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Abstract 
Characterization of genes related to sweetpotato viral disease resistance is 
critical for understanding plant-pathogen interactions, especially with fea-
thery mottle virus infection. For example, genes encoding eukaryotic transla-
tion initiation factor (eIF)4E, its isoforms, eIF(iso)4E, and the cap-binding 
protein (CBP) in plants, have been implicated in viral infections aside from 
their importance in protein synthesis. Full-length cDNA encoding these put-
ative eIF targets from susceptible/resistant and unknown hexaploid sweetpo-
tato (Ipomoea batatas L. Lam) were amplified based on primers designed 
from the diploid wild-type relative Ipomoea trifida consensus sequences, and 
designated IbeIF4E, IbeIF(iso)4E and IbCBP. Comparative analyses following 
direct-sequencing of PCR-amplified cDNAs versus the cloned cDNA se-
quences identified multiple homeoalleles: one to four IbeIF4E, two to three 
IbeIF(iso)4E, and two IbCBP within all cultivars tested. Open reading frames 
were in the length of 696 bp IbeIF4E, 606 bp IbeIF(iso)4E, and 675 bp IbCBP. 
The encoded single polypeptide lengths were 232, 202, and 225 amino acids 
for IbeIF4E, IbeIF(iso)4E, and IbCBP, with a calculated protein molecular 
mass of 26 kDa, 22.8 kDa, and 25.8 kDa, while their theoretical isoelectric 
points were 5.1, 5.57, and 6.6, respectively. Although the homeoalleles had 
similar sequence lengths, single nucleotide polymorphisms and multi-allelic 
variations were detected within the coding sequences. The multi-sequence 
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alignment performed revealed a 66.9% - 96.7% sequence similarity between 
the predicted amino acid sequences obtained from the homeoalleles and 
closely related species. Furthermore, phylogenetic analysis revealed ancestral 
relationships between the eIF4E homeoalleles and other species. The outcome 
herein on the eIF4E superfamily and its correlation in sequence variations 
suggest opportunities to decipher the role of eIF4E in hexaploid sweetpotato 
feathery mottle virus infection. 
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1. Introduction 

As the only edible crop within the Convolvulaceae family, sweetpotato (Ipomoea 
batatas L. Lam) is the seventh most important agricultural crop in terms of pro-
duction [1]. Grown in over 100 countries, sweetpotato is not only an industrial 
commodity but also an important staple food (leaves and storage roots) world-
wide. It boasts high starch and nutrient contents such as fiber, potassium, vita-
min C and harbors the precursor for vitamin A (ß-carotene). As a staple crop, 
sweetpotato provides a great source of antioxidants and bioactive compounds 
within its highly variable skin and flesh colors for human consumption. Eco-
nomically, the global sweetpotato market value reached 42.75 billion U.S. dollars 
in 2020 with China as its leading producer [2]. In addition, the United States 
ranks among the top ten producers generating over 30 million hundredweight in 
2020 with an estimated value of $726.18 million with most of the production in 
the U.S. southern states [3]. Although a nutritious and profitable crop, sweetpo-
tato production has been challenging to growers due to the multiple biotic 
stresses besetting its farming, especially the sweetpotato virus disease (SPVD) 
[4]. 

SPVD is one of the most devastating biotic stress constraints to impact sweet-
potato production by up to 98% [5] [6] [7] [8]. It is derived from the co-infection 
of the aphid transmitted sweetpotato feathery mottle virus (SPFMV; Potyvirus) 
and the white fly-transmitted sweetpotato chlorotic stunt virus (SPCSV; Crini-
virus) [7]. Both viruses are (+) sense-single-stranded RNA pathogens that can 
individually or collectively impact sweetpotato quality and yield in various parts 
of the world [5] [8] [9] [10]. Globally, sweetpotato viral diseases are becoming 
more rampant [11] among which, SPFMV has become the most widespread vi-
rus to infect sweetpotatoes in comparison to other diseases giving rise to signifi-
cant yield losses [8] [12]. Furthermore, co-infection with SPCSV generates crop 
devastation up to 98%. [12]. As a vegetatively propagated crop, sweetpotato is at 
risk of acquiring systemic pathogens in subsequent transplant materials, there-
fore, reducing productivity and quality [13]. Currently, the use of virus-free tested 
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transplanting material is the only method of SPVD prevention. However, gain-
ing access to these materials for subsistence farmers can be a challenge [4] [13]. 
Recent advancements made in studying the control of RNA viruses in many 
plant species have identified the eukaryotic translation initiation factor 4E family 
(eIF4E) as a new class of virus recessive resistance genes [14] [15].  

