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Abstract

In this paper, we consider a constrained low rank approximation problem:

min
rank(X )=p,XeQ

|X —E||, where Eis a given complex matrix, pis a positive integer,

and Q is the set of the Hermitian nonnegative-definite least squares solu-
tion to the matrix equation AXA® = B. We discuss the range of p and derive
the corresponding explicit solution expression of the constrained low rank
approximation problem by matrix decompositions. And an algorithm for the
problem is proposed and the numerical example is given to show its feasibili-

ty.
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1. Introduction

Throughout, let C™" denote the set of all complex mxn matrices, U(n)
the set of all Nxn unitary matrices, and H(n) the set ofall nxn Hermitian
matrices, Hj(n) the set of Hermitian nonnegative-definite matrices. The sym-
bols , A", A", r(A) and ||A|| , respectively stand for the identity matrix with
the appropriate size, the conjugate transpose, the Moore-Penrose inverse, the
rank and the Frobenius norm of Ae C™". If a square matrix A is inverse, then
the inverse matrix of A is denoted by A™*.

In the last few years, the structured low rank matrix approximation has been
one of the topics of very active research in matrix theory and the applications.
We know the empirical data collected in a matrix generally satisfy either the spe-
cial structure properties or the desirable rank as is expected in the original sys-

tem. Solving a low rank approximation of a general data matrix is an important
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task in many disciplines.

The structured low rank approximation problem can be written as follows:
given a matrix Z a positive integer p, and a matrix class Q, find a matrix X sa-
tistying

min
XeQ,r(X)<p

X —E|,

which is concluded by M.T. Chu, et al. in 2003, see [1]. The structured low rank
approximation problem and applications associated with different constraint set
Q have been extensively studied. Generally speaking,  is with linear struc-
ture, e.g., symmetric Toeplitz, Hankel, upper Hessenberg, Slyvester, correlation,
CP, or banded matrices with fixed bandwidth, etc., which can be referred to
[1]-[11]. For examples, in the process of noise removal in signal processing or
image enhancement, the underlying covariance matrix with Toeplitz or block
Toeplitz structure, see [5] [6]. In the model reduction problem in encoding and
filter design, the underlying structure matrix is Hankel, see [7] [12]. In computer
algebra, approximating the greatest common divisor of polynomials can be for-
mulated as a low rank approximation problem with Sylvester structure, see [9].
In computing the nearest Euclidean distance, the symmetric nonnegative matrix
of rank 5 is a necessary condition for the approximation, see [10]. In the asset
portfolio, the structured low rank approximation is about correlation matrix, see
[2].

On the other hand, the problems for a (skew) Hermitian solution, Hermitian
nonnegative-definite solution, and Hermitian nonnegative-definite least squares

solution to the linear matrix equation
AXA* =B (1.1)

in the literature have been widely studied, where Ae C™" and BeH,(m)
are given matrices. Baksalary [13], Grof [14], Khatri and Mitra [15], derived a
general Hermitian nonnegative-definite solution to (1.1), respectively. Grop also
obtains a representation of the general Hermitian nonnegative-definite solution
to Equation (1.1), which admits an easy way to obtain solutions of minimal and
maximal rank, respectively. Dai and Lancaster studied a similar problem of Equ-
ation (1.1) with the real setting. Zhang and Cheng [16], Wei and Wang [17] stu-
died the fixed rank Hermitian nonnegative definite solution to the matrix equa-
tion AXA" =B and the least squares problem AXA" =B in Frobenius norm,
which discussed the ranges of the rank kand derived expressions of the solutions
by applying the SVD of the matrix of A. Liu et a/, in [18] studied the rank con-
strained matrix best approximation problem with respect to (skew) Hermitian
matrices by the singular value decompostion of B. For the rank constrained of
(skew)Hermitian or Hermitian nonnegative definite least squares of (1.1) in spec-
tral norm, the authors applied the norm-preserving dilation theorem and the
matrix decomposition to obtain the soulution in [19] [20].

