
Applied Mathematics, 2024, 15, 355-389 
https://www.scirp.org/journal/am 

ISSN Online: 2152-7393 
ISSN Print: 2152-7385 

 

DOI: 10.4236/am.2024.155022  May 30, 2024 355 Applied Mathematics 
 

 
 
 

Comparison of Block Design Nonparametric 
Subset Selection Rules Based on Alternative 
Scoring Rules 

Gary C. McDonald, Sajidah Alsaeed 

Department of Mathematics and Statistics, Oakland University, Rochester, MI, USA 

 
 
 

Abstract 
This article compares the size of selected subsets using nonparametric subset 
selection rules with two different scoring rules for the observations. The 
scoring rules are based on the expected values of order statistics of the uniform 
distribution (yielding rank values) and of the normal distribution (yielding 
normal score values). The comparison is made using state motor vehicle traf-
fic fatality rates, published in a 2016 article, with fifty-one states (including 
DC as a state) and over a nineteen-year period (1994 through 2012). The ear-
lier study considered four block design selection rules—two for choosing a 
subset to contain the “best” population (i.e., state with lowest mean fatality 
rate) and two for the “worst” population (i.e., highest mean rate) with a 
probability of correct selection chosen to be 0.90. Two selection rules based 
on normal scores resulted in selected subset sizes substantially smaller than 
corresponding rules based on ranks (7 vs. 16 and 3 vs. 12). For two other se-
lection rules, the subsets chosen were very close in size (within one). A com-
parison is also made using state homicide rates, published in a 2022 article, 
with fifty states and covering eight years. The results are qualitatively the same 
as those obtained with the motor vehicle traffic fatality rates. 
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1. Introduction 

Nonparametric statistical methods are useful for analyzing data that might not 
satisfy the distributional assumptions of parametric methods (e.g., see Conover 
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[1]. In cases where the research hypothesis entails comparing subjects under dif-
ferent conditions or time points, or comparing two subject samples on an out-
come variable, nonparametric rank score tests can be invoked (e.g., LaVange and 
Koch [2]. McDonald [3] [4] developed a class of nonparametric (distribu-
tion-free) subset selection rules for block (two-way) design experimental data. 
These selection procedures are based on scores, i.e., functions of the rank values 
of the data. Subsequently, there have been many applications of these procedures 
based on the raw ranks of the data: McDonald [5]; Lorenzen and McDonald [6]; 
Green, et al. [7]; Green and McDonald [8]; McDonald [9]; Wang and McDonald 
[10]. Gupta and Panchapakesan [11] provide a thorough review of the class of 
parametric and nonparametric ranking and selection procedures. 

The purpose of this article is to explore the effect of applying a scoring func-
tion of ranks, rather than the raw ranks, to the data and subsequently applying 
the selection procedure. Specifically, how is the selected subset of populations 
affected in terms of the size and the content? This will be done with two specific 
data sets used in earlier publications. The foundations of the subset selection 
rules, taken from McDonald [3], are described next. 

Let 1, , kπ π�  be k (≥2) independent populations. Let , 1, , ; 1, ,ijX j n i k= =� �  
be independent samples of size n from the k populations. Assume the random 
variables Xij have a continuous cumulative distribution function (CDF) Fj(x;θi), 
where θi’s belong to some interval Θ on the real line. Suppose Fj(x;θ) is a sto-
chastically increasing family of distributions in θ; i.e., if θ1 < θ2, then Fj(x;θ1) and 
Fj(x;θ2) are distinct and Fj(x;θ2) ≤ Fj(x;θ1) for all x. Examples of such families of 
distributions are: (1) any location parameter family, i.e., Fj(x;θ) = Fj(x-θ); (2) any 
scale parameter family, i.e., Fj(x;θ) = Fj(x/θ), θ > 0, x > 0; any family of distribu-
tion functions whose densities possess the monotone likelihood ratio property. 
Figure 1 illustrates that the normal distribution as a location family with respect  

 

 
Figure 1. Illustration of stochastic ordering for the normal CDF. 
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to the mean parameter is stochastically ordered. Note that the CDFs are stacked 
from top to bottom in inverse order of the mean values. 

Let Rij denote the rank of the observation xij among 1 2, , ,j j kjx x x� ; i.e., if 
there are exactly r of the observations , 1, ,mjx m k= �  less than xij then Rij = r + 
1. These ranks are well-defined with probability one, since the random variables 
are assumed to have a continuous distribution, and take integer values from 1 to 
k inclusive. Now let ( ) ( ) ( )1 2Z Z Z k≤ ≤ ≤�  denote an ordered sample of size 
k from any continuous distribution G, such that ( ) ( ) |a r E Z r G−∞ < ≡ < ∞   , 

1, ,r k= � . With each of the random variables Xij associate the number a(Rij) 
and define 

 ( )1 , 1, , .ij
n

i j RH a i k
=

= =∑ �  (1.1) 

The quantity a(Rij) is called the score of Xij, and the quantities Hi will define 
the procedures for selecting a subset of the k populations. Letting θ[i] denote the 
ith smallest unknown parameter, it follows that 

 [ ]( ) [ ]( ) [ ]( )1 2; ; ; , .j j j kF x F x F x xθ θ θ≥ ≥ ≥ ∀�  (1.2) 

The population whose associated random variables have the distribution 
Fj(x;θ[k]) is called the “best” population. In case several populations possess the 
largest parameter value θ[k], one of these is tagged at random and called the best. 
A “Correct Selection” (CS) is said to occur if and only if the best population is 
included in the selected subset. In the subset selection formulation, one wishes to 
select a subset such that the probability is at least equal to a preassigned constant 
P* ( 1 1k P− ∗< < ) that the selected subset includes the best population. Formally, 
for a given selection rule R, 

 ( )inf | ,P CS R P∗
Ω ≥  (1.3) 

where 

 ( ){ }1, , : , 1, , .k i i kθ θ θΩ = = ∈Θ =� �θ  (1.4) 

The choice of P* is specified by the analyst and represents the confidence level 
that the resultant selected subset will contain the best population. The number of 
populations in the selected subset is a nondecreasing function of P*. 

In a similar fashion, the “worst” population can be defined as that population 
characterized by the probability distribution Fj(x;θ[1]). Selection procedures can 
analogously be defined with P* requirements on the selected subset to contain the 
worst population as noted in the following Section 2. The assignment of “best” and 
“worst” is problem specific as will be noted in the applications to follow. 

2. Nonparametric (Distribution-Free) Subset Selection  
Procedures 

Four subset selection rules are considered for the analysis of state motor vehicle 
traffic fatality rates (MVTFRs) as given in McDonald [9]. In this application to 
be described in Section 3, the populations are states and the blocks are years. 
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Since low (high) fatality rates are good (bad), the “best” (“worst”) state is the one 
with the smallest (largest) mean fatality rate. 

The two selection rules for choosing a subset containing the worst population 
are given by: 

R1: Select πi iff ( ) 1max , 1, ,i jH H j k b≥ = −� . 
R2: Select πi iff 2iH b> . 
Similarly, the two selection rules for choosing a subset containing the best 

population are given by: 
R3: Select πi iff ( ) 3min , 1, ,i jH H j k b≤ = +� . 
R4: Select πi iff 4iH b< . 
The non-negative constants b1, b3, and b4 are chosen as small as possible and 

b2 is chosen as large as possible preserving the probability P* goal. In cases con-
sidered here, these constants are calculated assuming the population parameters 
are equal and, thus, the distribution of the H statistics are distribution free. As 
derived in McDonald [3] rules R1 and R3 are justified over a slippage space, Ω', 
where all parameters θi are equal with the possible exception of θ[k] (θ[1]) in case 
of rule R1 (R3); and rules R2 and R4 are applicable over the entire parameter 
space, Ω. That is, the probability of a correct selection will be no less than P*. If k 
= 2, the two selection rules R1 and R2 are equivalent, as are R3 and R4, since H1 + 
H2 is a constant. 

2.1. Calculation of Selection Rules Constants, G = Uniform  
Distribution (0, 1) 

With the choice of G to be the uniform distribution on the interval (0, 1), the 
expected value of the order statistics ( ) ( ) ( )1a r E Z r r n≡ = +   . The selection 
procedures can then be stated in terms of ranks and rank sums. Thus, 

R1: Select πi iff ( ) 1max , 1, ,i jT T j k b≥ = −�  (2.1) 

R2: Select πi iff 2iT b> . (2.2) 

Similarly, the two selection rules for choosing a subset containing the best 
population are given by: 

R3: Select πi iff ( ) 3min , 1, ,i jT T j k b≤ = +�  (2.3) 

R4: Select πi iff 4iT b< , (2.4) 

where 1 ijj
n

i RT
=

= ∑ , 1, ,i k= � . 
The calculation of these constants is treated in McDonald [4] [9] [12] for both 

small and large samples. For the purposes of this article, the asymptotic values 
are used. The value of b1 to meet the P* requirement is the solution to 

 ( ) ( )1
1 d ,

k
x cb x x Pφ ϕ

∞ − ∗

−∞
+ =  ∫  (2.5) 

where ( )xφ  and ( )xϕ  are the cdf and density, respectively, of a standard 
normal random variable, and 

 ( ) ( ) 1 2
, 12 1 .c c n k nk k= = +    (2.6) 
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The value of b3 = b1. The values of b2 and b4 are given by 

 ( ) ( ) ( )
1 22 1

2 1 12 1 1 2,b n k P n kφ− ∗ = − − + +   (2.7) 

where ( )1φ− ⋅  is the inverse standard normal CDF, and 

 ( )4 21 .b n k b= + −  (2.8) 

The selection rules defined in (2.1) through (2.4) are based on rank sums. 
These arise from the expected values of the order statistics from a standard uni-
form distribution. This article addresses the question of how the choice of the 
distribution of the order statistics affects the performance of the subset selection 
procedures by choosing an alternate distribution for G as in the next section. 
Conover [1] compares the nonparametric Kruskal-Wallis test based on rank 
scores to that based on normal scores. He concludes that the asymptotic relative 
efficiency may be greater or less than one depending on the particular situation. 
This further motivates such assessments of performance characteristics for non-
parametric subset selection procedures. 

