments:

wa )dx =0, (11)

and in this case the wavelet is said to have a vanishing
moment of order £.
Semiorthogonality:

<l//i,p( ) l//]k > I l//zp )l//j,k (x)dxzoa (12)
p=kii,j,p,keZ.

The set of scaling functions {¢m j} is orthogonal at
the same level n, which means:

() ()i () =] 4, (x

n,p,keZ.

nk (x)dx:(); (13)

Coiflet (of order L) has more symmetries and it is an
orthogonal multiresolution wavelet system with,

M, =[x*¢(x)dx=0, k=12, L—1. (14)
[x'y(x)dx=0, k=1,2,--,L-1. (15)
where {M,} is the moment of scaling functions.

3. Scaling Function Interpolation

In MRA, any given function f (x) el’ (R) can be in-
terpolated by using the basis functions in the subspace
V, as follows:

f(x)zfj(x):Zap@!p(x) (16)

where the coefficientsv «, are evaluated by using the
semiorthogonality of the scaling functions (12) such that
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a,=(8,,(x), f(x)=[f(x),,(x)dx. (7

Hence the Equation (16) becomes as follows:
f@)= () =2 ([ (2)4,, (x)dx) 4, (<)

To approximate a given function f, one can use sam-
pling values of f at certain points. It is proved in [3],
namely, an interpolation theorem using coiflet, namely, if
w(x) and ¢(x) are sufficiently smooth and satisfy the
Equations (10)-(15) and the function f(x)eC*(Q),
where Q is a bounded open setin R%, k>N>2, jeZ
then,

P =3 T B ), (99, 0).

(x,y)eQ

(18)

where the index set is

A= {(p,q)‘(supp(@.,p)®supp(¢j’p ))ﬂQ * ¢} .
In addition, the moment M, satisfies

M, =(c), 1=1,2,-,

Then ¢=M,, and
) Ly
| 2/ )

where C is a constant depending only on N, diameter of
Qand

N-1.

"f_fj 1

o<l

oV f
W(X’y)'

I

» = max(x,y)eQ,nz:O;-»,N

For one-dimensional analogue, we have

P05 21 (L o () xelas). 09

and
|f fj 1%[a,b] ”f “ ( j (20)
where
“f(N) EMAX () 0,y Z];—mf(x)‘

4. Solutions of Linear Integral Equation

In this section, Coiflet is used to solve linear integral
Equations (1) and (2), where we will explain the method
in terms of matrix notation.

4.1. Linear Volterra Integral Equation

In this subsection we will use the interpolation Formula
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(19) to solve Volterra integral Equation (1). The un-
known function y(x) in Equation (1) can be expressed
in term of scaling functions ¢, (x) in the subspace
V. such that

J

vi(x)=2a,,,(x). @1

By substituting Equation (21) into the Equation (1), we
have the following system,

X

1)~k et 0

! (22)

X

= Zapjk(x’t)¢j.p (t)dt

P 0

To simplify the system, let
Ap (x) = Ik(x’t)¢j,p (t)dt
0
Then the system (22) becomes
f(x)zzapAp (x) ° (23)
P

The coefficients {ap, pe A}
stituting the set of real numbers

{xp,xp € [O,X], peA0< XSb}

can be evaluated by sub-

into the system (23), let |A| =n, then the system (23)
can be written in the form
a4 (x)+ a4, (x)+--+a,4,(x,)
a4, (x2)+a2A2 (xz)"'"""anAn (xz) :f(xz)

Il
~
—_

=
N—

a4, (xn)-i-az/l2 (xn)+-~~+anAn (xn): f(xn).

If we use the notation a =(a,,a,,---,a,) and

4 (xl) 4 (xz) 4 (xn)
4o A, (‘xl) A4, (xz) A4, (xn)
An (xl ) An (x2) An (xn)

f:(f(xl),f(x2),---,f(xn ), then the system (23) is

equivalent to the system a4 = f , and the solution is
a=fA". 24)
This gives raise to coefficients in (23) and we obtained
a numerical solution to Equation (1).
4.2. Linear Fredholm-Volterra Integral
Equation

To solve the Fredholm-Volterra integral Equation (2), we
use a similar algorithm as we use in 4.1. The unknown
function can be approximated by using Equation (1) and
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one can have the system of linear equations;
a-B=G

where a is the vector of unknowns as we introduce in
Equation (21),

G=(g(x).g(x).8(x))

and
Bl(xl) Bl(x2) B, (xn)
B= B, (xl ) B, (.xz) B, (xn)
B, (xl ) B, (xz) B, (xn)
with

B,(x)=6,,(x)-[ k(x.1)¢,, (x)dt
- Lf k, (x,0)4,, (x)dr

and the set of {x,x,,-~-,x,} is in the interval [a,b]
which one can be choose equally spaced. In the next sec-
tion we will discuss the convergence for the method by
deriving a convergence theorem of this numerical solu-
tion.