Translation initiation is an important process responsible for regulating the 
synthesis of many proteins [16]. It is an intricate pathway that involves approx-
imately 10 eukaryotic translation initiation factors (eIFs), mRNAs, rRNAs, and 
tRNAs that facilitate ribosome-mRNA binding [17] [18] [19]. Of these eIFs, 
eIF4E is one of the most important factors known for the initial phase of protein 
synthesis [20]. As a component of the eIF4F pre-initiation complex (along with 
eIFG and eIFA subunits), its key roles are to bind to the methyl-7-guanosine 
(m7G) cap on the 5’ end of an mRNA sequence in eukaryotes, recruit additional 
translation initiation factors and deliver the mRNA to the 43S pre-initiation 
complex; therefore, triggering translation initiation complex assembly, which 
results in the initiation of protein synthesis [21] [22]. Naturally, at the molecular 
level, eIFs play a critical role in plant development and response to adverse sti-
muli [23] [24]. For example, physiologically, eIF4A, eIF3, eIFG, eIF4E, and 
eIF5A families have been reported to impact vegetative and reproductive 
growth; while eIF1A, eIF4, eIF5, and eIF2 have been linked with regulating res-
ponses to abiotic stress. In conjunction, eIF4G and eIF4E families have been re-
ported to be hijacked by viral pathogens throughout various plant species during 
infections [24] [25]. 

In addition to their role in protein synthesis in whole organism homeostasis, 
eIF4E or its isoforms eIF(iso)4E, and the cap-binding protein (CBP) possess host 
susceptibility characteristics that make them favorable targets for plant viruses 
within the Sobemovirus genus, Secoviridae, and Potyviridae virus families, to seize 
for their replications [26] [27]. These viruses share (+) sense-single-stranded 
RNA genomes encoding a protein cap known as viral genome-linked protein 
(VPg), analogous to the m7G cap located at the 5’ end of an mRNA sequence in 
eukaryotes [21] [26] [28]. Like eukaryotic mRNAs, the translation initiation of 
viral mRNA is dependent upon VPgs interaction with the host’s eIF4E proteins 
or its isoforms for replication and survival [29] [30] [31]. Consequently, transla-
tion initiation factors, specifically eIF4E and eIF4G are now considered great 
genetic resources to improve crop productivity utilizing novel and emerging en-
gineered technologies to mitigate viral impact [30]. For instance, roughly 200 
viral resistant genes have been identified in plants and approximately half of 
them were shown to carry natural recessive resistance against plant viruses [32]. 
In recent years, an array of recessive viral-resistance genes were cloned and cha-
racterized within various plant species such as Arabidopsis thaliana, lettuce 
(Lactuca sativa), rice (Oryza sativa), mustard (Brassica rapa), Barley (Hordeum-
vulgare) and cassava (Manihot esculenta) of which, the majority encode for 
eIF4E or its isoform eIF(iso)4E [14] [26] [33] [34] [35] [36] [37]. While other 
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major crops have one gene copy of each like the wild type I. trifida, in cassava, 
and a root crop like sweetpotato, the cloning of the eIF4E protein gene family 
revealed varying gene copy numbers, one eIF4E, two eIF(iso)4E, and two of the 
divergent nCBP [26]. In terms of polyploids, the cloning of the allopolyploid su-
garcane (Saccharum officinarum) eIF4E family identified one single copy for 
both CPB and eIF(iso)4E, and two gene copies for eIF4E [27]. It has been re-
ported that the numerous eIF4E encoding protein families in conjunction with 
their homologues, are critical in differentially regulating mRNA translation 
during normal plant development due to their functional redundancy. The re-
dundancy of the eIF4E family in plant house-keeping functions over other 
translation initiation factors was exhibited during knockout and down regula-
tion experiments of eIF4E and eIF(iso)4E, where Arabidopsis growth tolerated 
depletion in both alleles with slight symptoms of impairment, which did not af-
fect the health of the host plant, except for phenotypic dwarfism during viral in-
fection [35] [36]. Furthermore, similar results were obtained with individual 
nonsense mutations in eIF4E or eIF(iso)4E alleles of tobacco (Nicotiana taba-
cum) and pepper (Capsicum annum) showing no significant phenotypic im-
pairment [18] [35] [37] [38] [39] [40]. However, plant species harboring double 
knockouts resulted in a semi-dwarf phenotype and polysome loading reduction, 
therefore displaying their role in cell growth regulation [18] [35] [36] [41] [42]. 
Viral resistance studies performed in tomato (Solanum lycopersicum), Capsi-
cum annuum, muskmelon (Cucumis melo), Ipomoea batatas, and Manihot es-
culenta have been used to demonstrate how natural variations of eIF4E genes 
can give rise to recessive resistance to potyviruses without impeding on the en-
dogenous function [5] [22] [43]-[49]. 