2.2. Calculation of Selection Rules Constants,  
G = Standard Normal Distribution 

The term normal score is used with two different meanings in statistics. One of 
them relates to creating a single value which can be treated as if it had arisen 
from a standard normal distribution (zero mean, unit variance). The second one 
relates to assigning alternative values to data points within a dataset, with the 
broad intention of creating data values than can be interpreted as being ap-
proximations for values that might have been observed had the data arisen from 
a standard normal distribution. It is associated with data values derived from the 
ranks of the observations within the dataset. A given data point is assigned a 
value that is either exactly, or an approximation to, the expectation of the order 
statistic of the same rank in a sample of standard normal random variables of the 
same size as the observed data set. 

With the choice of G to be the normal distribution with mean = 0 and stan-
dard deviation = 1, the score of Xij, call it a(Rij), is the expected value of the ith 

order statistic drawn from a sample of size k from the standard normal distribu-
tion. Extensive tabulations (to 5 dp) of expected values of normal order statistics 
are given by Harter [13] for sample sizes k = 2(1)100(25)250(50)400. Birnbaum 
and Dudman [14] also provide tabulations of these expected values along with 
corresponding calculations from the logistic distribution. The selection proce-
dures can then be stated in terms of scores and score sums. Thus, 

Q1: Select πi iff ( ) 1max , 1, ,i jS S j k d≥ = −�  (2.9) 

Q2: Select πi iff 2iS d> . (2.10) 

Similarly, the two selection rules for choosing a subset containing the best 
population are given by: 

Q3: Select πi iff ( ) 3min , 1, ,i jS S j k d≤ = +�  (2.11) 
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Q4: Select πi iff 4iS d< , (2.12) 

where ( )1 ijj
n

i RS a
=

= ∑ , 1, ,i k= � . 
The calculation of the constants d1, …, d4 follow the same lines of derivation 

as for the respective constants used with the uniform distribution order statistics 
in Section 2.1. The asymptotic value of the value of d1 to meet the P* requirement 
is the solution to 

 ( ) ( )1
1 d ,

k
x hd x x Pφ ϕ

∞ − ∗

−∞
+ =  ∫  (2.13) 

where  

 ( ) ( ) ( ) 1 2
, 1 ,h h n k k n ssq= = − ⋅    (2.14) 

and ( ) 2

1 ij
k
issq a R
=
  = ∑ . The value of d3 = d1. The value of d2 and d4 are given 

by 

 [ ] ( )1 2 1
2 1 ,d n ssq k Pφ− ∗= ⋅ −  (2.15) 

and 

 4 2– .d d=  (2.16) 

3. Description of State Motor Vehicle Traffic Fatality Rates 
(MVTFRs) 

The state MVTFRs per year analyzed in McDonald [9] are used here to illustrate 
the impact that the two rank scoring rules described in Section 2 have on the se-
lected subsets using selection procedures R1, …, R4 and Q1, …, Q4. The data are 
given in Appendix A (to 2 dp) of the cited reference and contained in the 
R-code of Appendix A of this article. The fatality rates are given for 51 states 
(taking the District of Columbia as a state) for the years 1994, …, 2012. The two 
letter abbreviation for states is given as the variable “State” and the fatality rates 
for the respective years are given in the variables “y1994”, …, “y2012” in the or-
der of the states specified in “State”. Thus k = 51 populations (states) and n = 19 
blocks (years) comprise the data set. The National Highway Traffic Safety Ad-
ministration (NHTSA) publishes the MVTFRs for all U.S. states each year in the 
Fatality Analysis Reporting System (FARS). The data can be accessed through 
the government website: www-fars.nhtsa.dot.gov. The fatality rate per year for 
each state is expressed as the number of fatalities per 100 million vehicle miles of 
travel (VMT). 

The cited [9] reference notes the possibility of interaction between the popula-
tions and blocks based on the Tukey [15] one degree-of-freedom test. However, 
raising the fatality rates to the power 0.3 indicates no significant evidence of in-
teraction, and use of a two-way additive model for the transformed rates is 
plausible. That is, 

 0.3 ,ij i j ijX µ θ β= + + +   (3.1) 

where θi indicates the particular state effect, βj indicates the year effect, and ij  
the random error. The distribution of the transformed MVTFRs will be stochas-
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tically ordered in θ as it is a location parameter. Since the power transformation 
is a monotone transformation, the ranks of the transformed data are identical to 
the ranks of the original fatality rates to be used here. The cited reference pro-
vides a more detailed discussion of the data and the form of the assumed addi-
tive model. 

4. Applications to the MVTFRs Data 

To apply the selection rules to the MVTFRs data set, the constants b1, …, b4 and 
d1, …. , d4 need to be obtained. The values for b1 and d1 are based on determin-
ing the values of c·b1 and h·d1, based on (2.5), (2.6) and (2.13), (2.14) for given 
values of k, n, and P*. These two products are equal and the constants b1 and d1 
are obtained by dividing the product by c and h respectively. The common value 
of c·b1 and h·d1, call it w, is easily obtained by noting that the integral expressing 
in (2.5) is an increasing function of w and using a R-code such as 

w<-3.5 
fucn<-function(x){(pnorm(x+w))^50*dnorm(x)} 
integrate(fucn,lower = -Inf,upper = Inf) 

and successive interval halving to converge on w = 3.666 for k = 51, n = 19, and 
P* = 0.90. The resultant constants for implementing the eight subset selection 
procedures are given in Table 1 (to 2 dp). 

Execution of the R-code in Appendix A yields the state rank sums and the 
state normal score sums given in Table 2. The code uses the R function “rank” 
to order the state MVTFRs for each of the nineteen years. This function provides 
six methods for ranking. The one used here is the “random” option. If two states 
have the same fatality rate and are thus tied for, say, ranks r1 and r2, the alloca-
tion of those two ranks to the tied states would be done randomly, i.e., each state 
would have the same probability of assignment of r1 and r2. Consequently, for 
each of the years the 51 ranks are the whole numbers 1, 2, …, 51. The “average” 
option would assign to each of the tied states the average of r1 and r2. With av-
eraging, not all of the states would have whole numbers assigned. The “averag-
ing” option was used in McDonald [9] and so there are slight differences be-
tween results given in the Appendix B of that reference and Table 2 given here. 

With Table 1 and Table 2, the selection rules given in Sections 2.1 and 2.2 can 
be applied to the state MVTFRs specified in Appendix A. Using P* = 0.90, selec-
tion rule R1 can be now stated as 

 R1: Select πi iff ( ) 1max , 1, , 930 237.53 692.47i jT T j k b≥ = − = − =� , (4.1) 

and 16 states are thus included in the chosen subset. Using R2, all states with  
 

Table 1. Selection rules constants for the MVTFRs (k = 51, n = 19, and P* = 0.90). 

R1 R2 R3 R4 Q1 Q2 Q3 Q4 

b1 = 
237.53 

b2 = 
411.77 

b3 = 
237.53 

b4 = 
576.23 

d1 =  
15.72 

d2 =  
−5.44 

d3 =  
15.72 

d4 =  
5.44 
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Table 2. Rank Sums and Normal Score Sums for MVTFR data, k = 51, n = 19. 

State Rank Sum State Rank Sum State NS Sum State NS Sum 

MA 23 PA 488 MA −41.30654 PA −0.28389 

CT 88 IA 492 RI −28.60640 IA −0.13781 

RI 93 GA 499 CT −28.16906 GA 0.25425 

NJ 104 KS 605 NJ −24.72987 KS 5.63425 

MN 124 MO 606 MN −24.61870 MO 5.64446 

NH 135 TX 612 NH −23.45682 TX 6.00957 

WA 169 NC 614 WA −18.93026 NC 6.02964 

NY 181 OK 649 NY −17.93579 OK 8.26094 

MD 221 AK 652 VT −17.14453 AK 8.68151 

VT 226 FL 699 MD −15.01171 FL 10.89390 

VA 230 ID 714 VA −14.56338 ID 11.77507 

CA 258 NV 721 CA −12.79833 NV 12.90143 

OH 261 TN 744 OH −12.38324 TN 13.44741 

MI 304 AL 760 DC −11.42801 AL 14.72405 

IL 305 KY 769 MI −10.20329 KY 15.43561 

IN 313 WY 772 IL −10.02509 NM 15.80883 

WI 324 NM 773 IN −9.65541 WY 16.41764 

DC 325 SD 786 WI −8.87739 SD 17.81267 

ME 330 AZ 823 ME −8.52842 AZ 20.20069 

UT 350 WV 824 UT −7.78518 WV 20.55222 

OR 397 AR 887 OR −5.02838 AR 25.49252 

HI 445 LA 899 HI −2.53294 LA 27.43415 

ND 449 SC 910 ND −2.33842 SC 28.77247 

DE 453 MT 927 DE −2.30543 MS 34.07669 

NE 462 MS 930 NE −1.60001 MT 34.48870 

CO 469   CO −0.36437   

 
Table 3. Number of states chosen by selection rules with P* = 0.90, k = 51, and n = 19. 

R1 R2 R3 R4 Q1 Q2 Q3 Q4 

16 30 12 29 7 31 3 29 

 
rank sums exceeding 411.77 are selected yielding a subset containing 30 states. 
Following the two examples just given, Table 3 provides the number of selected 
states in the subsets chosen by the four rules using rank sums and the four rules 
using normal scores. 
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Clearly the number of populations chosen using the rank sum vs. the normal 
score sum makes a substantial difference. The subset size using Q1 is slightly less 
than half of that using R1 (7 vs. 16). The subset size using Q3 is a quarter of that 
using R3 (3 vs. 12). However, the subset sizes Q2 and R2 (Q4 and R4) are within 
one of each other (are equal). 

The correlation between the rank values and the normal score values is 0.983. 
The R-code of Appendix B produces Figure 2. The left displays the normal 
scores vs. the rank scores along with the least squares regression line (Reg Line). 
The linear fit looks quite good with the exception of the two or three end points 
on both sides. A notable difference in the rank values and the normal score val-
ues is the spacing between successive values. The spacing between any two suc-
cessive values of the uniform order statistics is 1/(k + 1), and so the difference in 
rank values is one, a constant. For the normal scores the spacing for extreme 
values is much larger than the other spacings. Figure 2 (right) displays the dif-
ferences between the successive expected values of the order statistics from the 
standard normal distribution for k = 51, i.e., [ ] ( ) ( )diff 1x a x a x= + − ,  

1, ,50x = �  (see Appendix B for the R-code). For example, for x = 1,  
[ ] ( ) ( )diff 1 2 1 0.39307a a= − = , the maximum spacing value shared with diff[50]. 