5. Error Analysis

In this section, we provide with the convergence rate of
our method for the numerical solution of solving linear
Volterra integral equations and Freholm-Volterra integral
equation respectively. We will explain the necessary
conditions for the convergence.

Theorem 5.1

In Equation (1), suppose that the functions

k(x,t) € C([O,X]x[c,d]), 0<x<X<bh,

k(x,t)>=my,>0 and the two functions f(x), y(x)
arein C[0,X], 0<x<X<b, for jeZ,

Y (x)=2a,8,,(x).
If an approximate solution of the Equation (1) with
coefficients obtained in (24), and the error at the point

x, is e(x)=3"(x)-»(x). Then ||e(x)||£c[%)./’

where c is a constant.
Proof:
We begin with the following equation.

[ (x)e(r)de = fk(x,t)[zap% (1)~ y(z)]dz .(25)
At any point x, € {x‘/.; je A} Equation (25) becomes:

Ik(x,t)e(t)dt _ Ik(x,t)[;ap@w (1)- y(t)jdt ,
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then
[ ()e(t)dd = xk(x,t)(zap@,p(z)_ y(z)jdt .(26)
For
Ik(x,t)e(l)dt > :[ t)de|=m, J; m1||
Then,
Je(o)]
1%
<— jk(x,t)[Zap@p (t)—y(t)]dt
5 27)

j x,t)dt

0 g[za%() o)

Jiras

1 ||¢x
Such that ¢ :m—OHIO k(x,t)dt” :

By (19), the unknown function y(z) can be interpo-
lated by using the coiflet such that:

Y (1)= Zp;y(fyj,p (1) (28)

If we add and subtract Equation (28) in Equation (27),
we get the following inequality:

e
IS LTRUBION 1 E3 R0

(5
To{F 0]

< [ I [p(ﬁjm <t>—y<r>jdr

A (22 )0s0-Z a0 o

[ [ (o2 )0, 050

A5 (2 )10, <r>j

But by (20), we have that;

o £ o -
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|

And since Z( y(zﬁjj -a, j is finite then denote it as
p

Holz)e)-e

By using the above results and the orthonomality of
the scaling functions {¢(t)} , we conclude that

(0] <, [ o, Gj e GU _ G) .

Theorem 5.2
In Equation (2), suppose that the functions
k, (x,t)e C[a,b]x[a,b], as<x<X<b,
k,(x,t)eCla,b]x[a,b],and y(x), g(x) arein
C[a,b], for jeZ,

yj (x) = zap¢j.p (x)
If an approximate solution of the Equation (2) with
coefficients obtained in (24), and the error at the point

x is e(x)=y"(x,)-»(x,). Then
j
"e(x)" < ﬂ[%) , where £ is a constant

Proof:

Substitute (21) into Equation (2), we get the following
integral equation

¥/ (x) = g(x)-i—_[:kl (x,t)y‘/ (Z)dt
(29)

[k, (xt)y/ (1) dr

Subtracts Equation (27) from (1) and substitute x by x;
to get;

Je(x)]
=[y(x)-»"(x)
="k (x,0) (1) =7 (1)) de
[k (x.0) (3 (1) =57 (1)) e G0

< ‘ [k (xi,t)‘ [7[p(6) =" ()]s
o[k (L0

-y’ (t)| de.

Add and subtract Equation (28) for absolute value in
the previous equation, we get the following equation.

b
2], |V

_i,lc;yl
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i),
B,

<.l

i1

We use the same idea in the proof of 5.1, and obtain
the following error estimate.

ct-a(3 (2] A2

Remark

Here we discuss only the case when the kernel func-
tion k(x,z) is positive. We can generalize our method
for any given continuous function k(x,¢) in Equation
(1);

1) If k(x,t) is positive, we have obtained the con-
vergence theorem.

2) If k(x,t) is negative then let k(x,r)=-S(x,t),
then the function S(x,7) is positive and we can apply
our method for the equation —f (x)= .[(: S(x,t)y(r)dt
which has the same solution as the Equation (1).

3) If the function k(x,7) is neither of the above two
cases, the function k(x,7) can be written as a sum of
two positive functions where

k(x,t) =k* (x,t)+(—k’ (x,t))

Then Equation (1) becomes
= [k (e t) p(e)de+[ =k (x,2) p(¢)de

And hence the result is concluded in a similar fashion.

6. Numerical Examples

In the following examples, we will solve several linear
Volterra integral equations of the first kind and Fred-
holme-Volterra integral equations using coiflet of order 5
and provide the absolute errors. The examples (1-3) are
also shown in [4] and the example 4 is presented in [5].
We will compare our results with others and show that
our method has better approximations than other meth-
ods.