Motivated by the above work, we in this paper study the constrained low rank
approximation of Hermitian nonnegative definite matrix. It can be stated as fol-
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lows.
Problem 1. Given AeC™", BeC™", EeC™", and a positive integer p.
Find X such that

X =arg m|n ||X E|.

Xﬂr

where Q={X | X eHj (n),|AXA" - B| = min}.

This paper is organized as follows. We give some preliminary results in Sec-
tion 2. In Section 3, we firstly characterize the matrix set QO of the Hermitian
nonnegative-definite least squares solution to the matrix equation AXA" =B
by matrix decompositions. Then we use the techniques of partition matrix to
discuss the range of p and establish the corresponding explicit solution to Prob-
lem 1. In Section 4, an algorithm is designed to determine the solution to Prob-
lem 1 and an example is presented to illustrate the results obtained in this paper.

2. Preliminaries

In this section, we give some preliminary results.
Lemma 2.1. (See [21] [22]) For given matrices M e C*™, N e C®*™, and
Y € C"™ , then the partition matrix

M Y .
X = — Hy (n)
if and only if

M eHg(n),N-Y'M'Y eHy (n,),R(Y)=R(M);
or
M eHg(n),N=N;+Y'"MY,Y =MMY,
where N, € Hg (n,) . Furthermore, the equality
r(X)=r(M)+r(N=-Y'M'Y),

holds.
The following lemma is cited by Lemma 2.2 in [17].
Lemma 2.2. Given nxn the Hermitian matrix G which has the form of

G =Qdiag(A,,A_)Q",
where Qisan nxn unitary matrix,
A, =diag (A, Ay, Ay ) A =diag (A 0 Ay o0 Ay ),

and 424,224 >0,4, ;<

nonnegative integer. Then there exists Y € Hy (n) with r (YN) = p such that

A2 S-S A, <0. The parameter p is a given
Y:=arg min ||Y G|
(Y) p.Ye H

ifand onlyif 0<p<n.If 0<p<n;,then

min ||Y G|= 2/12.

)=p.YeHg k=p+1

DOI: 10.4236/alamt.2020.102003

24 Advances in Linear Algebra & Matrix Theory


https://doi.org/10.4236/alamt.2020.102003

H. X. Chang

Furthermore, if Ay > A then

p+1?

Y =Qdiag (4, 4.+, 4,,0,++,0)Q".
If k<p<l<n and A4 >4 ,==4>4,,then
Y =Qdiag (4,4, 4, 4,PP",0,---,0)Q",

where Pis an arbitrary matrix satisfying P e C'™"™*) and p'p=| ok

3. The General Solution to Problem 1

In this section, we consider the general solution of Problem 1 proposed in Sec-
tion 1.

Suppose that the matrices Ae C™",and B e C™" are given with
rank(A)=r,.Let B=B, +B, where

_B+B’ B-B’

B, B, = , (3.1)

B, isan mxm Hermitian matrix, and By isan mxm skew-Hermitian

matrix. Let the singular value decomposition (SVD) of A be as follows
2I' 0 *
A=U| * \"A (3.2)
0 O

where the diagonal elements of the diagonal matrix X is the singular values of
A,and U e IU(m) , VeU(n).Let

* _ BU Bl
uBU=| ® | (3.3)
Bl BZ

where B €H(r,), B, e H(m-r,). By (2)-(4), the unitary invariance of Fro-

benius norm, and assume

* _ YU Yl
vixy = o B (3.4)
Yl YZ

Y, eH;(ry), Y, eHy(n—-r,), we get

[ axa: - B||2 = axa: -8, ||2 +|IB, [

s, 0 s, 0 ’ )
:u{ § }v*xv{ § }U*—BH +||Bs||
0 0 0 0
s, 0 s, 0 ’ )
= ™ vIXv* o -UtBLU| +[Bs||
0 0 0 0
_ er 0 |:Y0 Y1:| er 0 _|:BO Bli| 2+||B "2
o oll¥" Y.Jlo o] [B B i

2

+[B[f
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Then r)l(WIQ |AXA* - B" is consistent if and only if
 min %, YoZ,, ~ By (3.5)

is solvable.