The minimum spacing value is diff[25] = diff[26] = 0.04896. Thus the more ex-
treme values carry a substantially larger differential weight than the more mod-
erate values, and the spacings are symmetric about the point 25.5 as indicated by 
the vertical line in the right panel. 

5. Applications to the State Homicide Rates (SHRs) Data 

The data set, as analyzed by Wang and McDonald [10] is given in the R-code of  
 

 
Figure 2. Comparison of normal scores and ranks for k = 51. 
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Appendix C. It consists of state homicide rates (i.e., homicides per 100,000 res-
idents) for the years 2005, 2014-2020. An indicated rate of 0.00 is not actually 
zero since only 2 decimal points were retained for the data. The SHRs are ob-
tained from the Center for Disease Control and Prevention (CDC) at 
https://www.cdc.gov/nchs/pressroom/sosmap/homicide_mortality/homicide.htm.
The CDC website does not contain data for the years 2006 through 2013. 

The transformation, x0.4, applied to the SHRs results in a two-way additive 
model which, plausibly, lacks interaction between the categorical variables ‘state’ 
and ‘year’ based on the Tukey one degree-of-freedom test. Since this transfor-
mation is monotone, analysis can be done directly with the rates without the 
power transformation as is done in Section 4. The rank sums and the normal 
score sums, calculated with the R-code of Appendix C, are given in Table 4. 

 
Table 4. Rank sums and normal score sums for SHR data, k = 50, n = 8. 

State Rank Sum State Rank Sum State NS Sum State NS Sum 

VT 24 WV 217 NH −14.25764 WV 0.66234 

NH 25 TX 230 VT −13.84980 TX 1.31531 

ME 27 PA 239 ME −13.11673 PA 1.77072 

UT 58 IN 244 ND −10.29260 IN 1.83492 

ID 61 KY 245 ID −9.15845 KY 2.12983 

MA 61 AZ 249 RI −9.09363 AZ 2.64468 

ND 61 FL 256 UT −8.85947 FL 2.66931 

RI 62 OH 262 MA −8.66497 OH 3.00196 

MN 69 MI 266 MN −7.98909 MI 3.22598 

HI 72 NC 274 HI −7.72306 NC 3.66404 

IA 84 NV 282 WY −7.07594 NV 4.18924 

OR 98 AK 285 IA −6.88568 DE 4.33158 

WY 99 DE 285 OR −5.78677 AK 4.78824 

NE 103 OK 307 NE −5.69598 OK 5.72751 

CT 116 GA 314 CT −4.66888 GA 6.03714 

WA 128 IL 316 WA −3.96127 IL 6.27973 

NY 133 TN 333 NY −3.72165 TN 7.46995 

SD 149 AR 346 SD −2.85342 AR 8.60699 

MT 154 NM 347 MT −2.57816 NM 8.72040 

NJ 156 SC 356 NJ −2.46596 SC 9.40882 

CO 157 MO 361 CO −2.39117 MO 10.12647 

WI 158 MD 362 WI −2.34701 MD 10.37644 

KS 196 AL 384 KS −0.40414 AL 13.09039 

VA 199 MS 390 VA −0.24508 MS 14.87734 

CA 202 LA 398 CA −0.06694 LA 17.20416 

https://doi.org/10.4236/am.2024.155022
https://www.cdc.gov/nchs/pressroom/sosmap/homicide_mortality/homicide.htm


G. C. McDonald, S. Alsaeed 
 

 

DOI: 10.4236/am.2024.155022 365 Applied Mathematics 
 

Applying the selection rules to the SHRs data set, the constants b1, …, b4 and 
d1, …, d4 need to be obtained as in Section 4 and given in Table 5 (to 2 dp). For 
this data set, k = 50 states and n = 8 years. The b1 (and b3) are obtained from the 
R-code given in Appendix D based on 50,000 simulations. The b2 and b4 values 
are obtained using the Appendix E R-code. Similarly, the d1 (and d3) are ob-
tained from Appendix F, and d2 and d4 from Appendix G. A simulation ap-
proach seems preferable to the asymptotic approach used in Section 5 since n is 
relatively small. For comparison, the asymptotic values of the selection constants 
are given in the last row of Table 5 in italics and are seen to be quite close to the 
simulated values. The sum of squares for the normal scores, ssq for k = 50 and n 
= 8, is 47.4217 and is used in the calculations for the asymptotic values. 

Table 6 provides the number of selected states in the subsets chosen by the 
four rules using rank sums and the four rules using normal scores. As noted for 
the MVTFRs (Table 3), clearly the number of populations chosen using the rank 
sum vs. the normal score sum makes a substantial difference. The subset size 
using Q1 is less than half that using R1 (9 vs. 19). The subset size using Q3 is sub-
stantially less in comparison to that of R3 (15 vs. 22). However, the subset sizes 
Q2 and R2 (Q4 and R4) are within one (two) of each other. The results of the 
comparative analyses of the MVTFRs and the SHRs are very similar. 

6. Summary and Conclusions 

As observed here, R2 chooses substantially more populations in the selected sub-
set than does rule R1. This might be expected since R2 guarantees a probability of 
correct selection to be no less than P* for any configuration of the population 
θ-parameters, while that guarantee for rule R1 is proven for slippage configura-
tions of the θ-parameters. However, limited simulation studies do suggest that 
the stronger unconstrained P* guarantee for R1 may hold for some classes of dis-
tributions (e.g., see Lorenzen and McDonald [6]). In general for the rank sums, 
( ) ( )1 2 max , 1, ,jn k T j k n k+ ≤ = ≤ ⋅� , so for k = 51 and n = 19, 494 ≤ max (Tj) 

≤ 969. For P* = 0.90, b1 = 237.53, so ( ) 1256.47 max 731.47jT b≤ − ≤ . With b1 = 
237.53 and max (Tj) = 930, then rule R1 selects all states such that Ti ≥ 692.47. 
For rule R2 the determination of b2 as seen in (2.7) does not depend on the ranks. 
It depends only on k, n, and P*. So here b2 = 411.77 and thus R2 chooses all states  

 
Table 5. Selection rules constants for the SHRs (k = 50, n = 8, and P* = 0.90). 

R1 R2 R3 R4 Q1 Q2 Q3 Q4 

b1 = 148 b2 = 151 b3 = 148 b4 = 257 d1 = 10.13 d2 = −3.54 d3 = 10.13 d4 = 3.54 

150.85 151.7 150.85 256.3 10.18 −3.53 10.18 3.53 

 
Table 6. Number of states chosen by selection rules with P* = 0.90, k = 50, and n = 8. 

R1 R2 R3 R4 Q1 Q2 Q3 Q4 

19 32 22 32 9 33 15 34 
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such that Ti > 411.77. So which rule places more populations in the selected sub-
set depends on max(Tj). If its value is relatively close to the upper bound n·k, 
then R1 chooses fewer populations than R2. If its value is relatively close to the 
lower bound n(k + 1)/2, then R1 chooses more populations than R2. 

With the traffic fatality rates considered here, rule Q1 placed seven states in 
the selected subset and rule R1 placed sixteen states in the selected subset. So 
which of these two rules to use in practice? From Figure 2, it appears that Q1 
would be the appropriate choice when it is desired to place relatively greater 
weight on the extreme three or four observations and the underlying distribu-
tion of the data is approximately symmetric. Figure 3 shows the values of the 
MVTFRs for the year 1994 to be approximately symmetric and normal, a cha-
racteristic shared by most of the years. Such a pattern seems to favor the choice 
of normal scores over the rank scores. 

The same statements would apply to the choice between Q3 and R3. Clearly 
there is more work to be done in this area of statistical inference. This article 
compared only two scoring rules based on the expected values of order statistics 
from two distributions, the uniform distribution and the normal distribution. 
Substantial differences in the size of selected subsets result from the application 
of these nonparametric subset selection rules to a study of state motor vehicle 
traffic fatality rates (state homicide rates) over a nineteen (eight) year period. Is 
it possible for R1 to place fewer populations in the selected subset than rule Q1? 

While the examples given in Sections 4 and 5 demonstrate that the selected 
subset size using rule Q1 (normal scores) can be smaller than that using rule R1 
(rank scores), it should be noted that this is not always so. Consider the case 
where the probability distributions for each of the populations share support 
over the same interval. Then it’s possible that within each block any rank order  

 

 
Figure 3. Distribution of 1994 motor vehicle traffic fatality rates for states. 
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Table 7. Ranked data for k = 7, n = 2, and selected populations noted in red, P* = 0.75. 

Population π1 π2 π3 π4 π5 π6 π7 

Block 1 ranks 1 2 3 4 5 6 7 

Block 2 ranks 1 3 2 7 5 6 4 

Ti 2 5 5 11 10 12 11 

Si −2.70436 −1.11008 −1.11008 1.35218 0.70542 1.51474 1.35218 

 
Table 8. The Number of Configurations (N) for Which the Number of Populations Cho-
sen by R1 Less the Number Chosen by Q1 is Equal to ∆ for k = 7, n = 2, and P* = 0.75 

∆ −2 −1 0 1 

N 40,320 665,280 23,486,400 1,209,600 

 
of the population observations can occur. Using the R-code in Appendix H with 
k = 7, n = 2, and P* = 0.75, it’s determined that b1 = 6 and d1 = 2.70436. Assum-
ing the observations yield the ranked values given in Table 7, then using the se-
lection rules given in (2.1) and (2.9) rule R1 chooses four populations and rule, 
Q1 chooses six populations. 

With k = 7, there are seven factorial (5040) permutations of possible rank or-
ders for a given block. Thus, with k = 7 and n = 2 there are 50402 = 25,401,600 
possible rank order configurations for this experimental design with two blocks. 
The number of these configurations yielding specific differences in number of 
populations chosen by the two ranking procedures is calculated with the R-code 
in Appendix H and is given in Table 8. Negative ∆-values indicate that subset 
selections using R1 result in fewer chosen population that does that using Q1. 
The specific configuration given in Table 7 is one of the 40,320 given in Table 8 
under ∆ = −2. Of the total number of possible configurations, 705,600 (or ap-
proximately 2.8 percent) yield smaller subset sizes chosen by R1 compared to 
that of Q1. 

