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Abstract 
This note explores the relations between two different methods. The first one 
is the Alternating Least Squares (ALS) method for calculating a rank-k ap-
proximation of a real m n×  matrix, A. This method has important applica-
tions in nonnegative matrix factorizations, in matrix completion problems, 
and in tensor approximations. The second method is called Orthogonal Itera-
tions. Other names of this method are Subspace Iterations, Simultaneous Ite-
rations, and block-Power method. Given a real symmetric matrix, G, this 
method computes k dominant eigenvectors of G. To see the relation between 

these methods we assume that TG A A= . It is shown that in this case the two 
methods generate the same sequence of subspaces, and the same sequence of 
low-rank approximations. This equivalence provides new insight into the con-
vergence properties of both methods.  
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1. Introduction 

The alternating least squares (ALS) method has several important applications, 
e.g., [1]-[54]. The origin of the method lies in the field of statistical Principal 
Components Analysis, e.g., [37] [47] [52] [53]. In the modern era, it is widely 
used in problems where standard SVD methods are not applicable. These prob-
lems include, for example, nonnegative matrix factorization [6] [17] [28] [35] 
[36], matrix completion problems [5] [14] [15] [20] [23] [24] [30] [54], and ten-
sor approximations [12] [18] [29] [48] [49] [50]. In this note, we consider the 
ALS method as means for calculating low-rank approximations of large sparse 
matrices. Let m nA ×∈  be a given large sparse matrix, let k be a given integer 

How to cite this paper: Dax, A. (2020) The 
Equivalence between Orthogonal Iterations 
and Alternating Least Squares. Advances in 
Linear Algebra & Matrix Theory, 10, 7-21. 
https://doi.org/10.4236/alamt.2020.102002  
 
Received: March 17, 2020 
Accepted: April 27, 2020 
Published: April 30, 2020 
 
Copyright © 2020 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/alamt
https://doi.org/10.4236/alamt.2020.102002
https://www.scirp.org/
https://doi.org/10.4236/alamt.2020.102002
http://creativecommons.org/licenses/by/4.0/


A. Dax 
 

 

DOI: 10.4236/alamt.2020.102002 8 Advances in Linear Algebra & Matrix Theory 
 

(the desired matrix rank) which is considerably smaller than { }min ,m n , and let 

( ){ }| and rankm n
k B B B k×= ∈ ≤   

denote the set of all the real m n×  matrices whose rank is at most k. Then the 
term “low-rank approximation” refers to a matrix kB∈  that approximates A. 
More precisely, we seek a matrix that solves the problem  

( ) 2minimize

subject to ,
F

k

F B A B

B

= −

∈
                  (1.1) 

where F⋅  denotes the Frobenius matrix norm. Recall that a rank-k truncated 
SVD of A provides a solution of (1.1). However, when A is a large sparse matrix, 
a standard SVD of A can be “too expensive”. This motivates the use of “cheaper” 
methods which are able to exploit the sparsity of A. The ALS algorithm is aimed 
at solving the problem  

( )
2Tminimize ,

subject to and .
F

m k n k

F X Y A XY

X Y× ×

= −

∈ ∈ 
              (1.2) 

Note that (1.1) and (1.2) are equivalent in the sense that a solution of one 
problem provides a solution to the other problem. The idea behind the ALS al-
gorithm is rather simple. The th  iteration, 1,2,=   is composed of the fol-
lowing two steps. 

Step 1: Given n kY ×∈


  compute 1X +  to be a solution of the least squares 
problem  

( )
2Tminimize

subject to .
F

m k

f X A XY

X ×

= −

∈




                (1.3) 

Step 2: Given 1
m kX ×

+ ∈


 , compute 1Y +  to be a solution of the least 
squares problem  

( )
2T

1minimize

subject to .
F

n k

g Y A X Y

Y

+

×

= −

∈




               (1.4) 

The details of the ALS iteration are discussed in the next section. 
The orthogonal iterations method has different aim and different motivation. 