We obtain the following result.

Theorem 3.1. Given AeC™" and BeC™" with rank(A)=r,. The no-
tation B, is defined in (2). Let the SVD of A be as (3). Partition U'B U as
(4) with B, eH(r,), B, eH(m-r,). Suppose the matrix B, has s positive
eigenvalues, then B, has the following decomposition

B, =Wdiag (A, , A_)W", (3.6)
where W eU(r,), A, =diag(4,-,4), 4 =24 >0,
A_=diag (AM, A ), Agy S--< A, <0. And the eigendecomposition of

M

= Wdiag (A,,0)W'E " is

D, 0
Er:\Ndiag(A+,0)W*Eri=L{01 O}L", (3.7)

inwhich LeU(r,) and a diagonal matrix D, € H'(s).Assume

L 0
Q:V{0 | } (3.8)

Then the Hermitian nonnegative definite solution to the least squares solution
of AXA® =B can be expressed as

D, 0 Y,
X=Q/0 0 0]Q (3.9)
Y, 0 Y,

where Y, e C*"™ and Y,-Y;D;",, e H; (n-r(A)).

Proof According to above analysis, the matrix equation AXA® =B has the
Hermitian nonnegative-definite least squares solution if and only if (3.5) is con-
sistent. By Lemma 2.2 and (3.6), the Formula (3.5) holds if and only if

Y, =2, Wdiag (A, ,0)W"Z, . (3.10)

It follows from r(Y,)=$ and Y, eH;(r(A)) that the eigendecomposition
of Y, in (3.10) has the form of (3.7). Substituting (3.10) into (3.4), we get

LB Oy
X=V| |0 0 bV (3.11)
Yl* Y2
Y,
Assume L*le{ 11} Y, e C¥) |y, e €M) then by (3.8),

YlZ
QeU(n) and (3.11) becomes
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= 1
0 lindlye oo O[O T, (3-12)
- Yo Yo Y,
_Dl 0 Y,

Db 0 Y,
It implies that X eHy(n) in (3.12) ifand onlyif | 0 0 Y, |eH;(n).
Y]j. Yl); YZ

D, 0 Y,
By Lemma 2.1, it is equivalentto | 0 0 0O |, where
Y; 0 Y,

Y, =YD, e Hy (n—r(A)).

By Theorem 3.1, for X € Q defined in Problem 1, X has the form of (3.9) with
Y,, eC™"™) and Y, -Y;;D;%, e H; (n—r(A)). Now we consider Problem 1,
and give their explicit expression of the solution.

Theorem 3.2. Given E e C™ and Q in problem 1 is nonempty. The no-

tations are the same as Theorem 3.1, and the solution set of Q 1is(10). Let

E+E" E-E
E, = 5 E, = 5 (3.13)
The eigenvalue decomposition of Q"E,Q has the form of
QEQ-T| - 2 (314
A VI '
where TeU(n), ‘P+:diag(y/1,---,l//d), w22y, >0,
¥ =diag (Vg Wh ), Wan <<y, <0. Suppose
\P+ 0 . Ell;l ElZ E13
T 0 0 T = E12 Ezz Ezs ) (3.15)

E;3 E;3 E33

where E, eH(s), E,eC*"™), and EyeH(n-r,). And the eigenvalue
decomposition of E,, —E;;D'E,, is as follows

A
E33_E1*3D1_1E13=H|: " A }H*, (3.16)

where HeU(n-r,), A, =diag(u,---,u,), U >-->u >0,
A7=diag(um,~-~ u ), U,y <---<U, . <0.Fora positive integer p,

1¥n-rp
min
r(X)=p,XeQ

X —E|| is consistent if and only if

s<p<s+n-—r,. (3.17)
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Then the solution X in Problem I is given as follows from the three cases:
1)If p=s,then

~ D, O
X = ! " 3.18
o e o
2)If s<p<s+t,then
R 1 O E13
X=Q/ 0 0 0Q, (3.19)
E1*3 O 2

where

Y, = Hdiag (uy,+,u, 4,0, 0)H" + E;; D *Eyy; (3.20)

p-s’
3)If p>s+t,then Xis the form of (3.19), where
Y, = Hdiag (u,,-+,u;PP",0,---,0)H" + E,D *E, (3.21)

and Pis an arbitary matrix satisfying P'P=1_ .