SPFMV is a member of the potyviridae family encoding a VPg protein 
within its genome [50]. Its synergistic interaction with SPCSV can cause ex-
cessive devastation to sweetpotato production. As a component of SPVD, it is 
seldom acknowledged that a single infection of SPFMV may decrease storage 
root production and quality in several cultivars resulting in 20% - 50% yield 
losses; while in others, symptoms remain indistinguishable [4] [5] [7] [51] 
[52]. A major concern for SPFMV infection is derived from its synergistic in-
teraction with SPCSV. Several sweetpotato cultivars with periodical resistance to 
SPFMV exist, especially in commercial varieties (Beauregard, Jewel, and oth-
ers), which exhibit mild or no symptoms after infection leading to little eco-
nomic losses. However, resistance is eliminated under dual infection with oth-
er viruses [7] [9] [53] [54] [55] [56]. There is limited information on the mo-
lecular interactions between SPFMV and sweetpotato host factors or the natural 
resistance to SPVD [5] [13]. In 2002, Mwanga et al. [5] reported that sweetpota-
to resistance to SPCSV and SPFMV may be mediated by two separate recessive 
genes. Further research postulated that the VPg of SPFMV may interact with 
eIF4E or its isoforms for infection, similar to polypoid sugarcane [5] [13] [27] 
[54]. Therefore, characterizing and elucidating the separate recessive genes to-
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ward establishing their interaction with SPFMV VPg and the mechanism(s) re-
sponsible for their regulation are now major goals of plant-virus interaction stu-
dies. 

The hexaploid sweetpotato genome is comprised of many small genomes, 
while the origin of its polyploid nature (90 chromosomes) has largely been a 
controversy in the sweetpotato breeding/molecular biology community [1] [56] 
[57] [58] [59]. Due to its complex genome, it can be challenging to identify sin-
gle nucleotide polymorphisms (SNPs) because of its duplicative nature and high 
heterozygosity also seen in other polypoid crops [1] [49] [56] [58] [60] [61] [62]. 
Hence, this study aims to isolate, clone, and characterize eIF4E protein genes 
(eIF4E, eIFiso4E, and CBP) initially from four hexaploid sweetpotato cultivars 
exhibiting susceptible/resistance and unknown phenotypic responses to SPFMV. 
Knowledge gained from this work will elucidate their potential roles in host sus-
ceptibility factors’ interaction with VPg-SPFMV for viral replication and subse-
quently provide a framework for CRISPR-Cas9 engineering of functional resis-
tance against sweetpotato potyvirus infection. 