Let n nG ×∈  be a given symmetric matrix. Then this method is aimed at com-
puting k dominant eigenvectors of G. It is best suited for handling large sparse 
matrices in which a matrix-vector product needs only ( )0 n  flops. It is also as-
sumed that k is considerably smaller than n. Other names of this method are 
“subspace iterations”, “simultaneous iterations” and “block-Power method”, e.g., 
[3] [4] [11] [16] [19] [39] [40] [41] [42] [44] [46]. The idea behind this method 
is to use a block version of the Power method that includes frequent orthogona-
lizations. The th  iteration, 1,2,=  , is composed of the following two steps. 
It starts with a matrix n kV ×∈



  that has orthonormal columns. The column 
space of V



 approximates the desired invariant subspace of G. 
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Step 1: Given V


, compute the matrix  

1 .W GV+ =
 

                           (1.5) 

Step 2: Compute 1V +  to be a matrix whose columns constitute an orthonor-
mal basis of ( )1Range W + . In practice 1V +  is obtained by applying a QR facto-
rization of 1W + . 

Using the Rayleigh-Ritz procedure it is possible to extract from 1V +  the cor-
responding estimates of the desired eigenpairs of G. The details are discussed in 
Section 3. 

The aim of this note is to show that ALS is closely related to “orthogonal itera-
tions”. To see this relation we assume that TG A A= . In this case the two me-
thods generate the same sequence of subspaces, and the same sequence of low- 
rank approximations. The proof is given in Section 4. 

The equivalence relations that we derive provide important insight into the 
behavior of both methods. In particular, as explained in Section 3, the rate of 
convergence of orthogonal iterations is determined by ratios between certain ei-
genvalues of G. This implies that the rate of convergence of the ALS method ob-
eys a similar rule. Moreover, there are several ways to accelerate orthogonal ite-
rations, and these methods can be adapted to accelerate the ALS method. Con-
versely, being a minimization method the objective function of the ALS method 
is monotonic decreasing. This suggests that the orthogonal iterations method 
has an analogous property. 

The relation between ALS and the block-Power method was recently observed 
by Jain et al. [24] in the context of matrix completion algorithms. A further dis-
cussion of this relation is given in Hardt [21] [22]. However, the observations 
made in these works are using several assumptions on the data matrix. For ex-
ample, it is assumed that A has missing entries, and that the locations of the 
missing entries (or the known entries) satisfy certain statistical conditions. It is 
also assumed that the singular vectors of A satisfy a certain coherence require-
ment, that A is a low-rank matrix, and in [21] [22] it is assumed to be symmetric. 
In contrast, our analysis makes no assumption on A. Consequently, the algo-
rithms considered in [21] [22] [24] are quite different from the classic versions 
that are discussed below, which yield different results. Anyway, an important 
consequence made in [21] [22] [24] is that the convergence properties of ortho-
gonal iterations can be used to understand the behavior of ALS when applied to 
matrix completion problems. The equivalence relations that we derive in the 
next sections help to achieve this goal. 

2. The Alternating Least Squares (ALS) Method 

In this section we describe two versions of the ALS iteration. The basic scheme 
solves the linear systems by using a QR factorization that is followed by a back 
substitution process, while the modified scheme avoids back substitution. This 
reduces the computational effort per iteration and helps to see the relation with 
orthogonal iterations. 
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The first step of the basic iteration requires the solution of (1.3). Let  
T , 1, ,i i m= a , denote the ith row of A, and let T , 1, ,i i m=x  , denote the ith 

row of 1X + . Then, by comparing T
ia  against T T

i Yx


 we see that ix  solves the 
linear least squares problem  

( ) 2

2minimize ,if Y= −x x


a                   (2.1) 

where 2⋅  denotes the Euclidean vector norm. The solution of (2.1) is carried 
out by applying a QR factorization of Y



 of the form  

,Y Q R=
  

                            (2.2) 

where n kQ ×∈


  , TQ Q I=
 

  , and k kR ×∈


   is an upper triangular matrix. 
Similar arguments enable us to solve (1.4). Let , 1, ,j j n= c , denote the jth 

column of A, and let T , 1, ,j j n=y  , denote the jth row of 1Y + . Then by com-
paring jc  against 1 jX + y



 we see that jy  solves the linear least squares prob-
lem  

( ) 2
1 2

minimize .jg X += −y y


c                  (2.3) 

The computation of jy  is carried out by applying a QR factorization of 1X +  
that has the form  

1
ˆ ˆ ,X Q R+ =

  

                         (2.4) 

where Tˆ ˆ ˆ,m kQ Q Q I×∈ =
  

 , and ˆ k kR ×∈


  is an upper triangular matrix. 
Assume for simplicity that the matrices Y



 and 1X +  have full column rank, 
which means that R



  and 1R̂ +  are invertible matrices. This enables us to ex-
press the solutions of Problem (2.1) and (2.3) as  