Proof According to Theorem 3.1, if X e Q, then X has the formula of (3.9),
where QeU(n), D, e H'(s) isadiagonal matrix, Y,; e C*"™) and
Y, =Y;iD'Y,, e Hg (n—r,). By Lemma 2.1, r(X)=r(D,)+r(Y,=Y;iD;"Y,,).
Therefore S<r(X)=p<s+n-r,.

1)If p=s,then Y,=0 and Y;; =0 in(3.9). We get (3.18).

2) If s<p<s+n-r,. Furthermore, we know E=E ®E,, where EE,

are defined as (3.13). By the unitary invariance of Frobenius norm that

Ix - =[x -E[ +[E.[

2

D, 0 Y,
=le[ 0 0 0|Q-E| +[E[

Y. 0 Y,

D, 0 Y] ’
=l 0 0 0 |-QEQ| +|E[

Yo 0,

- 2

%O Yl g 0 0.
=0 0 0|-T| = “|T7| +|T T +|&|

. 0 0 0 ¥

Yi 0 Y, |

D1 - E11 _Elz Y11 - E13 i ) ,
_E1*2 _Ezz _Ezs + "\P—” + " E2 "
le - E1*3 _E;3 Yz - E33
=D, - E11||2 +2|E, "2 +2|Yy, By "2 +|Ez "2 +2||E,, "2
Y, — B+ +]E[

Hence, min
r(X)=p,XeQ

X —E|| is consistent if and only if
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[—2.2100+1.2000i 2.0000-1.0000i 0.0000+0.0000i —0.0900+1.3500i 4.3200—2.3100i 1.2120+1.9804i |

0.0000+3.2510i 0.0000+0.0000i 2.1800-0.3200i —0.2300+1.5000i —0.1724—0.0995i
A=| 1.0500-2.0000i 2.4000+1.2500i 0.0000+0.0000i 0.0000+3.2106i -1.6080-+0.0000i 2.2560+ 0.0000i |,
0.0000+0.0000i 0.0000+0.0000i 0.0000+0.0000i 0.0000+0.0000i 0.0000+ 0.0000i 0.0000 + 0.0000i
| 3.2000+0.0000i —4.2000+1.2000i 0.0000+0.0000i 1.1025-0.2400i -0.8600-0.2408i 1.2010+0.7000i |

min [V, - Eq| (3.22)
Y;1eC x(N-rp
and

min IV, — Eg| (3.23)

Y,-Y{1D Yy eHG (“*VA)J(YZ *YﬂDlen): p-s
are solvable. (3.22) is consistent if and only if Y, = E;;. And (3.23) holds if and

only if there exists Z e Hy (n—r,) suchthat min |Z - ( E, —ED,'Ej, )”

r(Z)=p-s

holds. Make the eigendecomposition of (E33 -E,D* EB) as (3.16). By Lemma
2.2, we discuss the problem from two cases:

1) When p-s<t, wetake Y, is of (3.20). The explicit expression of the so-
lution to Problem 1 is (3.19) with (3.20).

2) When p-s>t, wetake Y, isof (3.21). In this case, we obtain the repre-
sentation of the solution to Problem 1, which has the form of (3.19) with (3.21).

The proof is completed.

4. Numerical Examples

We in this section propose an algorithm for finding the solution of Problem 1
and give illustrative numerical example.

