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Abstract 

The undirected power graph ( )nP Z  of a finite group nZ  is the graph with 
vertex set G and two distinct vertices u and v are adjacent if and only if u v≠  
and u v⊆  or v v⊆ . The Wiener index ( )( )nW P Z  of an undi-

rected power graph ( )nP Z  is defined to be sum ( ){ } ( )( ),

1 ,
2 nu v V P Z d u v

⊆∑  of 

distances between all unordered pair of vertices in ( )nP Z . Similarly, the 

edge-Wiener index ( )( )e nW P Z  of ( )nP Z  is defined to be the sum 

( ),

1 ,
2 e f d e f∑  of distances between all unordered pairs of edges in ( )nP Z . 

In this paper, we concentrate on the wiener index of a power graph ( )kP
P Z , 

( )pqP Z  and ( )pP Z . Firstly, we obtain new results on the wiener index and 

edge-wiener index of power graph ( )nP Z , using ,m n  and Euler ϕ  func-
tion. Also, we obtain an equivalence between the edge-wiener index and 
wiener index of a power graph of nZ . 
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1. Introduction 

We define an undirected power graph ( )P G  for a group G as follows. Let us de-
note the cylic subgroup genarated by u G∈  by u , that is, { }|mu u m= ∈ , 
where   denotes the set of naturel numbers. The graph ( )P G  is an undi-
rected graph where vertex set is G and two vertices ,u v G∈  are adjacent if and 
only if u v≠  and u v⊆  or v v⊆  (which is equivalent to say u v≠  
and mu v=  or mv u=  for some positive integer m.) [1] [2] [3] [4]. 
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For a graph G, let ( )deg u  and ( ),d u v  denote the degree of a vertex 
( )u V G∈  and the distance between vertices ( ),u v V G∈ , respectively. Let 

( )L G  denote the line graph of G, that is, the graph with vertex set ( )E G  and 
two distinct edges ( ),e f E G∈  adjacent in ( )L G  whenever they share an 
end-vertex in G. Furthermore, for, ( )f E G∈ , we let ( ),d e f  denote the dis-
tance between e and f in the line graph ( )L G . 

We consider the power graph ( )nP Z  for the additive group nZ  of integers 
modulo n. The diameter of a graph G is the greatest distance between any pair of 
vertices, and denoted by ( )diam G . In ( )nP Z , the distance is one if the vertices 
is adjacent and the distance is two if the vertices is non adjacent. Therefore, 

( )( ) 2ndiam P Z = . The order an element g  in nZ  is denoted by ( g ) or g . 
For a positive integer n, ( )nφ  denotes the Euler’s totient function of n. 

In this paper, the wiener index and the edge-wiener index, denoted by ( )W G  
and ( )eW G , respectively and they are defined as follows: 

( )
{ } ( )

( )
,

1 ,
2 u v V G

W G d u v
⊆

= ∑  

( )
{ } ( )

( )
,

1 ,
2e

e f E G
W G d e f

⊆

= ∑  

Now, we give some theorem and corollary in literature. Using our main theo-
rems; 

Theorem 1. ([5]) For each finite group, the number of edges of the undirected 
power graph ( )P G  is given by the formula  

( )( ) ( ) ( )( ){ }1 2 1
2 g G

E P G o g o gφ
∈

= − −∑  

Corollary 2. ([6]) The number of edges of the undirected power graph ( )nP Z  

is given by ( ){ } ( )|

1 2 1
2 d n d d dφ φ− −∑ . 

Theorem 3. ([3]) Let G be connected graph with n vertices and m edges. If 
( ) 2diam G ≤ , Then ( ) ( )1W G n n m= − − . 

Theorem 4. ([5]) A finite group has a complete undirected power graph if and 
only if it is cyclic and has order equal to pk, where p is a prime and k is a non-
negative integer. 

2. Main Results 

In this section, our aim is to give our main results on the Wiener index and the 
edge-Wiener index of an undirected power graph ( )nP Z  for kn p= , or n pq= , 
where p and q are distinct prime numbers and k is a nonnegative integer. 