1 T
i iR Q−=x

 

 a                         (2.5) 

and 
1 Tˆˆ ,j jR Q−=y
 

c                        (2.6) 

respectively. In practice, a matrix-vector product of the form 1R− b


  is computed 
by solving the system R =y b



  via back substitution. In matrix notations the 
above equalities are summarized as  

T
1X AQ R−
+ =
  

                         (2.7) 

and 
T T

1
ˆ ˆ .Y A Q R−

+ =
  

                      (2.8) 

Below we describe a modified scheme which save the multiplications by TR−


  
and TR̂−



. (That is, it avoids the back substitution processes.) 
The modified scheme is based on the following observations. Let k kR ×∈  

be any invertible matrix, then  

( )( )TT T 1 .X Y X R Y R−=
   

                 (2.9) 

The last equality allows us to replace Y


 with Q


 , which turns (1.3) into the 
form 
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( )
2Tminimize

subject to ,
F

m k

f X A XQ

X ×

= −

∈






               (2.10) 

while the last problem has explicit solution,  

1 .X AQ+ =
 

                        (2.11) 

Similarly, it is possible to replace 1X +  with Q̂


, which turns (1.4) into the 
form  

( )
2Tˆminimize

subject to ,
F

n k

g Y A Q Y

Y ×

= −

∈




               (2.12) 

while the last problem has explicit solution,  
T

1
ˆ .Y A Q+ =

 

                       (2.13) 

The modified ALS iteration is summarized in the following two steps. 
Step 1: Given n kY ×∈



  compute the QR factorization (2.2) and obtain 1X +  
from (2.11). 

Step 2: Given 1
m kX ×

+ ∈


  compute the QR factorization (2.4) and obtain 

1Y +  from (2.13). 
Let , 1,2,B X Y= =

  

  , denote the rank-k approximations that are generat-
ed by the basic ALS iterations (2.7) - (2.8). Then, in exact arithmetic, the mod-
ified scheme generates the same sequence of approximations. Consequently since 
(2.7) - (2.8) are repeatedly solving (1.3) and (1.4), the sequence , 1,2,B =



  , 
has the decreasing property  

2 2
1 , 1,2,F FA B A B +− ≥ − =

 

                 (2.14) 

Moreover, as we now show, both versions satisfy  

( ) ( )T
1Range Range .Y A AQ+ =

 

                 (2.15) 

Consider first the iteration (2.7) - (2.8). Then combining (2.4) and (2.7) yields  
T

1
ˆ ˆX AQ R Q R−

+ = =
    

                      (2.16) 

and  
T 1ˆ ˆ ,Q AQ R R− −=

   

                        (2.17) 

while substituting the last expression for Q̂


 into (2.8) gives  
T T 1 T

1
ˆ ˆ .Y A AQ R R R− − −

+ =
    

                     (2.18) 

Thus, in exact arithmetic (2.15) holds. Similarly, in the modified scheme (2.4) 
and (2.11) give  

1ˆ ˆQ AQ R−=
  

                        (2.19) 

while from (2.13) we obtain  
T 1

1
ˆ .Y A AQ R−

+ =
  

                      (2.20) 

In the next sections we shall see that orthogonal iterations share a similar prop-
erty. 
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Observe that the modified ALS iteration is not using the matrices R


  and 
R̂


. This feature helps to overcome a possible rank deficiency of Y


 or 1X + . 
In classical Gram-Schmidt orthogonalization rank deficiency may cause a gra-
dual loss of orthogonality, but this can be avoided by reorthogonalization and 
column pivoting, or by using Householder QR with column pivoting. For de-
tailed discussions of the QR factorization see [7] [8] [9] [13] [19] [45]. The mod-
ified ALS iteration has recently been considered in Oseledets et al. [38] under the 
name “simultaneous orthogonal iterations”. It is shown there that the modified 
version is equivalent to ALS and, therefore, has the same rate of convergence. 

3. Orthogonal Iterations 

Let n nG ×∈  be a real symmetric matrix with eigenvalues 

1 2 .nλ λ λ≥ ≥ ≥                       (3.1) 

Then the orthogonal iterations method is aimed at calculating the k largest ei-
genvalues of G, 1, , kλ λ , and the corresponding eigenvectors. The th  itera-
tion, 1,2,=  , is composed of the following two steps. 