Algorithm 4.1. 1) Input A B,E;

2) Calculate r,,B, by (3.1), E; by (3.13);

3) Make the SVD of A with the form of (3.2);

4) Calculate B, by (3.3), make the eigendecomposition of B, with the form
of (3.6), and compute S;

5) If p does not satisfy (3.17), then the solution set of Problem 1 is empty and
terminate the algorithm. Otherwise, continue with the following step;

6) Make the eigendecomposition of X, Wdiag(A,,0)W S " with the form of
(3.7);

7) Calculate Q,E,, by (3.8), (3.13), respectively;

8) Make the eigenvalue decomposition of Q"E,Q by 3.14. and Compute
E; Ex; by (3.15);

9)If p=s, calculate Xby (3.18), or go to step 10;

10) If p > s, make the eigendecomposition of E,, —E;;D;'E,, with the form
of (3.16) and calculate

11) If 0< p-s<t, calculate Xby (3.19) with (3.20); otherwise, go to (12);

12) If p-s>t, calculate Xby (3.19) with (3.21).

Example 4.2. Suppose n=6, AcC>®, BeC*®, EcC*® and
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[4.2000+2.6500i 1.5800-0.2300i 2.2020+1.5680i  0.0000+2.4200i 2.5160—0.7600i |
1.0120-0.2820i —3.5100+1.5600i 1.3800-0.8000i 1.3050+2.8000i 1.8800—0.7890i
B =| 0.0000+0.0000i 0.0000-+0.0000i 0.0000+0.0000i 0.0000+0.0000i 0.0000+ 0.0000i
2.9000-1.0680i 0.0000-1.5300i 5.6800+1.6030i —4.0150+2.1200i 3.4200— 2.6500i
| 2.9500+0.0000i 2.4400-0.6405i 1.4800-1.0503i 3.2750-1.4980i  0.0000 +1.3450i |
[ 0.1020+0.0000i —1.2400+0.0056i 0.1460—0.2320i 0.5000+0.0000i —0.1520+0.1270i 1.2000+0.0045i |
—1.2400-0.0056i —0.0040+0.0000i —0.1630-0.0550i —0.2390-0.0920i 0.1400-0.1800i 0.0000 + 0.0000i
0.1460+0.2320i -0.1630+0.0550i 1.0000+0.0000i 0.2310+0.0000i —0.1650-0.0550i 0.0000 + 0.2040i
== 0.5000+0.0000i —0.2390+0.0920i 0.2310+0.0000i 0.0800+0.0000i —0.2400—0.0920i 0.0000 + 0.0000i
—0.1520-0.1270i 0.1400+0.1800i —0.1650+0.0550i —0.2400+0.0920i —0.1024+0.0000i —0.0002 +0.0250i
| 1.2000-0.0045i  0.0000+0.0000i 0.0000-0.2040i 0.0000+0.0000i —0.0002-0.0250i 0.0256+0.0000i |
We get rank(A)=4 and s=2. According to Theorem 3.2, Problem 1 is
solvable if and only if 2< p<4. By Algorithm 4.1, we show the corresponding
explicit expression of the solution to Problem 1 for p=2,3,4, respectively.
When p =2, the solution expression in Problem 1 is as follows
[ 1.2974-0.0000i -0.2777-0.1086i 0.0000+0.0000i 0.3705+1.1896i 2.0296+0.4850i 0.5477 +0.1255i |
-0.2777+0.1086i 0.1536—0.0000i —0.0000—0.0000i —0.2185-—0.1705i —0.6026—0.1101i —0.0764 + 0.0194i
% = 0.0000-0.0000i —0.0000+0.0000i 0.0000-0.0000i 0.0000+0.0000i 0.0000-0.0000i 0.0000-0.0000i
0.3705-1.1896i —0.2185+0.1705i 0.0000—0.0000i 1.2482—-0.0000i 0.9739-1.5609i 0.2479—0.4986i |’
2.0296-0.4850i -0.6026+0.1101i 0.0000+0.0000i 0.9739+1.5609i 3.9124+0.0000i 0.8259+ 0.0973i
| 0.5477-0.1255i -0.0764-0.0194i 0.0000+0.0000i 0.2479+0.4986i 0.8259-0.0973i 0.2744-0.0000i |
and Xemi&)ﬂ" X —E||=6.8009. When p =3, we obtain the solution of Prob-