Theorem 5. Let ( )nP Z  be an undirected power graph of with n vertices and 
m edges. Then  

( )( )
{ } ( )( ),

1,1
2,2

n

n
u v V P Z

u v
W P Z

u v⊆


= 


∑ 



 

Proof. Let  
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{ } ( )( ){ }, | ~ if only if , ornR u v V P Z u v u v u v v u= ⊆ ≠ ⊆ ⊆  be a set. 
In ( )nP Z , for { } ( )( ), nu v V P Z⊆ , there are two cases; If u v  then 
( ), 2d u v = . Otherwise, i.e. u v , then ( ), 1d u v = . Therefore  

( )( )
{ } ( )( )

( )

( ){ } { } ( )( )
{ } { }

{ }
{ }{ } ( )( )

,

, ,

, ,

,

1 ,
2

1 , ,
2
1 11 2
2 2

1, ,1
2 2, ,

n

n

n
u v V P Z

u v R u v R

u v R u v R

u v V P Z

W P Z d u v

d u v d u v

u v R

u v R

⊆

⊆

⊆

⊆

=

= +

= +

⊆= 


∑

∑ ∑

∑ ∑

∑







   

For definition of R, we obtain. Thus 

( )
{ } ( )( ),

1,1
2,2

nu v V P Z

u v
W G

u v⊆


= 


∑ 



 

the proof is complete. 
Corollary 6. Let p and k is prime number and nonnegative integer, respective-

ly. For ( )kp
P Z  power graph of order kp  and m edges,  

( )( ) 2k

k

p

pW P Z
 

=  
 

. 

Proof. In [2], If kn p=  then ( )n nP Z K= . For any ( )kp
u V Z∈ ,  

( ) 1kd u p= − .  

 { } ( )( ){ }, |c
nR u v V P Z u v= ⊆ = ∅  

Thus  

( )( )
{ } ( )( )

{ }
( )

{ }
( )

{ } { }
( )

{ }
( )

,

, ,

, ,

,

1,1
2,2

1 , ,
2

1 1 ,
2

1 11 1
2 2 2

k

n
p

u v V P Z

u v R u v

u v R u v

k
k k

u v R

u v
W P Z

u v

d u v d u v

d u v

pp p

⊆

⊆ ∅

⊆ ⊆∅

⊆


= 



 
= +  

 
 

= +  
 

 
= = − =  

 

∑

∑ ∑

∑ ∑

∑






 

Therefore the proof is proved. 
Theorem 7. Let ( )nP Z  be a power graph of with n vertices and m edges. 

Then  

( )( ) ( )( )
1

0

21 2
22

n

n
g

n
W P Z g gφ

−

=

   = + −  
   

∑  

Proof. If we consider Theorem 3. for ( )nP Z= , we write  

( )( ) ( )1nW P Z n n m= − −  
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( ) ( )( ){ }1 2 1
2 ng Zm o g o gφ

∈
= − −∑ . 

If we put the value of m into the formula, we obtain 

( )( ) ( )

( ) ( ) ( )( ){ }

( )( ) ( ){ }

( )( ) ( ){ }

( )( )

2

2

1
2

0

1

11 2 1
2

1 12 1
2 2

1 2
2 2

1 2
2 2

n

n n

n

n

g Z

g Z g Z

g Z

n

g

W P Z n n m

n n o g o g

n n o g o g

nn n o g o g

nn g g

φ

φ

φ

φ

∈

∈ ∈

∈

−

=

= − −

= − − − −

= − + − −

= − + + −

  = − + − 
  

∑

∑ ∑

∑

∑

 

( )( ) ( )( )
1

0

21 2
22

n

n
g

n
W P Z g gφ

−

=

   = + −  
   

∑  

Thus, the proof is complete. 
Corollary 8. Let ( )nP Z  be a power graph of with n p= , where p is a prime 

number. Then  

( )( ) 2n

P
W P Z  

=  
 

. 