2. Materials and Methods 
2.1. Plant Material and Growth Conditions 

Sweetpotato cultivars [PI-318846 (D-3; NZ-196), Resisto (Res), Jewel (JWL), and 
Beauregard (BRG)] utilized in this work have different responses to SPFMV in-
fection. Commercial varieties (JWL and BRG) are known to have periodic resis-
tance to SPFMV due to the mild or absence of symptom development after in-
fection in a growing season [7] [53] [54] [56]. While PI-318846 is unknown and 
Resisto may show susceptibility at times [5] [7] [15] [56]. In-vitro nodal cuttings 
from the above cultivars, acquired from the Regional Plant Genetic Resource 
Conservation Unit of USDA (Griffin, Georgia), were micro-propagated into 
plantlets on an in-house Multiplication Media (MM; Tuskegee University) based 
on a modified Murashige and Skoog (MS) media formulation [63] [64]. Briefly, 
the nodal cuttings were initiated in Magenta-GA-7 vessels (Magenta Corpora-
tion) containing sterilized MM media supplemented with 30 g/L sucrose and 5 
mg/L gibberellic acid at pH 5.8, then incubated under a photoperiod of 16-h 
light and 8-h dark at 26˚C ± 2˚C [63] [64]. After eight weeks, leaf tissues from 
the micro-propagated plantlets were collected for total RNA extraction and sub-
sequent analyses.  

2.2. Total RNA Extraction, Reverse-Transcriptase-PCR  
Amplification of Full-Length IbeIF4E, IbeIF(iso)4E,  
and IbCBP cDNA  

Total RNA Extraction and FirstStrand cDNA Synthesis: Leaf total RNA 
was isolated from 300 mg of tissue with the Quick-RNA Plant Kit (Zymo Re-
search (Irvine, CA) following the manufacturer’s protocol. Total cDNA was 
synthesized utilizing Maxima H-Minus First-Strand cDNA Synthesis Kit (Thermo 
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Fisher Scientific, Waltham, MA), following the manufacturer’s instructions with 
modifications. Each starting reaction contained about 5 µg of total RNA and 100 
pmol of Oligo(dT)-18 primer in a volume of 20 µl. Due to its GC-rich RNA 
template, samples were incubated at 65˚C for 5 min and stored on ice where 5X 
buffer and maxima H-minus reverse transcriptase enzyme mix were added to 
reach a final volume of 30 µl. Total single-strand cDNA was synthesized with 
Oligo(dT)-18 primer from poly(A+) RNA for 40 mins at 50˚C followed by a 
termination step at 85˚C for 5 mins. 

cDNA Generation of Full-length Specific cDNA: To amplify the full-length 
cDNA of Ipomoea batatas (Ib) IbeIF4E, IbeIF(iso)4E, and IbCBP within each 
variety, gene-specific primers (Table 1) targeting their respective coding se-
quences, were designed based on the annotated sequences of Ipomoea trifida 
eIF4E superfamily CDS sequences (http://sweetpotato.plantbiology.msu.edu/) 
[59]. The eukaryotic translation initiation factors previously identified in Arabi-
dopsis thaliana and Manihot esculenta (phytozome.jgi.doe.gov) was utilized to 
perform BLASTp analyses against the two-diploid wild-type relatives (I. trifida 
and I. triloba) as reference genomes for the hexaploid varieties. Primer pairs 
were designed with restriction enzymes (RE) flanking the 5’ end of each primer 
sequence (Table 1). The selected restriction enzyme sites are listed with their 
name ID underlined/bolded in Table 1. To protect restriction enzymes from de-
gradation, 3 - 5 miscellaneous nucleotide base pairs (bp) were incorporated at 
the end of each restriction enzyme site located upstream of each primer. Each 
PCR reaction was performed in a 50 µl reaction volume containing the following:  

 
Table 1. Primers designed to amplify coding sequences of Sweetpotato eIF4E. 