Step 1: Given a matrix n kY ×∈


 , compute a QR factorization of Y


:  

.Y Q R=
  

                          (3.2) 

Step 2: Compute 1Y +  from the rule  

1 .Y GQ+ =
 

                         (3.3) 

The approximation of the desired eigenpairs is achieved by applying the Ray-
leigh-Ritz procedure. For this purpose the basic iteration is extended with the 
following three steps. 

Step 3: Compute the related Rayleigh-quotient matrix  
T T

1 .H Q Y Q GQ+= =
    

                    (3.4) 

Step 4: Compute a spectral decomposition of H


:  
TH V D V=

   

                        (3.5) 

where T,k kV V V I×∈ =
  

 , and ( ) ( ){ }1diag , , kD η η=  



  is a diagonal matrix 
such that  

( ) ( ) ( )
1 2 .kη η η≥ ≥ ≥  

                    (3.6) 

(The diagonal entries of D


 are called “Ritz values”.) 
Step 5: If desired compute the related matrix of k “Ritz vectors”,  

.n kU Q V ×= ∈
  

                      (3.7) 

It is important to note that Steps 3 - 5 are not essential for the computation of 

1Y + . Hence it is possible to defer these steps. The orthogonal iterations method 
and its convergence properties are derived in the pioneering works of Bauer [4], 
Jennings [25] [26], Stewart [44], Rutishauser [40] [41], and Clint and Jennings 
[11]. In these papers the method is called the simultaneous iteration. See also the 
discussions in ([3], pp. 54-55), ([16], pp. 156-159), ([19], pp. 367-368) and ([39], 
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pp. 288-299). It is shown there that the computed Ritz values in (3.4) - (3.7) con-
verge toward the corresponding eigenvalues of G. Assume that 1k kλ λ +> , then 
for 1, ,j k=  , the sequence ( ) , 1,2,jη =

  , converges toward jλ , and the 
asymptotic rate of convergence is determined by the ratio  

1 .j k jρ λ λ+=                         (3.8) 

In other words, the sequence ( ) , 1,2,j jη λ− =

  , converges to zero at about 
the same speed as the sequence ( ) , 1,2,jρ =



  . Furthermore, if jλ  is a sim-
ple eigenvalue then the jth Ritz vector converges toward the jth eigenvector of G 
and the rate of convergence is determined by the ratio (3.8). 

The last observations open the gate for accelerating the basic orthogonal itera-
tion. Below we mention a number of ways to achieve this task. 

Increasing the subspace dimension. In this approach the number of col-
umns in the matrix Y



 is increased to be k q+  where 1q ≥  is a small integer. 
(Typical values of q are k or 2k.) The advantage of this modification is that the 
convergence ratio changes to  

1 ,j k q jρ λ λ+ +=                       (3.9) 

and it can be much smaller than (3.8). The price paid for this gain is that the 
storage requirements and the computational efforts per iteration are increased. 
The next acceleration attempts to avoid this penalty. 

Power acceleration. In this iteration the updating of 1Y +  in Step 2 is changed 
to  

1
pY G Q+ =

 

                       (3.10) 

where 2p ≥  is a small integer. The advantage of this modification is that now 
the convergence ratio is reduced to 

( )1 .
p

j k jρ λ λ+=                     (3.11) 

Thus one iteration of this kind has the same effect as p iterations of the basic 
scheme. The main saving is, therefore, a smaller number of orthogonalizations. 
In practice p is often restricted to stay smaller than 10. The reason lies in the 
following difficulty. Assume for a moment that 1 2λ λ . In this case G has a 
unique dominant eigenvector. Then, as p increases the columns of the matrix 

pG Q


 tend toward the dominant eigenspace of G, and 1Y +  becomes highly 
rank-deficient. Other helpful modifications include polynomial acceleration 
(which is often based on Chebyshev polynomials), and locking (a type of defla-
tion), e.g., [3] and [39]. 