Proof. Let n p=  be a prime number. Then  

( )( ) ( )( )
( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )
( ) ( ) ( )

( )

1

0

2

2

22 2

21 2
22

2 2 11 0 1 1 2 0 1 1
2 2
1 2 1 1 1 2 1 1
2
1 2 1 1 2 1
2
1 2 1 1 2 2

22

p

p
g

p
W P Z g g

p p
p p

p p p p

p p p p p p

p
p p p p p

φ

φ φ φ

φ φ

φ

−

=

   = + −  
   

− 
= + + + + − − + + + − 

 

 = − − + + + − − + + −  

 = − − + − − − 

  = − − + − − + =     

∑

 

   

Theorem 9. Let ( )nP Z  be a power graph of with n vertices and m edges. 
Then 

( )( ) ( ) ( )( )
|

21 2 .
22n

d n

n
W P Z d d dφ φ

   = + −  
   

∑  

Proof. Where ( )nP Z  is power graph ( )nP Z= , using theorem 3. And co-
rollary 2, we obtain 

( )( ) ( )1nW P Z n n m= − −   

( ){ } ( )
|

1 2 1
2 d n

m d d dφ φ= − −∑  
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If we write this m in formula for ( )( )nW P Z  

( )( ) ( )

( ) ( ){ } ( )

( ) ( ) ( )

( ) ( )( )

|

22

| | |

2

|

1

11 2 1
2

1 1
2 2
1 2

2 2

n

d n

d n d n d n

d n

W P Z n n m

n n d d d

n n d d d d

nn d d d

φ φ

φ φ φ

φ φ

= − −

= − − − −

= − + + −

= − + −

∑

∑ ∑ ∑

∑

 

( )( ) ( ) ( )( )
|

21 2 .
22n

d n

n
W P Z d d dφ φ

   = + −  
   

∑  

End of proof. 
Corollary 10. Let ( )nP Z  be a power graph of with n pq=  vertices and m 

edges, where p and q are distinct prime numbers. Then 

( )( ) ( )2pqW P Z m pqφ= +  

or equiently  

( )( ) ( )
2pq

pq
W P Z pqφ

 
= + 
 

. 

Proof. If we write n pq=  in theorem 9., we obtain  

( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )

|

2 2

2 2

21 2
22

1 2 1 1 1 2 1 2
2

2 2

1 2 2 2
2

1
2

2
2

pq
d pq

pq
W P Z d d d

pq pq p p p

q q q pq pq pq

p q pq p q

p q pq pq p q

pq
pq pq

φ φ

φ φ φ φ

φ φ φ φ

φ φ

   = + −  
   

= ⋅ − + − ⋅ + − ⋅

+ − ⋅ + − ⋅ 

 = + − ⋅ − ⋅ + 

 −
= + − − + 
 
  

= − + ⋅  
  

∑

  (*) 

On the other hand; 

( )( ) ( ) ( )1
2pq

pq
W P Z pq pq m pqφ

 
= − − = + 

 
 

where 

( )
2
pq

m pqφ
 

= − 
 

                       (**) 

(**) equation put in (*) equation, we obtain, 

( )( ) ( )2pqW P Z m pqφ= + . 

This completes the proof. 
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On the other hand using m in (**), we obtain  

( )( ) ( )

( ) ( )

( )

2

2
2

2

pqW P Z m pq

pq
pq pq

pq
pq

φ

φ φ

φ

= +

 
= − + 
 
 

= + 
 

 

This completes the proof. 
Theorem 11. If ( )nP Z  is a power graph of order kn p=  or n pq=  and m 

edges, where p and q are distinct prime and k is a nonnegative integer. Then  

( )( ){ } 1
2n

n
maks W P Z

+ 
=  
 

  

and  

 ( )( ){ }min
2n

n
W P Z  

=  
 

  

Proof. If kn p=  in Corollary 6.  

( )( ) 2k

k

p

pW P Z
 

=  
 

. 

And so 

( )( ){ }min
2n

n
W P Z  

=  
 

 

And if n pq=  in Corollary 10. 

( )( ) ( )
2pq

pq
W P Z pqφ

 
= + 
 

 

therefore 

( )( ) ( )
2n

n
W P Z nφ

 
≤ + 
 

. 

Also  

( )n nφ ≤ . 