A. Primer ID Sequences 5’-3’ eIF4E Locus 

eIF4EFR-HindIIIa CGTAAGCTTATGGTGGAAGAAATCGAGAAATCG 
itf10g18510.t1 

eIF4ERV-BamHI GCTGGATCCTACTGTGTAACGATTCTTGGC 

eIF(iso)4EFR-SalI GATGTCGACATGGCAACCGAGACGGCAG 
itf.04g08430.t1 

eIF(iso)4ERV-Xbal GCTCGTCTAGACACACTATAACGGCCCTTAGCTG 

CBPFR-HindIII GCTAAGCTTATGGAAGAAGCGATAGCAGAG 
itf.01g08030 

CBPRV-Xbal GACTCTAGAGCCTCTCAACCAAGTGTTCCG 

B. Primers for Sequencing   

eIF4EFR ATGGTGGAAGAAATCGAGAAATCG 

 

eIF4ERV TACTGTGTAACGATTCTTGGC 

eIF(iso)4EFR ATGGCAACCGAGACGGCAG 

eIF(iso)4ERV CACACTATAACGGCCCTTAGCTG 

CBPFR ATGGAAGAAGCGATAGCAGAG 

CBPRV GCCTCTCAACCAAGTGTTCCG 

A: Primers utilized to amplify each specific cDNA. B: Primers utilized to sequence the amplicons in both directions. 
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approximately 300 ng of template cDNA, 1X iProof HiFi Master Mix (BIO-RAD, 
Hercules, CA), 5 µmol of forward (FR) and reverse (RV) primers. Each reaction 
was performed under the following thermocycler conditions: initial denaturation 
98˚C for 3mins, then 35 cycles-denaturation at 98˚C for 1 min, annealing 60˚C 
(eif4E/eIF(iso)4E) or 57˚C (CBP) for 1 min, extension 72˚C for 2 mins, and a fi-
nal extension of 72˚C for 5 mins. About 25 µl of amplified PCR products were 
resolved on a 0.8% 1X TAE agarose gel. The bands were eluted and purified with 
PureLink Quick Gel Extraction (Invitrogen, Waltham, MA), and stored at −80˚C 
for subsequent cloning and sequencing along with the PCR-amplified cDNA 
amplicons for direct-sequencing. The Sweetpotato ß-actin gene served as a 
loading control to generate a ~200 bp amplicon using the following: forward 
5’-CCGGTATTGCGCATAGAATGAG-3’ and reverse  
5’-CCACGAGCATCTTTGGATCTT-3’ primers. PCR conditions were similar to 
those utilized with CBP gene specific primers. 

2.3. Sequencing Annotation and Phylogenetic Analyses 

Direct-sequencing of PCR-amplified cDNA amplicons and the sequencing of the 
confirmed recombinant clone plasmid DNA were performed by GeneWiz 
(South Plainfield, NJ). The bioinformatics analyses of all the cloned cDNA se-
quences and the direct-sequencing PCR-amplified cDNA amplicon data were 
mined with the DNASTAR-LaserGene software (DNASTAR, Madison, WI). 
Since sweetpotato is hexaploid, the direct-sequencing of PCR-amplified cDNA 
amplicon resulted in heterogeneous chromatographic traces with varying mul-
tiple picks at certain nucleotide positions. The Mixed Sequence Reader 
(MSR) software was further utilized for multiple heterozygous base calling to 
help decipher and annotate the different homeoalles for each of the IbeIF4E, 
IbeIF(iso)4E, and IbCBP alleles [65]. Predicted protein sequences of IbeIF4E 
gene family were examined simultaneously with protein sequences from thirteen 
plant species collected [I. trifida, I. tribola, japanese morning glory I. nil 
(XP_019169243.1, XP_019181316.1, XP_019173242.1), A. thaliana (NP_193538.1, 
NP_001332369.1, AAC.172220.1), pepper (C. annuum) (XP_016557968.1, 
NP_001311631.1, XP_016548322.1), cassava (M. esculenta) (XP_019169243.1, 
XP_021606525.1, XP_021620559.1), coffee (C. canephora) (CDP14577.1, 
CDO99285.1, CDP14308.1), rice (O. sativa) (NP_001359122.1, XP_015615056.1, 
XP_0156311510.1), soybean (G. max) (KAG4956073.1, NP_001356078.1, 
NP_001235427.1), pea (P. sativum) (AHV79423.1, ABH09880.1, AVH79423.1), 
tomato (S. lycopersicum) (NP_001307578.1, QPB75810.1, XP_004249299.1), 
potato (S. tuberosum) (QQP16443.1, QQP16447.1, XP_006351360.1), and wheat 
(T. aestivum) (M95818, Z12616, CD934979) from the NCBI Genbank database 
(http://www.ncbi.nlm.nih.gov) to access percentage sequence similarities. The 
Sequences were inputted into the MEGAX software for phylogenetic analysis 
using the maximum likelihood, and the cladogram was developed within the 
same program [66] [67] [68].  
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3. Results 
3.1. Analysis of Sweetpotato eIF4E Family Transcripts 