Given the findings in this article, what should be done in practice? The state of 
theoretical development along with observance of outcomes using differing 
scoring rules, suggests analyses should be carried out with several scoring rules, 
such as ranks and normal scores, for a fixed value of P*. Then use the results that 
yield the smaller subset size for the given probability of correct selection criteria. 
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Appendix A 

#MVTFR Ranks 1994_2012 
#Rank sums for the MVTFRs 
#WIREs Comput Stat 2016, 8:222-237, doi: 10.1002/wics.1385 
#k is the number of populations (e.g., states); n is the number of blocks (e.g., years) 
k=51;n=19 
State=c("AL","AK","AZ","AR","CA","CO","CT","DE","DC","FL","GA","HI","ID","IL","IN","IA", 
"KS","KY","LA","ME","MD","MA","MI","MN","MS","MO","MT","NE","NV","NH","NJ","NM","NY", 
"NC","ND","OH","OK","OR","PA","RI","SC","SD","TN","TX","UT","VT","VA","WA","WV","WI","WY") 
y1994=c(2.21,2.05,2.33,2.44,1.56,1.74,1.14,1.59,2.00,2.2,1.72,1.54,2.15,1.68,1.59,1.86,1.79, 
1.95,2.25,1.51,1.47,0.94,1.67,1.49,2.77,1.9,2.22,1.75,2.26,1.13,1.26,2.18,1.49,1.99,1.39, 
1.4,1.93,1.68,1.56,0.89,2.27,2.02,2.23,1.79,1.9,1.25,1.38,1.35,2.08,1.42,2.15) 
y1995=c(2.2,2.11,2.61,2.37,1.52,1.84,1.13,1.61,1.67,2.19,1.74,1.64,2.13,1.68,1.49,2.03,1.76, 
2.07,2.31,1.49,1.5,0.92,1.79,1.35,2.94,1.87,2.28,1.61,2.24,1.11,1.27,2.29,1.46,1.9,1.13, 
1.35,1.74,1.91,1.57,1.00,2.28,2.06,2.24,1.76,1.73,1.71,1.29,1.33,2.16,1.45,2.41) 
y1996=c(2.23,1.97,2.36,2.21,1.43,1.71,1.1,1.51,1.59,2.12,1.76,1.84,1.99,1.53,1.49,1.73,1.89, 
1.98,2.37,1.32,1.32,0.83,1.67,1.3,2.65,1.88,2.12,1.8,2.18,1.22,1.31,2.25,1.34,1.89,1.26, 
1.35,1.96,1.73,1.52,0.97,2.34,2.24,2.12,2.02,1.64,1.38,1.23,1.44,1.97,1.44,1.94) 
y1997=c(2.23,1.76,2.19,2.35,1.32,1.62,1.19,1.79,1.8,2.08,1.69,1.65,2.01,1.41,1.36,1.67,1.82, 
1.97,2.44,1.45,1.31,0.87,1.58,1.22,2.73,1.89,2.82,1.77,2.13,1.12,1.23,2.21,1.37,1.81,1.47, 
1.39,2.02,1.62,1.59,1.06,2.18,1.86,2.02,1.77,1.79,1.48,1.4,1.32,2.08,1.33,1.81) 
y1998=c(1.94,1.55,2.17,2.2,1.2,1.6,1.12,1.4,1.63,2.05,1.63,1.5,1.97,1.38,1.42,1.55,1.82,1.91, 
2.3,1.42,1.25,0.78,1.46,1.31,2.77,1.81,2.47,1.79,2.19,1.11,1.15,1.91,1.23,1.87,1.25,1.36,1.8, 
1.61,1.48,0.93,2.34,2.04,1.94,1.74,1.65,1.58,1.29,1.27,1.9,1.26,1.92) 
y1999=c(2.03,1.74,2.18,2.07,1.19,1.54,1.01,1.18,1.18,2.06,1.52,1.21,1.99,1.42,1.46,1.68,1.95, 
1.75,2.28,1.28,1.2,0.8,1.44,1.22,2.66,1.64,2.24,1.64,2.01,1.18,1.11,2.05,1.26,1.71,1.64,1.36, 
1.74,1.19,1.52,1.06,2.41,1.82,2.01,1.67,1.63,1.38,1.19,1.21,2.08,1.31,2.42) 
y2000=c(1.76,2.3,2.11,2.24,1.22,1.63,1.11,1.49,1.37,1.99,1.47,1.55,2.04,1.38,1.25,1.51,1.64, 
1.75,2.3,1.19,1.17,0.82,1.41,1.19,2.67,1.72,2.4,1.53,1.83,1.05,1.08,1.9,1.13,1.74,1.19,1.29, 
1.5,1.33,1.49,0.96,2.34,2.05,1.99,1.72,1.65,1.12,1.24,1.18,2.14,1.4,1.88) 
y2001=c(1.75,1.89,2.12,2.08,1.27,1.73,1.03,1.58,1.81,1.77,1.53,1.61,1.84,1.37,1.27,1.49,1.75, 
1.83,2.2,1.33,1.27,0.9,1.34,1.06,2.18,1.62,2.3,1.36,1.72,1.15,1.08,2.00,1.2,1.67,1.45,1.29, 
1.57,1.42,1.49,1.01,2.27,2.00,1.85,1.73,1.24,1.17,1.27,1.21,1.91,1.33,2.16) 
y2002=c(1.8,1.82,2.18,2.13,1.27,1.71,1.04,1.4,1.33,1.76,1.41,1.34,1.86,1.35,1.09,1.31,1.78, 
1.95,2.09,1.47,1.23,0.86,1.28,1.2,2.43,1.77,2.59,1.64,2.12,1.01,1.1,1.97,1.15,1.7,1.32,1.31, 
1.62,1.26,1.54,1.03,2.23,2.12,1.73,1.73,1.34,0.98,1.18,1.2,2.19,1.37,1.95) 
y2003=c(1.71,1.98,2.07,2.09,1.31,1.48,0.95,1.57,1.87,1.71,1.47,1.43,2.05,1.36,1.15,1.42,1.64, 
1.99,2.13,1.39,1.19,0.86,1.27,1.18,2.33,1.81,2.41,1.54,1.91,0.98,1.05,1.92,1.11,1.66,1.41,1.17, 
1.47,1.46,1.48,1.24,2.01,2.38,1.73,1.71,1.29,0.83,1.23,1.09,1.96,1.42,1.79) 
y2004=c(1.95,2.02,2.01,2.22,1.25,1.45,0.93,1.44,1.15,1.65,1.44,1.46,1.77,1.24,1.3,1.23,1.57, 
2.04,2.08,1.3,1.16,0.87,1.12,1.00,2.28,1.64,2.04,1.32,1.95,1.26,0.99,2.18,1.08,1.64,1.32,1.15, 
1.67,1.28,1.38,0.98,2.11,2.24,1.89,1.6,1.2,1.25,1.17,1.02,2.02,1.31,1.77) 
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y2005=c(1.92,1.45,1.97,2.05,1.32,1.26,0.88,1.4,1.29,1.75,1.52,1.39,1.85,1.27,1.31,1.45,1.44, 
2.08,2.14,1.13,1.09,0.8,1.09,0.98,2.32,1.83,2.26,1.43,2.06,1.24,1.01,2.04,1.03,1.53,1.62, 
1.2,1.71,1.38,1.5,1.05,2.21,2.22,1.79,1.5,1.12,0.95,1.18,1.17,1.82,1.36,1.88) 
y2006=c(1.99,1.49,2.07,2.01,1.29,1.1,0.98,1.57,1.02,1.65,1.49,1.58,1.76,1.17,1.27,1.4,1.55, 
1.91,2.17,1.25,1.16,0.78,1.04,0.87,2.2,1.59,2.34,1.39,1.97,0.93,1.02,1.88,1.03,1.53,1.41, 
1.11,1.57,1.35,1.41,0.98,2.08,2.08,1.82,1.48,1.11,1.11,1.19,1.12,1.96,1.22,2.07) 
y2007=c(1.81,1.59,1.7,1.96,1.22,1.14,0.92,1.23,1.22,1.56,1.46,1.33,1.6,1.16,1.23,1.43,1.38, 
1.8,2.19,1.22,1.09,0.79,1.04,0.89,2.04,1.43,2.45,1.32,1.68,0.96,0.95,1.54,0.97,1.62,1.42, 
1.13,1.61,1.31,1.37,0.8,2.11,1.62,1.7,1.42,1.11,0.86,1.25,1.0,2.1,1.27,1.6) 
y2008=c(1.63,1.27,1.52,1.81,1.05,1.15,0.95,1.35,0.94,1.5,1.37,1.04,1.52,0.98,1.11,1.34,1.29, 
1.74,2.03,1.06,1.07,0.67,0.96,0.78,1.79,1.41,2.12,1.09,1.56,1.06,0.8,1.39,0.92,1.4,1.33,1.1, 
1.55,1.24,1.36,0.79,1.86,1.35,1.5,1.48,1.06,1.0,1.0,0.94,1.82,1.05,1.68) 
y2009=c(1.38,1.3,1.31,1.8,0.95,1.01,0.71,1.28,0.8,1.3,1.18,1.09,1.46,0.86,0.9,1.19,1.31,1.67, 
1.84,1.1,0.99,0.62,0.9,0.74,1.73,1.27,2.01,1.15,1.19,0.85,0.8,1.39,0.87,1.28,1.72,0.92,1.57, 
1.11,1.22,1.01,1.82,1.48,1.4,1.35,0.93,0.97,0.94,0.87,1.82,0.96,1.4) 
y2010=c(1.34,1.17,1.27,1.7,0.84,1.96,1.02,1.13,0.67,1.25,1.12,1.13,1.32,0.88,1.0,1.24,1.44, 
1.58,1.59,1.11,0.88,0.64,0.97,0.73,1.61,1.16,1.69,0.98,1.16,0.98,0.76,1.38,0.92,1.29,1.27, 
0.97,1.4,0.94,1.32,0.81,1.65,1.58,1.47,1.29,0.95,0.98,0.9,0.8,1.64,0.96,1.66) 
y2011=c(1.38,1.57,1.39,1.67,0.88,0.96,0.71,1.1,0.76,1.25,1.13,0.99,1.05,0.89,0.98,1.15,1.29, 
1.5,1.46,0.95,0.86,0.68,0.94,0.65,1.62,1.14,1.79,0.95,1.02,0.71,0.86,1.36,0.92,1.19,1.62, 
0.91,1.47,0.99,1.3,0.84,1.7,1.23,1.32,1.29,0.93,0.77,0.94,0.8,1.78,0.99,1.46) 
y2012=c(1.33,1.23,1.37,1.65,0.88,1.01,0.75,1.24,0.42,1.27,1.11,1.25,1.13,0.91,0.99,1.16,1.32, 
1.58,1.54,1.16,0.89,0.62,0.99,0.69,1.51,1.21,1.72,1.1,1.07,0.84,0.79,1.43,0.91,1.23,1.69, 
1.0,1.48,1.01,1.32,0.82,1.76,1.46,1.42,1.43,0.82,1.07,0.96,0.78,1.76,1.04,1.33) 
MV<-data.frame(State,y1994,y1995,y1996,y1997,y1998,y1999,y2000,y2001,y2002,y2003,y2004, 
y2005,y2006,y2007,y2008,y2009,y2010,y2011,y2012) 
MV 
#Tied ranks are resolved at random 
x1<-rank(y1994,ties.method="random");x2<-rank(y1995,ties.method="random") 
x3<-rank(y1996,ties.method="random");x4<-rank(y1997,ties.method="random") 
x5<-rank(y1998,ties.method="random");x6<-rank(y1999,ties.method="random") 
x7<-rank(y2000,ties.method="random");x8<-rank(y2001,ties.method="random") 
x9<-rank(y2002,ties.method="random");x10<-rank(y2003,ties.method="random") 
x11<-rank(y2004,ties.method="random");x12<-rank(y2005,ties.method="random") 
x13<-rank(y2006,ties.method="random");x14<-rank(y2007,ties.method="random") 
x15<-rank(y2008,ties.method="random");x16<-rank(y2009,ties.method="random") 
x17<-rank(y2010,ties.method="random");x18<-rank(y2011,ties.method="random") 
x19<-rank(y2012,ties.method="random") 
ra<-data.frame(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11, 
x12,x13,x14,x15,x16,x17,x18,x19) 
#ra 
ram<-as.matrix(ra) 
ram 
RkSum<-rep(0,k) 
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for (i in 1:k){RkSum[i]<-sum(ram[i,])} 
#RkSum 
StRk<-data.frame(State,RkSum) 
#StRk 
StRkOrd<-StRk[order(StRk$RkSum),] 
#StRkOrd 
NorSc<-rep(0,51) 
#The following are approximations to exact values given by Harter 
#for (i in 1:k){NorSc[i]<-qnorm(i/(k+1))} 
#NorSc<-round(NorSc,4) 
#The following expected values of normal order stats are taken from 
#"Expected Values of Normal Order Statistics," by H. Leon Harter (1961) 
#If two states are tied and the rank values are r1 and r2 (r1<r2), then r1 
#is assigned to the state that is lower in alphabetical order (using the  
#two letter state abbreviation; r2 is assigned to the other state.   
#Similarly if three are more states are tied in their MVTFRs. 
NorSc<-c(-2.25678,-1.86371,-1.63829,-1.47409,-1.34207,-1.23003,-1.13162, 
-1.04312,-0.96213,-0.88701,-0.81661,-0.75004,-0.68666,-0.62592,-0.56742, 
-0.51080,-0.45578,-0.40211,-0.34957,-0.29799,-0.24719,-0.19702,-0.14735, 
-0.09803,-0.04896,0,0.04896,0.09803,0.14735,0.19702,0.24719,0.29799, 
0.34957,0.40211,0.45578,0.51080,0.56742,0.62592,0.68666,0.75004,0.81661, 
0.88701,0.96213,1.04312,1.13162,1.23003,1.34207,1.47409,1.63829,1.86371, 
2.25678) 
sum(NorSc) 
#NorSc 
df94<-data.frame(State,x1) 
ns94<-rep(0,51) 
for (i in 1:51){ns94[i]<-NorSc[x1[i]]} 
df94<-data.frame(State,x1,ns94) 
#df94 
# 
df95<-data.frame(State,x2) 
ns95<-rep(0,51) 
for (i in 1:51){ns95[i]<-NorSc[x2[i]]} 
df95<-data.frame(State,x2,ns95) 
#df95 
# 
df96<-data.frame(State,x3) 
ns96<-rep(0,51) 
for (i in 1:51){ns96[i]<-NorSc[x3[i]]} 
df96<-data.frame(State,x3,ns96) 
#df96 
# 
df97<-data.frame(State,x4) 
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ns97<-rep(0,51) 
for (i in 1:51){ns97[i]<-NorSc[x4[i]]} 
df97<-data.frame(State,x4,ns97) 
#df97 
# 
df98<-data.frame(State,x5) 
ns98<-rep(0,51) 
for (i in 1:51){ns98[i]<-NorSc[x5[i]]} 
df98<-data.frame(State,x5,ns98) 
#df98 
# 
df99<-data.frame(State,x6) 
ns99<-rep(0,51) 
for (i in 1:51){ns99[i]<-NorSc[x6[i]]} 
df99<-data.frame(State,x6,ns99) 
#df99 
# 
df00<-data.frame(State,x7) 
ns00<-rep(0,51) 
for (i in 1:51){ns00[i]<-NorSc[x7[i]]} 
df00<-data.frame(State,x7,ns00) 
#df00 
# 
df01<-data.frame(State,x8) 
ns01<-rep(0,51) 
for (i in 1:51){ns01[i]<-NorSc[x8[i]]} 
df01<-data.frame(State,x8,ns01) 
#df01 
# 
df02<-data.frame(State,x9) 
ns02<-rep(0,51) 
for (i in 1:51){ns02[i]<-NorSc[x9[i]]} 
df02<-data.frame(State,x9,ns02) 
#df02 
# 
df03<-data.frame(State,x10) 
ns03<-rep(0,51) 
for (i in 1:51){ns03[i]<-NorSc[x10[i]]} 
df03<-data.frame(State,x10,ns03) 
#df03 
# 
df04<-data.frame(State,x11) 
ns04<-rep(0,51) 
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for (i in 1:51){ns04[i]<-NorSc[x11[i]]} 
df04<-data.frame(State,x11,ns04) 
#df04 
# 
df05<-data.frame(State,x12) 
ns05<-rep(0,51) 
for (i in 1:51){ns05[i]<-NorSc[x12[i]]} 
df05<-data.frame(State,x12,ns05) 
#df05 
# 
df06<-data.frame(State,x13) 
ns06<-rep(0,51) 
for (i in 1:51){ns06[i]<-NorSc[x13[i]]} 
df06<-data.frame(State,x13,ns06) 
#df06 
# 
df07<-data.frame(State,x14) 
ns07<-rep(0,51) 
for (i in 1:51){ns07[i]<-NorSc[x14[i]]} 
df07<-data.frame(State,x14,ns07) 
#df07 
# 
df08<-data.frame(State,x15) 
ns08<-rep(0,51) 
for (i in 1:51){ns08[i]<-NorSc[x15[i]]} 
df08<-data.frame(State,x15,ns08) 
#df08 
# 
df09<-data.frame(State,x16) 
ns09<-rep(0,51) 
for (i in 1:51){ns09[i]<-NorSc[x16[i]]} 
df09<-data.frame(State,x16,ns09) 
#df09 
# 
df10<-data.frame(State,x17) 
ns10<-rep(0,51) 
for (i in 1:51){ns10[i]<-NorSc[x17[i]]} 
df10<-data.frame(State,x17,ns10) 
#df10 
# 
df11<-data.frame(State,x18) 
ns11<-rep(0,51) 
for (i in 1:51){ns11[i]<-NorSc[x18[i]]} 
df11<-data.frame(State,x18,ns11) 
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#df11 
# 
df12<-data.frame(State,x19) 
ns12<-rep(0,51) 
for (i in 1:51){ns12[i]<-NorSc[x19[i]]} 
df12<-data.frame(State,x19,ns12) 
#df12 
# 
Ns<-data.frame(ns94,ns95,ns96,ns97,ns98,ns99,ns00,ns01, 