Example 1

Consider the integral Equation (1) with;

f(x) = , k(x,t) =l

y(x)=¢"". The numerical results are presented in Table 1.

ex _ e—X
- and the exact solution is
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-/ (025 L), <>2y() 0

0 TEo

(>zy[j )
o0-Zo( £ )60

dt

Zo{3 o g

dt—i—Z{a —y BU ¢, (1) dt
dt+2[a —y(zﬁjjj‘j:‘ 9., (t)dt‘

Example 2

Consider the integral Equation (1) with;
f(x)=-1+x—e", k(x,t)=1+x—¢ and b =1, and the
exact solution is y(x) =xe " . The numerical results are
presented in Table 2.

Example 3

Consider the integral Equation (1) with;
f(x)=xsinx, k(x,t)=cos(x—¢) and the exact solu-
tion is y(x)=2sinx . The numerical result are pre-
sented in Table 3.

Example 4

Consider the integral Equation (2) with;

%x“, k, (x,t) =k, (x,t) =xt,

€2))

g(x)z%x—

and the exact solution is y(x)=x. The numerical re-
sults are presented in Table 4.

Table 1. The absolute errors for example 1.

Absolute errors

x;  Exact solution

j=—2 j=-1 j=0

0.1 0.904831 8.384E-7 5.59E-7 6.788E—6
0.2 0.818735 1.911E-6 1.638E—6 4.726E—6
0.3 0.740816 4.223E-6 1.503E-8 1.799E—-6
0.4 0.670321 1.897E-5 1.562E-6 4.971E-7
0.5 0.606533 5.633E-7 1.272E-6 2.261E-6
0.6 0.548808 1.522E-6 2.271E-7 3.781E-6
0.7 0.496588 4.381E-6 2.291E-6 2.572E-6
0.8 0.449327 3.106E-6 1.647E-7 2.186E-6
0.9 0.406571 1.021E-5 2.139E-6 1.111E-6
1 0.367837 4.466E-7 7.265E-7 4.201E-5

Table 2. The absolute errors for example 2.

Absolute errors

x;  Exact solution

j=-2 j=-1 j=0
0.1 00904738  1.381E-5 1.28E-6 9.954E—6
02  0.163753 8.994E-6  1.488E-6 7.303E-6
03 0222242 1.052E-5  1.815E-6 3.265E-6
04  0.268129 SA413E-5  2.242E-6 1.059E—6
05  0.303268 437E-6 1.689E~6 3.129E-6
06  0.329283 1.639E~5 1.42E7 4.349E-6
07 0347614 1.066E-5  4.466E-7 3.997E-6
08  0.359459 5727E-6  1.692E-6 4.136E-6
09 0365915 34256-5  8.073E-7 2.444E-6
1 0.367799 5.7E-6 1.094E-6 8.08E-5
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Table 3. The absolute errors for example 3.

Xi

Exact solution

Absolute errors

j==2 j=-1 j=0
0.1 0.0099833 8.384E-7 2.019E-6 4.092E-5
0.2 0.0397339 1.911E-6 6.551E—6 4.573E-5
0.3 0.0886561 4.223E-6 1.739E-7 1.081E-6
0.4 0.155767 1.897E-5 2.082E-6 2.818E-5
0.5 0.239713 5.633E-7 2.535E-6 1.028E-6
0.6 0.338785 1.522E-6 8.047E-7 2.235E-6
0.7 0.450952 4.381E-6 5.533E-6 1.412E-5
0.8 0.573885 3.106E—6 4.201E-7 9.272E-6
0.9 0.704994 1.021E-5 3.581E—6 2.303E-5

1 0.841471 4.662E-7 2.985E-6 3.251E-6

Table 4. The absolute errors for example 4.
. Absolute errors
X; Exact solution
j==2 j=-1 j=0

0.1 0.1 3.348E-7 1.032E-7 2.817E-7
0.2 0.2 1.263E-7 5.75E-8 2.971E-7
0.3 0.3 1.905E-7 3.789E-8 4.913E-8
0.4 0.4 2.564E-8 1.758E-7 4.506E-8
0.5 0.5 1.316E-8 8.553E-8 1.323E-7
0.6 0.6 1.876E-7 5.004E-7 1.243E-7
0.7 0.7 6.735E-7 3.977E-7 5.035E-8
0.8 0.8 2.064E-7 4.912E-7 4.879E-8
0.9 0.9 2.589E-7 4.063E-7 2.472E-7

1 1 5.887E-7 2.745E-7 7.36E-8

In the above tables, we use the notation E — n which

de- notes 10" and; denotes the level of MRA.

7. Concluding Remark

In this paper we have shown a better method in solving
Volterra integral equations of the first kind, and Fred-

Copyright © 2013 SciRes.

holm-Volterra integral equations. We also prove conver-
gence theorem for the numerical solution of Volterra
integral equations and Freholm-Volterra integral equa-
tions respectively. It would be interesting to extend the
results to two-dimensional case for the above mentioned
equations and apply to some imaging problems.

(1]
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