We write  

( )( ) ( )
2 2n

n n
W P Z n nφ

   
≤ + ≤ +   
   

. 

And so, 

( )( ){ } 1
2n

n
maks W P Z

+ 
=  
 

. 

Theorem 12. If ( )nP Z  is a power graph of order kn p=  and m edges, 
where p is prime and k is a nonnegative integer. Then 

( )( ) ( )( )( )3
3 4e n n

n n
W P Z diam L P Z

     = +    
     

. 
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Proof. For ( )kp
P Z  power graph, ( )( ) 2n

n
E P Z  

=  
 

 and ( )( )nu V P Z∀ ∈ , 

( ) 1d u n= − . 

Let’s consider to this figure in ( )kp
P Z  power graph any ( )( ), 1 kn n p

e E P Z
−
∈ . 

For ( )kp
P Z  power graph of Line graph as shown in Figure 1.  

Choose the random ( )( ), 1 kn n p
e E P Z

−
∈  edge and this corner in neighborhood 

( )( )nL P Z  line graph in Figure 2. In the same way, with ( )( )( ), 1 kn n p
e V L P Z

−
∈  

point neighborhood amount of points ( )2 2n − . In the same way , 1n ne
−

 

neighborhood with corner amount of point ( )1 2 2m n− − −  and therefore 

( )( )( )kp
V L P Z  if each elements for calculated and if edge-Wiener index identi-

fied we have the following result. 
In edge-Wiener index  

( )( ) ( ){ } ( )( )

( ) ( )( )

( )( )( ) ( ) ( ) ( )( )( )

( ) ( )( )( ) ( )

( )( ) ( ) ( )( )( )
( )

,

2

1 ,
2

1 2
2

1 2

1 2 2 1 2 2
2 22

1 2 1 5 6
2 4 2

1
3

3

k
ne e f E P Zp

uv e

n
uv e

n

n

W P Z d e f

d u d v

diam L P Z m d u d v

n n
n diam L P Z n

n n n n n n ndiam L P Z

n nn

⊆

=

=

=

  = + −  
 + ⋅ − − + −  

       = − + − − −      
        

 − − −  − −
= +  
   

− 
= + 

 

∑

∑

∑

( )( ) ( )( )( )2 3
8 n

n n
diam L P Z

− −

 

( )( ) ( )( )( )3
3 4ke np

n n
W P Z diam L P Z

    
= +    

    
 

Concluded, namely the prove end. 
Theorem 13. If ( )nP Z  is a power graph of order kn p=  and m edges, 

where p is prime and k is a nonnegative integer. Then  
 

 
Figure 1. Power grap of kp

Z . 
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Figure 2. Line graph of ( )nP Z .  

 

( )( ) ( )( )1
2e n n

n
W P Z W P Z

− 
=  
 

 

Proof. kn p=  ( Z +∈ ) is in ( )( ) 2n

n
W P Z  

=  
 

. In the same way, 

Case 1. for 2,3n =  and according to ( )( )( ) 1ndiam L P Z = , ( )( )2 0eW P Z = , 

therefore ( )( ) ( )( )3 3eW P Z W P Z=  ve 
3 1

1
2
− 

= 
 

, namely this equation the 

proof. 
Case 2. For 2,3n ≠  is ( )( )( ) 2ndiam L P Z =  in theorem 12.,  

( )( ) ( )( )( )

( ) ( ) ( )( )

( )

( )( )

3
3 4

3 2
3 4

2 31 1 2
2 2

32 1
2 2

1
2

e n n

n

n n
W P Z diam L P Z

n n

n n
n n n

n nn

n
W P Z

    
= +    

    
    

= +    
    

 − − 
= − − +  

   
  − = − +     

− 
=  
 

 

Thus the proof is completed. 

3. Conclusion 

We will show the undirected power graph of a Group G with P(G). Here, the 
undirected P(Zn) Power graph of the group (Zn, +) according to N = pk and n = 
pq, with p, q being different primes and k being positive integers, is considered 
and new theorems and results on the Wiener index calculations of these power 
graphs with the help of Euler function are have been obtained. 
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