ns02,ns03,ns04,ns05,ns06,ns07,ns08,ns09,ns10,ns11,ns12) 
scm<-as.matrix(Ns) 
#scm 
NsSum<-rep(0,k) 
for (i in 1:k){NsSum[i]<-sum(scm[i,])} 
#NsSum 
StRkNs<-data.frame(State,NsSum) 
#StRkNs 
# 
StNs<-data.frame(State,NsSum) 
StNs 
StNsOrd<-StNs[order(StNs$NsSum),] 
StNsOrd 
StRks<-data.frame(State,RkSum) 
StRks 
StRksOrd<-StRks[order(StRks$RkSum),] 
StRksOrd 
# 
Summary<-data.frame(StRkOrd,StNsOrd) 
Summary 
#check on distribution of MVTFRs for one year, 1994 
hist(y1994,col='red',freq=FALSE, 
main="Histogram of 1994 MVTFRs\n Normal Density Overlay") 
low<-min(y1994)-0.1;up<-max(y1994)+0.1 
curve(dnorm(x,mean(y1994),sd(y1994),),from=low,to=up,add=TRUE) 

Appendix B 

#Regression of exp51 and seq(2:51) 
#Differences in the Expected value of normal order stats, n=51 
exp51<-c(-2.25678,-1.86371,-1.63829,-1.47409,-1.34207,-1.23003,-1.13162, 
-1.04312,-0.96213,-0.88701,-0.81661,-0.75004,-0.68666,-0.62592,-0.56742, 
-0.51080,-0.45578,-0.40211,-0.34957,-0.29799,-0.24719,-0.19702,-0.14735, 
-0.09803,-0.04896,0,0.04896,0.09803,0.14735,0.19702,0.24719,0.29799, 
0.34957,0.40211,0.45578,0.51080,0.56742,0.62592,0.68666,0.75004,0.81661, 
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0.88701,0.96213,1.04312,1.13162,1.23003,1.34207,1.47409,1.63829,1.86371, 
2.25678) 
sum(exp51) 
diff<-rep(0,50) 
for (i in 1:50){ 
diff[i]<-exp51[i+1]-exp51[i] 
} 
diff 
x<-seq(1:50) 
#plot(x,diff,main="Difference in expected values of normal order stats\n k = 51") 
#1st point is E[X(2)]-E[X(1)], 2nd point is E[X(3)]-E[X(2)], etc. 
xx<-seq(1:51) 
par(mfrow=c(1,2)) 
model<-lm(exp51~xx) 
plot(xx,exp51,xlab="Ranks",ylab="Normal Scores",main="Normal Scores vs.\n Rank Values, k = 51", 
cex.main=1,pch=16) 
abline(model,col="red",lwd=2) 
legend("topleft","Reg Line\nR^2 = 0.967",col="red",lty=1,cex=0.8,bg="yellow") 
plot(x,diff,xlab="Ranks",ylab="Difference",cex.main=1, 
main="Diff in Expected Values of\n Normal Order Stats, k = 51",pch=16) 
abline(v=25.5,col="red",lty=2) 