To amplify the full-length coding sequences (CDS) of the eIF4E family in Ipo-
moea batatas cultivars, a BLASTp query was conducted using Arabidopsis tha-
liana and Manihot esculentaeIF4E genes family (phytozome.jgi.doe.gov) against 
the sweetpotato genomics resource database  
(http://sweetpotato.uga.edu/index.shtml), which contains two highly in-bred 
wild-types diploid Ipomoea species (Ipomoea trifida and Ipomoea triloba) as 
reference genomes [59] [69] [70]. The BLASTp screening results confirmed 
three candidate genes for each species that encode for the conserved eIF4E su-
perfamily protein domains: Itf10g18510.t1(eIF4E), Itf01g08030.t1 (CBP), and 
Itf04g08430 (eIF(iso)4E) in I. trifida; and itb10g18850.t1(eIF4E) itb04g09410.t1 
(eIF(iso)4E), and itb01g12380.t1(CBP) in I. triloba. Gene-specific primers uti-
lized for the Ipomea batata cultivars tested resulted in amplicons of about 700 bp 
in full-length cDNA of IbeIF4E, IbeIF(iso)4E, and IbCBP (Figure 1), confirming 
their approximate theoretical sizes from the query search (Figure 1). Each puta-
tive eIF4E family gene was present in all four cultivars, which indicates that 
eIF4E family proteins are expressed in the leaf tissue of all four cultivars. How-
ever, the semi-quantitative analysis showed differential expression levels among 
the cultivars (Figure 1). The specific cDNA amplicons were directly sequenced 
or cloned and sequenced to screen for homeoalleles/haplotypes, as a result of 
sweetpotato hexaploid nature. 

3.2. Heterozygous Base Calling of Direct-Sequencing  
Analyses of PCR-Amplified eIF4E cDNA Superfamily  
in Different Sweetpotato Cultivars  

To sequence multiple allelic forms simultaneously, direct-sequencing of  
 

 
Figure 1. Resolution Patterns of the IbeIF4E Superfamily cDNAs in Different Cultivars. Panel (a): End point amplification of leaf 
tissue IbeIF(iso)4E, IbCBP and IbeIF4E 700 bp cDNAs from RT-PCR reactions with specific primers on sweetpotato cultivars with 
SPFMV tolerance/susceptible, and unknown. Panel (b): sweetpotato ß-actin gene, 200 bp amplicon served as a loading control. 
The Semi-Quantitative analysis showed differential expression levels among the cultivars BRG: Beauregard, Res: Resisto, D-3: 
PI-318466, JWL: Jewel. 
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PCR-amplified cDNA amplicons versus sequencing of the cloned cDNAs were 
performed and mined for heterozygous base calling of the chromatogram traces 
with the Mixed Sequence Reader software and DNASTAR-LaserGene software 
to provide a collective mean of polymorphic variations within each targeted gene 
amongst each cultivar.  