4. Equivalence Relations 

In this section we derive equivalence relations between the ALS method and the 
orthogonal iterations method. To see these relations we make the assumption 
that 

T ,G A A=                            (4.1) 
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and use the following notations. Let , 1,2,Y =


  , denote the sequence of  
n k×  matrices that are generated by the orthogonal iteration method, and let 

Y Q R=
  

                            (4.2) 

denote the related QR factorization of Y


. Similarly, let the n k×  matrices Y


 , 
1,2,=  , be obtained by the ALS method, and let 

Y Q R=
  

                              (4.3) 

denote the related QR factorization of Y


 . Then Step 2 of the orthogonal itera-
tion method gives  

T
1 ,Y A AQ+ =

 

                          (4.4) 

while from (2.15) we obtain 

( ) ( )T
1Range Range .Y A AQ+ =

 

                   (4.5) 

These equalities lead to the following conclusion.  
Theorem 1. Assume that the initial matrices satisfy  

( ) ( )1 1Range Range .Y Y=                       (4.6) 

Then in exact arithmetic we have  

( ) ( )Range RangeY Y=
 

                      (4.7) 

and  

( ) ( )Range RangeQ Q=
 

                     (4.8) 

for 1,2,3,=  . In other words, the two methods generate the same sequence 
of subspaces!  

Proof. The proof is a direct consequence of (4.4) and (4.5) using induction on 
 .                                                              □ 

We have seen that the matrix AQ


  solves (2.10). Hence the rank-k approxi-
mation of A that corresponds to TQ



  has the form  
T.B AQ Q=

  

                           (4.9) 

Similarly, the rank-k approximation of A that corresponds to TQ


 has the 
form  

T.B AQ Q=
  

                        (4.10) 

The next theorem shows that these approximations are equal. 
Theorem 2 (Rank-k approximations). Using the former assumptions and no-
tations we have the equality  

.B B=
 

                           (4.11) 

In other words, the two methods generate the same sequence of rank-k approx-
imations.  
Proof. Let r  be some vector in n . Then from (4.8) we see that the projection 
of r  on Range ( Q



) equals the projection of r  on Range ( Q


 ). That is,  
T TQ Q Q Q=r r

  

                       (4.12a) 
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and 
T T T T ,Q Q Q Q=r r

   

                       (4.12b) 

while the last equality implies (4.11).  
Corollary 3 (The decreasing property). Recall that the ALS method has the 
decreasing property (2.14). Now (4.11) implies that this property is also shared 
by the orthogonal iteration method.  

The next lemma helps to convert the decreasing property into an equivalent 
increasing property. 
Lemma 4. Let Q



 and B


 be as above. Then  
2 2 2 .F F FA B A AQ− = −

 

                  (4.13) 

Proof. Let us complete the columns of Q


 to be an orthonormal basis of n n× . 
This gives us an n n×  orthonormal matrix  

[ ], ,Z Q P=
 

                         (4.14) 

where P


 is an ( )n n k× −  matrix that satisfies  
T Tand ,P P I Q P O= =
   

                   (4.15) 

and O denotes a null matrix. Observe that the structure of Z implies the equality 

( ) [ ]T , .AQ Q Z AQ O=
  

                   (4.16) 

On the other hand, since the Frobenius norm is unitarily invariant,  

( ) ( )
[ ] [ ]

222 T

2 2T

2 2 2 2

, ,

.

F F F

FF

F F F F

A B A B Z A AQ Q Z

AZ AQ Q Z AQ AP AQ O

AZ AQ A AQ

− = − = −

= − = −

= − = −

   

    

 

 

Corollary 5. Since the sequence { }2
FA B−



 is monotonic decreasing, equality 

(4.13) implies that the sequence { }2
FAQ



 is monotonic increasing. That is, 

2 2
1 F FAQ AQ+ ≥

 

                      (4.17) 

for 1,2,=  . 
Observe also that  

( ) ( )
( ) ( ) ( ) ( )

2 T T T

1 2

trace trace

trace ,
F

k

AQ Q A AQ Q GQ

H η η η

= =

= = + + +

    

  





 

where H


 is the Rayleigh-quotient matrix (3.4), and ( ) , 1, ,j j kη =

 , are the 
corresponding Ritz values. This relation leads to the following conclusion, which 
appears to be a new property of the orthogonal iteration method. 
Corollary 6 (A trace increasing property). Let G be a symmetric positive se-
midefinite matrix and let the matrices , 1,2,H =



  , be generated by the or-
thogonal iterations method. Then 
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( ) ( )1trace traceH H+ ≥
 

                    (4.18) 

for 1,2,=  .                                                   □ 
We have seen in Section 3 that the rate of convergence of the orthogonal ite-

rations method depends on the ratio (3.8). Now the equivalence relations that 
we have proved suggest that the ALS method behaves in a similar way. To state 
this result more precisely we need the following notations. Let  