Appendix C 

#State Homicide Rates 2005,2014-2020 
#Rank sums for the HRs 
#Applied Mathematics,2022,13,585-601 
#https://www.scirp.org/journal/am 
#k is the number of populations (e.g., states); n is the number of blocks (e.g., years) 
k=50;n=8 
State=c("AK","AL","AR","AZ","CA","CO","CT","DE","FL","GA","HI","IA","ID","IL","IN",”KS”, 
"KY","LA","MA","MD","ME","MI","MN","MO","MS","MT","NC","ND","NE","NH","NJ","NM","NV", 
"NY","OH","OK","OR","PA","RI","SC","SD","TN","TX","UT","VA","VT","WA","WI","WV","WY") 
y2005=c(1.93,2.47,2.30,2.41,2.17,1.71,1.59,2.13,2.02,2.19,1.29,1.21,1.59,2.15,2.03,1.72, 
1.96,2.77,1.51,2.55,1.24,2.17,1.49,2.21,2.41,1.63,2.25,0.00,1.44,0.00,1.92,2.29,2.27, 
1.86,1.99,2.06,1.53,2.09,1.57,2.29,1.53,2.33,2.11,1.42,2.10,0.00,1.67,1.79,1.96,0.00) 
y2014=c(1.86,2.31,2.26,1.90,1.84,1.61,1.53,2.13,2.07,2.13,1.37,1.44,1.42,2.07,2.01,1.67, 
1.86,2.67,1.32,2.14,1.32,2.09,1.29,2.24,2.65,1.53,1.99,0.00,1.63,0.00,1.81,2.15,2.09, 
1.63,1.93,2.13,1.42,1.93,1.44,2.25,1.57,2.11,1.93,1.32,1.76,0.00,1.57,1.55,2.03,1.81) 
y2015=c(2.30,2.53,2.23,1.98,1.90,1.69,1.67,2.24,2.09,2.21,1.37,1.44,1.32,2.17,2.05,1.86, 
2.02,2.74,1.35,2.54,1.24,2.10,1.51,2.47,2.64,1.74,2.06,1.57,1.74,0.00,1.83,2.30,2.14,1.63, 
2.05,2.35,1.63,1.99,1.51,2.46,1.78,2.20,1.99,1.32,1.83,0.00,1.63,1.83,1.83,0.00) 
y2016=c(2.21,2.68,2.38,2.09,1.95,1.79,1.49,2.18,2.15,2.29,1.51,1.51,1.29,2.43,2.25,1.95, 
2.20,2.90,1.35,2.52,0.00,2.14,1.42,2.50,2.71,1.79,2.23,0.00,1.61,0.00,1.84,2.45,2.23,1.67, 
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2.11,2.36,1.61,2.05,1.40,2.41,1.86,2.39,2.05,1.44,1.98,0.00,1.53,1.87,2.09,0.00) 
y2017=c(2.57,2.78,2.49,2.13,1.92,1.84,1.59,2.17,2.10,2.29,1.44,1.63,1.55,2.41,2.20,2.11, 
2.21,2.91,1.47,2.53,0.00,2.09,1.37,2.64,2.76,1.79,2.17,0.00,1.49,0.00,1.76,2.35,2.25,1.55, 
2.24,2.35,1.57,2.13,0.00,2.44,1.78,2.39,2.02,1.47,1.96,0.00,1.67,1.69,2.11,0.00) 
y2018=c(2.24,2.72,2.42,2.06,1.87,1.86,1.51,2.15,2.13,2.26,1.57,1.49,1.40,2.30,2.23,2.03, 
2.06,2.82,1.40,2.44,0.00,2.11,1.40,2.65,2.82,1.78,2.10,1.44,1.29,1.27,1.69,2.59,2.26,1.59, 
2.15,2.18,1.44,2.10,0.00,2.53,1.72,2.43,1.96,1.37,1.92,0.00,1.69,1.72,2.02,1.76) 
y2019=c(2.59,2.77,2.45,2.03,1.83,1.79,1.57,2.06,2.14,2.31,1.44,1.49,1.24,2.31,2.20,1.89, 
2.03,2.93,1.40,2.51,1.27,2.11,1.51,2.59,2.99,1.69,2.18,1.57,1.57,1.51,1.63,2.68,1.98,1.59, 
2.13,2.39,1.55,2.06,1.44,2.61,1.67,2.43,2.03,1.47,1.95,0.00,1.59,1.78,2.01,1.81) 
y2020=c(2.21,2.89,2.79,2.24,2.06,2.02,1.84,2.50,2.27,2.56,1.61,1.67,1.44,2.63,1.48,2.18, 
2.46,3.31,1.49,2.65,1.21,2.38,1.67,2.87,3.35,2.13,2.36,1.81,1.76,0.00,1.79,2.59,2.21,1.86, 
2.42,2.41,1.71,2.35,1.55,2.76,2.11,2.66,2.25,1.53,2.10,0.00,1.78,2.06,2.18,1.89) 
HR<-data.frame(State,y2005,y2014,y2015,y2016,y2017,y2018,y2019,y2020) 
HR 
#Tied ranks are resolved at random 
x1<-rank(y2005,ties.method="random");x2<-rank(y2014,ties.method="random") 
x3<-rank(y2015,ties.method="random");x4<-rank(y2016,ties.method="random") 
x5<-rank(y2017,ties.method="random");x6<-rank(y2018,ties.method="random") 
x7<-rank(y2019,ties.method="random");x8<-rank(y2020,ties.method="random") 
ra<-data.frame(x1,x2,x3,x4,x5,x6,x7,x8) 
ram<-as.matrix(ra) 
#ram 
RkSum<-rep(0,k) 
for (i in 1:k){RkSum[i]<-sum(ram[i,])} 
#RkSum 
StRk<-data.frame(State,RkSum) 
#StRk 
StRkOrd<-StRk[order(StRk$RkSum),] 
#StRkOrd 
#NorSc taken from Harter, Biometrika (1961) 
NorSc<-c(-2.24907,-1.85487,-1.62863,-1.46374,-1.33109, 
-1.21846,-1.11948,-1.03042,-0.94887,-0.87321,-0.80225, 
-0.73513,-0.67117,-0.60986,-0.55077,-0.49354,-0.43789, 
-0.38357,-0.33036,-0.27807,-0.22653,-0.17559,-0.12511, 
-0.07494,-0.02496,0.02496,0.07494,0.12511,0.17559, 
0.22653,0.27807,0.33036,0.38357,0.43789,0.49354, 
0.55077,0.60986,0.67117,0.73513,0.80225,0.87321, 
0.94887,1.03042,1.11948,1.21846,1.33109,1.46374, 
1.62863,1.85487,2.24907) 
#Approx to exact NorSc given above 
#NorSc<-rep(0,k) 
#for (i in 1:k){NorSc[i]<-qnorm(i/(k+1))} 
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#NorSc<-round(NorSc,4) 
#NorSc 
df05<-data.frame(State,x1) 
df05<-df05[order(df05$x1,decreasing=FALSE),] 
df05<-cbind(df05,NorSc) 
#df05 
df05<-df05[order(df05$State,decreasing=FALSE),] 
#df05 
NS05<-df05$NorSc 
#NS05 
df14<-data.frame(State,x2) 
df14<-df14[order(df14$x2,decreasing=FALSE),] 
df14<-cbind(df14,NorSc) 
#df14 
df14<-df14[order(df14$State,decreasing=FALSE),] 
#df14 
NS14<-df14$NorSc 
#NS14 
df15<-data.frame(State,x3) 
df15<-df15[order(df15$x3,decreasing=FALSE),] 
df15<-cbind(df15,NorSc) 
#df15 
df15<-df15[order(df15$State,decreasing=FALSE),] 
#df15 
NS15<-df15$NorSc 
#NS15 
df16<-data.frame(State,x4) 
df16<-df16[order(df16$x4,decreasing=FALSE),] 
df16<-cbind(df16,NorSc) 
#df16 
df16<-df16[order(df16$State,decreasing=FALSE),] 
#df16 
NS16<-df16$NorSc 
#NS16 
df17<-data.frame(State,x5) 
df17<-df17[order(df17$x5,decreasing=FALSE),] 
df17<-cbind(df17,NorSc) 
#df17 
df17<-df17[order(df17$State,decreasing=FALSE),] 
#df17 
NS17<-df17$NorSc 
#NS17 
df18<-data.frame(State,x6) 
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df18<-df18[order(df18$x6,decreasing=FALSE),] 
df18<-cbind(df18,NorSc) 
#df18 
df18<-df18[order(df18$State,decreasing=FALSE),] 
#df18 
NS18<-df18$NorSc 
#NS18 
df19<-data.frame(State,x7) 
df19<-df19[order(df19$x7,decreasing=FALSE),] 
df19<-cbind(df19,NorSc) 
#df19 
df19<-df19[order(df19$State,decreasing=FALSE),] 
#df19 
NS19<-df19$NorSc 
#NS19 
df20<-data.frame(State,x8) 
df20<-df20[order(df20$x8,decreasing=FALSE),] 
df20<-cbind(df20,NorSc) 
#df20 
df20<-df20[order(df20$State,decreasing=FALSE),] 
#df20 
NS20<-df20$NorSc 
#NS20 
Ns<-data.frame(NS05,NS14,NS15,NS16,NS17,NS18,NS19,NS20) 
scm<-as.matrix(Ns) 
#scm 
NsSum<-rep(0,k) 
for (i in 1:k){NsSum[i]<-sum(scm[i,])} 
#NsSum 
StRkNs<-data.frame(State,RkSum,NsSum) 
#StRkNs 
# 
StNs<-data.frame(State,NsSum) 
StNsOrd<-StNs[order(StNs$NsSum),] 
#StNsOrd 
Summary<-data.frame(StRkOrd,StNsOrd) 
Summary 

Appendix D (b1 and b3) 