Analysis of PCR-amplified IbeIF4E cDNA direct-sequencing chromato-
grams. The I. trifida reference sequence, which contains only one copy of the 
eIF4E gene with the same allele at the itf10g18510.t1 locus served as a compara-
tive reference. From the heterozygous base calling of direct-sequencing of 
IbeIF4E, Resisto results diverged by 10 SNPs from I. trifida (T/C at position 168, 
C/T at position 246, C/A at position 381, A/C at position 384, C/T at position 
432, A/G at position 543, C/A at position 552, C/A at position 573, A/G at posi-
tion 591, and C/T at position 672; where the first letter represents the first nuc-
leotide polymorphism peak and the second letter represents the second nucleo-
tide peak and the wild-type reference sequence). Double peaks with two fluores-
cent indicators were observed on the chromatogram indicating where the eIF4E 
alleles diverged within the heterozygous sample. These double peaks were 
represented in all SNP locations except at position 381, which contained a single 
peak indicating all allele copy numbers contain the same polymorphism. There 
was no evidence of these SNPs causing alterations to the predicted protein se-
quence in comparison to the I. trifida reference sequence. The North Carolina 
commercial variety, Jewel, displayed a total of 17 SNPs (C/G at position 87, A/C 
at position 120, A/G at position 140, T/C at position 141, T/C at position 144, 
C/T at position 161, C/T at position 168, C/T at position 246, C/A at position 
381, A/C at position 384, G/A at position 420, C/T at position 432, A/G at posi-
tion 543, A/C at position 552, C/A at position 573, A/G at position 591, T/C at 
position 649), with each SNP position containing double peaks. Meanwhile, the 
commercial variety Beauregard exhibited 9 SNPs (T/C at position 141, T/C at 
position 168, C/T at position 246, A/C at position 384, C/T at position 432, A/G 
at position 543, C/A at position 552, C/A at position 573, and C/T at position 
673) and all SNP positions displayed double peaks. In the last analyses, PI- 
318846 showed 7 SNPs (T/C at position 168, C/T at position 246, C/A at posi-
tion 381, A/C at position 384, C/T at position 432, A/G at position 543, and C/A 
at position 552), which All SNP’s identified exhibited double peaks when ana-
lyzing the chromatogram. 

Analysis of PCR-amplified IbeIF(iso)4E cDNA direct-sequencing chro-
matograms. Based on the single copy reference sequence of the eIF(iso)4E gene 
with the same allele found at locus itf04g08030.t1 of I. trifida, Resisto chromato-
gram mining results revealed a total of 6 SNPs (G/C at position 63, T/C at posi-
tion 66, A/G at position 231, A/G at position 267, T/C at position 321, A/G at 
position 510), with position 63 containing a single SNP peak when analyzing the 
chromatogram. The remaining SNPs identified, contained overlapping peaks. 
Similarly, Jewel revealed 7 SNPs (T/G at position 60, T/C at position 66, C/T at 
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position 82, A/G at position 267, G/T at position 376, A/G at position 510, 
C/G/T at position 534) as shown in Figure 2. Within the trace files, we identified 
a position containing a triple peak in position 534 which displayed C, G and T 
nucleotides, which could represent multiple allelic forms. The remaining SNPs 
identified contained double peaks (Figure 3). Beauregard showed 5 SNPs within 
the putative eIF(iso)4E allele (G/C at position 63, C/T at position 114, A/G at 
position 267, A/G at position 510, C/G at position 534) which displayed mixed 
chromatograms within each SNP location. All mixed chromatogram positions 
contained a fluorescent signal identical to the reference sequence in conjunction 
with a single SNP. Lastly, accession PI-318846 was found to contain 7 SNPs (C/T 
at position 114, A/G at position 231, A/G at position 267, T/C at position 321, 
A/G at position 510, A/G at position 512 and C/T at position 524), which com-
prised of multiple fluorescent peaks. 

Analysis of PCR-amplified IbCBP cDNA direct-sequencing chromato-
grams. A single copy of the I. trifida CBP gene sequence, with the same allele  

 

 
Figure 2. Example of mixed chromatogram trace from direct-sequencing of PCR-Amplified cDNA. (a): The resulting mixed 
chromatogram was obtained through direct-sequencing of PCR-amplified IbeIF(iso)4E cDNA from Jewel leaf samples. In loca-
tions where allelic forms differed, multiple peaks were detected (red arrows). (b): The anticipated base compositions of allelic 
forms are provided below the chromatogram. SNP combinations are highlighted in red bold. 
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located on locus Itf.01g08030.t1 served as our reference comparator for the he-
terozygous base calling analyses. Sequences within each cultivar showed varying 
polymorphisms. In Resisto, we identified 6 SNPs (C/G at position 50, T/C at po-
sition 96, G/A at position 282, G/A at position 438, T/A at position 513, and C/T 
at position 595) that diverged from the reference sequence. While Jewel was 
shown to contain 5 SNPs (A/G at position 88, G/A at position 106, G/A at posi-
tion 276, G/A at position 432, T/C at position 624) that possess mixed peaks 
within the SNP location. Furthermore, PI-318846 displayed a total of 6 SNPs 
(A/G at position 88, T/C at position 90, G/A at position 106, G/A at position 
432, C/T at position 508, and T/C at position 624) that differed from the refer-
ence sequence. Finally, in Beauregard, a total of 5 SNPs (A/G at position 88, T/C 
at position 90, G/A at position 106, G/A at position 432, and T/C at position 
624) were detected. 