1 2 0nσ σ σ≥ ≥ ≥ ≥                     (4.19) 

denote the singular values of A, and let  
( ) ( ) ( )
1 2 0kσ σ σ≥ ≥ ≥ ≥  

  
                   (4.20) 

denote the singular values of TB AQ Q=
  

  , 1,2,=  . Then, clearly,  
2 for 1, , .j j j nσ λ= =                     (4.21) 

Similarly, since B B=
 

 , the singular values of B


  satisfy  

( )( ) ( )2
, for 1, , and 1,2,j j j kσ η= = = 


              (4.22) 

These relations lead to the following observation, which seems to be a new 
property of the ALS method. 
Theorem 7. Assume that 1k kσ σ +> , then for 1, ,j k=  , the sequence 

( ) , 1,2, ,j jσ σ− =


                     (4.23) 

converges to zero at the same asymptotic rate as the sequence  

( )2 2
1 , 1,2,k jσ σ+ =



                     (4.24) 

Proof. From (4.21) and (4.22) we conclude that the sequence  

( )( )2
2 , 1,2, ,j jσ σ− =


                    (4.25) 

converges to zero at the same asymptotic rate as the sequence (4.24). Yet, since  

( ) ( )( ) ( )( )2
2 ,j j j j j jσ σ σ σ σ σ− = − +  

               (4.26) 

the sequence (4.23) shares this property.                               □ 
The last theorem implies that the rate of convergence of ALS can be improved by 
increasing the subspace dimension (See Section 3). 

The fact that the two methods converge at the same speed raises the question 
of which iteration is more efficient to use. One advantage of the orthogonal ite-
rations method is that it stores and updates only (estimates for) the right singu-
lar vectors of A. This halves the storage requirements and the number of ortho-
gonalizations. The orthogonal iterations method achieves one QR factorization 
per iteration, while ALS requires two QR factorizations per iteration. The com-
putation of the left singular vectors and the related low-rank approximation of A 
is deferred to the end of the iterative process. A further saving can be gained by 
applying Power acceleration. 
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However, being a variant of the Block Power method, the orthogonal iteration 
is expected to be slower than Krylov subspace methods that are based on Lanc-
zos algorithm. See, for example, the comparisons in ([19], pp. 554-555), ([39], pp. 
250-252), and ([46], pp. 272-275). Recent Krylov methods are using implicitly 
restarted Lanczos schemes, e.g., [10] [43] [51], and this approach is considerably 
faster than orthogonal iterations. Consequently the ALS method is expected to 
be slower than restarted Krylov methods for low-rank approximations, e.g., [1] 
[2] [33] [34]. This drawback is, perhaps, the reason that the use of ALS has been 
moved to problems in which it is difficult to apply a standard SVD algorithm or 
a restarted Krylov method. 

5. Concluding Remarks 

As noted in the introduction, the relations between ALS and the block-Power 
method were recently observed in the context of matrix completion algorithms. 
However, the related matrix completion algorithms differ substantially from the 
classic versions discussed in this paper. Indeed, the equivalence between ALS 
and orthogonal iterations is somewhat surprising, as these methods are well 
known for many years, and the basic ALS iteration, which uses back-substitutions, 
is quite different from the orthogonal iteration. The modified version avoids 
back substitutions, which helps to see the similarity between the two methods. 

The equivalence relations bring important insight into the behavior of both 
methods. One consequence is that the convergence properties of ALS are iden-
tical to those of orthogonal iterations. This means that the rate of convergence of 
the ALS method is determined by the ratios in (4.24), which appears to be a new 
result. Similarly, the descent property of ALS implies a trace increasing property 
of the orthogonal iteration method. 

The orthogonal iterations method needs less storage requirements, and less 
QR factorizations per iteration. In addition, it has a number of useful accelera-
tions. These advantages suggest that replacing ALS with orthogonal iterations 
might be helpful in some applications. On the other hand, the ALS method can 
be modified to handle problems that other methods cannot handle, such as 
non-negative matrix factorizations (NMF), matrix completion problems, and 
tensor decompositions. The ALS iteration that is implemented in these problems 
is often quite different from the basic iteration (2.7) - (2.8). Yet in some cases it 
has a similar asymptotic behavior. This happens, for example, in NMF problems 
when (nearly) all the entries in the converging factors are positive. Another ex-
ample is the proximal-ALS algorithm in matrix completion, see ([14], p. 134). In 
such cases the new results provide important insight into the asymptotic beha-
viour of the algorithm. 
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