#Nonparametric Block Design Selection Procedure Based on Ranks 
#k=no. of population;n=no. of blocks;w=no. of simulations 
#P=min Prob of Correct Selection 
k<-50;n<-8;w<-50000;P=0.90 
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#calculate quantiles of max(T)-Ti for iid populations 
rnk<-seq(1:k);T<-rep(0,k);U<-rep(0,k);Q<-rep(0,w);b1<-0; 
V<-rep(0,k);C<-rep(0,k);W<-rep(0,k) 
for (h in 1:w){ 
M<-matrix(0,nrow=n,ncol=k) 
 for (j in 1:n){M[j,]<-sample(rnk,size=k,replace=FALSE)} 
 M 
 for (i in 1:k){T[i]<-sum(M[,i])} 
 T 
 for (j in 1:k){U[j]<-max(T)-T[j]} 
 U 
Q[h]<-U[k] 
} 
message("k = ",k,", n = ",n,", w = ",w,", P = ",P) 
quan<-c(0.50,0.75,0.90,0.95,0.99) 
Qile<-quantile(Q,quan) 
Qile 
Qile<-unname(Qile) 
Qile 
#table(Q) 
if (P==0.50){b1<-Qile[1]} 
if (P==0.75){b1<-Qile[2]} 
if (P==0.90){b1<-Qile[3]} 
if (P==0.95){b1<-Qile[4]} 
if (P==0.99){b1<-Qile[5]} 
c(P,b1) 
#Select population i iff Ti>=max(T)-b1 
a<-rep(1,k);b<-rep(5,k) 
V<-rep(0,k) 
for (h in 1:w){ 
C<-rep(0,k);x<-rep(0,k);rk<-rep(0,k);T<-rep(0,k) 
M<-matrix(0,nrow=n,ncol=k);U<-rep(0,k) 
 for (j in 1:n){ 
 for (i in 1:k){x[i]<-runif(1,a[i],b[i])} 
 rk<-rank(x) 
 M[j,]<-rk 
 } 
 M 
 for (i in 1:k){T[i]<-sum(M[,i])} 
 T 
 for (i in 1:k){U[i]<-max(T)-T[i] 
  if (U[i]<=b1){C[i]<-1} 
  else {C[i]<-0} 
 } 
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V<-V+C 
} 
message("The probabilities of population selections are")  
V/w 
ESS<-sum(V)/w 
message("The expected subset size is  ",round(ESS,3)) 

Appendix E (b2 and b4) 

#Nonparametric Block Design Selection Procedure Based on Ranks 
#k=no. of population;n=no. of blocks;w=no. of simulations 
#P=min Prob of Correct Selection 
k<-50;n<-8;w<-50000;P=0.90 
#calculate quantiles of Tk for iid populations 
rnk<-seq(1:k);T<-rep(0,k);U<-rep(0,k);Q<-rep(0,w);b1<-0; 
V<-rep(0,k);C<-rep(0,k);W<-rep(0,k) 
for (h in 1:w){ 
M<-matrix(0,nrow=n,ncol=k) 
 for (j in 1:n){M[j,]<-sample(rnk,size=k,replace=FALSE)} 
 for (i in 1:k){T[i]<-sum(M[,i])} 
Q[h]<-T[k] 
} 
message("k = ",k,", n = ",n,", w = ",w,", P = ",P) 
quan<-c(0.01,0.05,0.10,0.25,0.50) 
Qile<-quantile(Q,quan) 
Qile 
Qile<-unname(Qile) 
Qile 
#table(Q) 
if (P==0.50){b2<-Qile[5]} 
if (P==0.75){b2<-Qile[4]} 
if (P==0.90){b2<-Qile[3]} 
if (P==0.95){b2<-Qile[2]} 
if (P==0.99){b2<-Qile[1]} 
b4<-(n*(k+1))-b2 
message("P = ",P,",  b2 = ",b2,",  b4 = ",b4) 
#Select population i iff Ti>b2 
a<-rep(1,k);b<-rep(5,k) 
V<-rep(0,k) 
for (h in 1:w){ 
C<-rep(0,k);x<-rep(0,k);rk<-rep(0,k);T<-rep(0,k) 
M<-matrix(0,nrow=n,ncol=k);U<-rep(0,k) 
 for (j in 1:n){ 
 for (i in 1:k){x[i]<-runif(1,a[i],b[i])} 
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 rk<-rank(x) 
 M[j,]<-rk 
 } 
 for (i in 1:k){T[i]<-sum(M[,i])} 
 for (i in 1:k){U[i]<-T[i] 
  if (U[i]>b2){C[i]<-1} 
  else {C[i]<-0} 
 } 
V<-V+C 
} 
message("The probabilities of population selections are")  
V/w 
ESS<-sum(V)/w 
message("The expected subset size is  ",round(ESS,3)) 

Appendix F (d1 and d3 Values) 

#Nonparametric Block Design Selection Procedure Based on Normal Scores 
#k=no. of population;n=no. of blocks;w=no. of simulations 
#P=min Prob of Correct Selection 
k<-50;n<-8;w<-50000;P=0.90 
#calculate quantiles of max(T)-Ti for iid populations 
rnk<-seq(1:k);T<-rep(0,k);U<-rep(0,k);Q<-rep(0,w);b1<-0; 
V<-rep(0,k);C<-rep(0,k);W<-rep(0,k);nsc<-rep(0,k) 
#For approx expected values of normal order statistics use: 
#for (i in 1:k){nsc[i]<-qnorm(i/(k+1))} 
#for exact expected values of normal order stats read in: 
#nsc taken from Harter, Biometrika (1961) 
nsc<-c(-2.24907,-1.85487,-1.62863,-1.46374,-1.33109, 
-1.21846,-1.11948,-1.03042,-0.94887,-0.87321,-0.80225, 
-0.73513,-0.67117,-0.60986,-0.55077,-0.49354,-0.43789, 
-0.38357,-0.33036,-0.27807,-0.22653,-0.17559,-0.12511, 
-0.07494,-0.02496,0.02496,0.07494,0.12511,0.17559, 
0.22653,0.27807,0.33036,0.38357,0.43789,0.49354, 
0.55077,0.60986,0.67117,0.73513,0.80225,0.87321, 
0.94887,1.03042,1.11948,1.21846,1.33109,1.46374, 
1.62863,1.85487,2.24907) 
for (h in 1:w){ 
M<-matrix(0,nrow=n,ncol=k) 
 for (j in 1:n){M[j,]<-sample(nsc,size=k,replace=FALSE)} 
 M 
 for (i in 1:k){T[i]<-sum(M[,i])} 
 T 
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 for (j in 1:k){U[j]<-max(T)-T[j]} 
 U 
Q[h]<-U[k] 
} 
message("k = ",k,", n = ",n,", w = ",w,", P = ",P) 
quan<-c(0.50,0.75,0.90,0.95,0.99) 
Qile<-quantile(Q,quan) 
Qile 
Qile<-unname(Qile) 
Qile 
#table(Q) 
if (P==0.50){b1<-Qile[1]} 
if (P==0.75){b1<-Qile[2]} 
if (P==0.90){b1<-Qile[3]} 
if (P==0.95){b1<-Qile[4]} 
if (P==0.99){b1<-Qile[5]} 
c(P,b1) 
#Select population i iff Ti>=max(T)-b1 
a<-rep(1,k);b<-rep(2,k) 
V<-rep(0,k) 
for (h in 1:w){ 
C<-rep(0,k);W<-rep(0,k);x<-rep(0,k);rk<-rep(0,k);S<-rep(0,k) 
ns<-rep(0,k) 
M<-matrix(0,nrow=n,ncol=k) 
 for (j in 1:n){ 
 for (i in 1:k){x[i]<-runif(1,a[i],b[i])} 
 rk<-rank(x) 
 for (i in 1:k){ns[i]<-nsc[rk[i]]} 
 M[j,]<-ns 
 } 
 M 
 for (i in 1:k){S[i]<-sum(M[,i])} 
 S 
 for (i in 1:k){W[i]<-max(S)-S[i] 
  if (W[i]<=b1){C[i]<-1} 
  else {C[i]<-0} 
 } 
V<-V+C 
} 
message("The probabilities of population selections are")  
V/w 
ESS<-sum(V)/w 
message("The expected subset size is  ",round(ESS,3)) 

https://doi.org/10.4236/am.2024.155022


G. C. McDonald, S. Alsaeed 
 

 

DOI: 10.4236/am.2024.155022 383 Applied Mathematics 
 

Appendix G (d2 and d4 Values) 

#Nonparametric Block Design Selection Procedure Based on Normal Scores 
#k=no. of population;n=no. of blocks;w=no. of simulations 
#P=min Prob of Correct Selection 
k<-50;n<-8;w<-50000;P=0.90 
#calculate quantiles of max(T)-Ti for iid populations 
rnk<-seq(1:k);T<-rep(0,k);U<-rep(0,k);Q<-rep(0,w);b1<-0; 
V<-rep(0,k);C<-rep(0,k);W<-rep(0,k);nsc<-rep(0,k) 
#For approx expected values of normal order statistics use: 
#for (i in 1:k){nsc[i]<-qnorm(i/(k+1))} 
#for exact expected values of normal order stats read in: 
#nsc taken from Harter, Biometrika (1961) 
nsc<-c(-2.24907,-1.85487,-1.62863,-1.46374,-1.33109, 
-1.21846,-1.11948,-1.03042,-0.94887,-0.87321,-0.80225, 
-0.73513,-0.67117,-0.60986,-0.55077,-0.49354,-0.43789, 
-0.38357,-0.33036,-0.27807,-0.22653,-0.17559,-0.12511, 
-0.07494,-0.02496,0.02496,0.07494,0.12511,0.17559, 
0.22653,0.27807,0.33036,0.38357,0.43789,0.49354, 
0.55077,0.60986,0.67117,0.73513,0.80225,0.87321, 
0.94887,1.03042,1.11948,1.21846,1.33109,1.46374, 
1.62863,1.85487,2.24907) 
for (h in 1:w){ 
M<-matrix(0,nrow=n,ncol=k) 
 for (j in 1:n){M[j,]<-sample(nsc,size=k,replace=FALSE)} 
 for (i in 1:k){T[i]<-sum(M[,i])} 
Q[h]<-T[k] 
} 
message("k = ",k,", n = ",n,", w = ",w,", P = ",P) 
quan<-c(0.01,0.05,0.10,0.25,0.50) 
Qile<-quantile(Q,quan) 
Qile 
Qile<-unname(Qile) 
Qile 
#table(Q) 
if (P==0.50){d2<-Qile[5]} 
if (P==0.75){d2<-Qile[4]} 
if (P==0.90){d2<-Qile[3]} 
if (P==0.95){d2<-Qile[2]} 
if (P==0.99){d2<-Qile[1]} 
d4<--d2 
c(P,d2) 
message("P = ",P,",  d2 = ",d2,",  d4 = ",d4) 
#Select population i iff Ti>d2 
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a<-rep(1,k);b<-rep(5,k) 
V<-rep(0,k) 
for (h in 1:w){ 
C<-rep(0,k);W<-rep(0,k);x<-rep(0,k);rk<-rep(0,k);S<-rep(0,k) 
ns<-rep(0,k) 
M<-matrix(0,nrow=n,ncol=k) 
 for (j in 1:n){ 
 for (i in 1:k){x[i]<-runif(1,a[i],b[i])} 
 rk<-rank(x) 
 for (i in 1:k){ns[i]<-nsc[rk[i]]} 
 M[j,]<-ns 
 } 
 for (i in 1:k){S[i]<-sum(M[,i])} 
 for (i in 1:k){W[i]<-S[i] 
  if (W[i]>d2){C[i]<-1} 
  else {C[i]<-0} 
 } 
V<-V+C 
} 
message("The probabilities of population selections are")  
V/w 
ESS<-sum(V)/w 
message("The expected subset size is  ",round(ESS,3)) 