lem 1 is
[ 1.3943-0.0000i -0.2179-0.1781i 0.1028-0.0987i 0.3658+1.1650i 2.0332+0.5482i 0.5969+0.1872i |
-0.2179+0.1781i 0.2064-0.0000i 0.1206-0.0503i -0.1991-0.1300i -0.6215-0.0512i —0.0834+0.0625i
%= 0.1028+0.0987i 0.1206+0.0503i 0.9996-0.0000i 0.1914+0.0274i -0.0726+0.0312i —0.0765+ 0.0560i
0.3658-1.1650i —0.1991+0.1300i 0.1914-0.0274i 1.1509-0.0000i 0.9242-1.5232i 0.2816—0.4730i
2.0332-0.5482i -0.6215+0.0512i —0.0726-0.0312i 0.9242+1.5232i 3.9276+0.0000i 0.8785+ 0.0925i
| 0.5969-0.1872i -0.0834-0.0625i -0.0765-0.0560i 0.2816+0.4730i 0.8785-0.0925i 0.3103-0.0000i |
and XE(Tri(Q):SHX —E|=6.7283. When p=4, the solution can be expressed as
X = X, + X, , where
[ 1.3774+0.0000i -0.2359-0.1724i 0.0365+0.0116i 0.3563+1.1835i 2.0347 +0.5457i 0.5957 +0.1710i |
—0.2359+0.1724i 0.1853-0.0000i 0.0132+0.0454i -0.2154-0.1134i —-0.6191-0.0534i -0.0793+0.0448i
X. = 0.0365-0.0116i 0.0132-0.0454i 0.0195+0.0000i 0.0339+0.0381i —0.0503+0.0311i 0.0245-0.0159i
'] 0.3563-1.1835i —0.2154+0.1134i 0.0339-0.0381i 1.1254—0.0000i 0.9277-1.5230i 0.2986 —0.4835i
2.0347-0.5457i -0.6191+0.0534i -0.0503-0.0311i 0.9277+1.5230i 3.9271+0.0000i 0.8762+ 0.0942i
| 0.5957-0.1710i -0.0793-0.0448i 0.0245+0.0159i 0.2986+0.4835i 0.8762-0.0942i 0.2946—0.0000i |
and X, :G{O 0 *}G* with
0 1.0597PP
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[0.0000 +0.0000i 0.0000+0.0000i 0.0000+0.0000i 0.0000+0.0000i 0.1015+0.0752i —0.1452-0.4186i |
0.0000+0.0000i 0.0000+0.0000i 0.0000+0.0000i 0.0000+0.0000i 0.0833+0.1140i -0.0157 —0.4949i
G 0.0000+0.0000i 0.0000+0.0000i 0.0000+ 0.0000i 0.0000+0.0000i —0.0930+0.9572i —0.1758+ 0.2104i
0.0000+0.0000i 0.0000+0.0000i 0.0000+ 0.0000i 0.0000+0.0000i —0.0253+0.1528i 0.3757 —0.3926i
0.0000 +0.0000i 0.0000+ 0.0000i 0.0000+ 0.0000i 0.0000+0.0000i 0.0022-0.0217i —0.0494+ 0.0586i
| 0.0000+0.0000i 0.0000-+0.0000i 0.0000+0.0000i 0.0000+0.0000i 0.0798-0.0919i -0.4129+0.1083i |

and PeC?? satisfying P'P=1,.

Remark The Algorithm 4.1 can be applied for small sizes of matrices in Prob-
lem 1. In the process of computation, it only involves once singular value de-
composition and four times eigendecompositions. Hence it has good numerical
stability.

5. Conclusion

In this paper, we have studied the constrained low rank approximation problem

min
r(X)=p,XeQ "
least squares solution to the matrix equation AXA" =B, by the matrix decom-

X —E||, where Q is the set of the Hermitian nonnegative-definite

positions and partitioned matrix techniques. We have established the necessary
and sufficient condition for solvability of the problem. We have also derived the
corresponding explicit solution expressions for constraints of different rank
range. And the algorithm has been presented and the numerical example shows
its feasibility.
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