Appendix H 

#k = 7, n = 2 
#generates all the permutations of 1:7 
k<-7;n=2 
f<-factorial(k) 
f2<-f^2 
D<-matrix(0,nrow=f,ncol=k) 
E<-matrix(0,nrow=f,ncol=k) 
C<-matrix(0,nrow=f2,ncol=k) 
F<-matrix(0,nrow=f2,ncol=k) 
permutations <- function(n){ 
    if(n==1){ 
        return(matrix(1)) 
    } else { 
        sp <- permutations(n-1) 
        p <- nrow(sp) 
        A <- matrix(nrow=n*p,ncol=n) 
        for(i in 1:n){ 
            A[(i-1)*p+1:p,] <- cbind(i,sp+(sp>=i)) 
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        } 
        return(A) 
    } 
} 
D<-permutations(k) 
dim(D) 
head(D,5) 
tail(D,5) 
a<-c(rep(0,f));b<-c(rep(0,f)) 
for (i in 1:f){a[i]<-(i-1)*f+1 
 b[i]<-i*f 
 } 
#for (i in a[1]:b[1]){C[i,]<-D[1,]+D[i,]} 
#for (i in a[2]:b[2]){C[i,]<-D[2,]+D[i-f,]} 
#for (i in a[3]:b[3]){C[i,]<-D[3,]+D[i-2*f,]} 
#for (i in a[4]:b[4]){C[i,]<-D[4,]+D[i-3*f,]} 
#for (i in a[5]:b[5]){C[i,]<-D[5,]+D[i-4*f,]} 
#### 
#for (i in a[f]:b[f]){C[i,]<-D[f,]+D[i-(f-1)*f,]} 
#### 
for (i in 1:f){ 
for (j in 1:f){ 
C[(i-1)*f+j,]<-D[i,]+D[j,] 
} 
} 
 
dim(C) 
head(C,5) 
tail(C,5) 
S<-c(rep(0,f2))  
for(i in 1:f2){S[i]<-max(C[i,])-C[i,1]} 
head(S,5) 
tail(S,5) 
table(S) 
df<-data.frame(table(S)) 
df 
Pr<-df$Freq/f2 
Pr<-round(Pr,5) 
CDF<-cumsum(Pr) 
df1<-data.frame(df,Pr,CDF) 
df1 
########################### 
v3<-c(rep(0,f2)) 
for(i in 1:f2){v3[i]<-max(C[i,])-6} 
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message("max(Ti)-d for k = 7, n = 2, d = 6 and 
P* = 0.74904") 
head(v3,5) 
tail(v3,5) 
v2<-c(rep(0,f2)) 
for(i in 1:f2){v2[i]<-max(C[i,])-8} 
message("max(Ti)-d for k = 7, n = 2, d = 8 and 
P* = 0.906") 
head(v2,5) 
tail(v2,5) 
K<-c(rep(0,f2)) 
for (i in 1:f2){ 
 if (C[i,1]>=v3[i]){K[i]<-1} 
 if (C[i,2]>=v3[i]){K[i]<-K[i]+1} 
 if (C[i,3]>=v3[i]){K[i]<-K[i]+1} 
 if (C[i,4]>=v3[i]){K[i]<-K[i]+1} 
 if (C[i,5]>=v3[i]){K[i]<-K[i]+1} 
 if (C[i,6]>=v3[i]){K[i]<-K[i]+1} 
 if (C[i,7]>=v3[i]){K[i]<-K[i]+1} 
} 
length(K) 
message("number of pops chosen with k = 7, n = 2, 
d = 6, and P* = 0.74904 for each of the ",f2," rank sums") 
head(K,5) 
tail(K,5) 
L<-c(rep(0,f2)) 
for (i in 1:f2){ 
 if (C[i,1]>=v2[i]){L[i]<-1} 
 if (C[i,2]>=v2[i]){L[i]<-L[i]+1} 
 if (C[i,3]>=v2[i]){L[i]<-L[i]+1} 
 if (C[i,4]>=v2[i]){L[i]<-L[i]+1} 
 if (C[i,5]>=v2[i]){L[i]<-L[i]+1} 
 if (C[i,6]>=v2[i]){L[i]<-L[i]+1} 
 if (C[i,7]>=v2[i]){L[i]<-L[i]+1} 
} 
length(L) 
message("number of pops chosen with k = 7, n = 2, 
d = 8, and P* = 0.906 for each of the ",f2," rank sums") 
head(L,5) 
tail(L,5) 
##################################################### 
#Now replace ranks by normal scores (k=7) given by ns 
ns<-c(-1.35218,-0.75737,-0.35271,0,0.35271,0.75737,1.35218) 

https://doi.org/10.4236/am.2024.155022


G. C. McDonald, S. Alsaeed 
 

 

DOI: 10.4236/am.2024.155022 387 Applied Mathematics 
 

sum(ns) 
E<-matrix(0,nrow=f,ncol=k) 
for (i in 1:f){ 
 for (j in 1:k){ 
  for (m in 1:k){ 
  if (D[i,j]==m){E[i,j]<-ns[m]} 
  } 
 } 
} 
dim(E) 
for (i in 1:f){ 
for (j in 1:f){ 
F[(i-1)*f+j,]<-E[i,]+E[j,] 
} 
} 
dim(F) 
head(F,5) 
tail(F,5) 
U<-c(rep(0,f2)) 
for (i in 1:f2){U[i]<-max(F[i,])-F[i,1]} 
U<-round(U,5) 
length(U) 
head(U,5) 
tail(U,5) 
table(U) 
df3<-data.frame(table(U)) 
Pro<-df3$Freq/f2 
Pro<-round(Pro,5) 
CDF1<-cumsum(Pro) 
df4<-data.frame(df3,Pro,CDF1) 
df4[40:length(Pro),] 
################################ 
v5<-c(rep(0,f2)) 
for (i in 1:f2){v5[i]<-max(F[i,])-2.70436} 
message("max(Si)-d for k = 7, n = 2, d = 2.70436 
and P* = 0.75324") 
head(v5,5) 
tail(v5,5) 
v4<-c(rep(0,f2)) 
for (i in 1:f2){v4[i]<-max(F[i,])-3.62429} 
message("max(Si)-d for k = 7, n = 2, d = 3.62429 
and P* = 0.90840") 
head(v4,5) 
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tail(v4,5) 
K1<-c(rep(0,f2)) 
for (i in 1:f2){ 
 if (F[i,1]>=v5[i]){K1[i]<-1} 
 if (F[i,2]>=v5[i]){K1[i]<-K1[i]+1} 
 if (F[i,3]>=v5[i]){K1[i]<-K1[i]+1} 
 if (F[i,4]>=v5[i]){K1[i]<-K1[i]+1} 
 if (F[i,5]>=v5[i]){K1[i]<-K1[i]+1} 
 if (F[i,6]>=v5[i]){K1[i]<-K1[i]+1} 
 if (F[i,7]>=v5[i]){K1[i]<-K1[i]+1} 
} 
length(K1) 
message("number of pops chosen with k = 7, n = 2, 
d = 6, and P* = 0.74904 for each of the ",f2," norm scores") 
head(K1,5) 
tail(K1,5) 
L1<-c(rep(0,f2)) 
for (i in 1:f2){ 
 if (F[i,1]>=v4[i]){L1[i]<-1} 
 if (F[i,2]>=v4[i]){L1[i]<-L1[i]+1} 
 if (F[i,3]>=v4[i]){L1[i]<-L1[i]+1} 
 if (F[i,4]>=v4[i]){L1[i]<-L1[i]+1} 
 if (F[i,5]>=v4[i]){L1[i]<-L1[i]+1} 
 if (F[i,6]>=v4[i]){L1[i]<-L1[i]+1} 
 if (F[i,7]>=v4[i]){L1[i]<-L1[i]+1} 
} 
length(L1) 
message("number of pops chosen with k = 7, n = 2, 
d = 8, and P* = 0.906 for each of the ",f2," norm scores") 
head(L1,5) 
tail(L1,5) 
################################## 
#K-K1 < 0 means fewer pops chosen using rank scores at P* = 0.75 
#L-L1 < 0 means fewer pops chosen using rank scores at P* = 0.90 
Z<-K-K1 
max(Z) 
min(Z) 
W<-L-L1 
max(W) 
min(W) 
table(Z) 
table(W) 
#note that Z[142] = -2 
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#C[142,]=c(2,5,5,11,10,12,11) 
#C[142,]=c(1,2,3,4,5,6,7)+c(1,3,2,7,5,6,4)  
#rank sums = c(2,5,5,11,10,12,11) 
#norm scores = c(-2.70436,-1.11008,-1.11008,1.35218,0.70542, 
#  1.51474,1.35218) 
#Rank procedure chooses popi if Ti>=max(T)-6=6 so 4 chosen 
#Norm score procedure choose if Si>=max(S)-2.70436=-1.18962 so 6 chosen 
#Rank procedure chooses 2 fewer than Norm score procedure 
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