To confirm SNP variants within the cultivars (Table 2), trace files were ana-
lyzed with the mixed sequence reader program for heterozygous base calling 
[65]. Sequencing analyses indicated that the amplified cDNA fragments were 
exactly 696 nucleotide bp (putative IbeIF4E), 606 bp (putative IbeIF(iso)4E), and 
675 bp (putative IbCBP) in length. To decipher the putative gene structures of 
the eIF4E subfamily from the direct sequencing results, we compared I. trifida 
reference genomic sequences to each deduced chromatogram sequence of 
IbeIF4E, IbeIF(iso)4E, and IbCBP cDNA. The results showed that both IbeIF4E, 
and IbeIF(iso)4E each contained five exons and four introns, while IbCBP was 
comprised of six exons and five introns. The deduced amino acid sequences 
from the direct-sequencing of cDNA amplicons were used to screen for con-
served domain regions resulting in the discovery of the IF4E superfamily do-
mains within the sequences representing putative IbeIF4E, IbeIF(iso)4E and 
IbCBP, in the following amino acid locations: 57 - 212, 27 - 185, and 46 - 204 
similar to Marchler-Bauer et al. [71] findings with different species. The genes, 
IbeIF4E, IbeIF(iso)4E, and IbCBP, each encoded polypeptides of 232, 202 and 
225 amino acid residues with calculated molecular masses of 26kDa, 22.8kDa, 
and 25.8 kDa with predicted isoelectric points of 5.1, 5.57, and 6.66, respectively. 
Since data from the direct-sequencing of cDNA exhibited multiple peaks in the 
chromatogram that could potentially account for homeoalleles or SNPs occur-
ring within the subgenome of the cultivars, similar to previous work [26] [62];  
 
Table 2. Total SNPs identified within the coding regions of IbeIF4E, IbeIF(iso)4E and 
IbCBP in Sweetpotato cultivars based on direct-sequencing of PCR-Amplified cDNA 
chromatogram mining. 

Cultivars IbeIF4E IbeIF(iso)4E IbCBP Total SNPs 

PI-318846 (D-3) NZ-196a 7 7 4 18 

Beauregard (BRG) 9 5 7 21 

Jewel (JWL) 17 7 5 29 

Resisto (RES) 10 6 6 22 
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therefore, we sought to further assess and confirm the presence of these SNP va-
riants. Thus, the PCR-amplified cDNAs from all cultivars were cloned and se-
quenced for comparative bioinformatic analyses. 

3.3. Mining of Cloned IbeIF4E Superfamily Sequence Variations  
within Different Sweetpotato Cultivars 

Although direct-sequencing of PCR-amplified cDNA tools provided rapid re-
sults as an alternative to utilizing traditional gene cloning, one major constraint 
with direct PCR product sequencing results in polyploid organisms is the pres-
ence of mixed chromatograms containing multiple fluorescent signals in posi-
tions where allelic copy numbers may diverge [72]. In solving this daunting 
challenge of the sequencing read interpretations, we sought to capture individual 
allelic forms by cloning the cDNA PCR products, sequencing the purified re-
combinant plasmid DNAs from several positive colonies, and separately charac-
terizing and annotating them to overcome this impediment. In the past, it has 
been postulated that the closest existing relatives of the commercial sweetpotato 
are the I. trifida and I. triloba species [57] [58] [59] [73]. Therefore, for this 
work, the sequences of the clones were compared against both I. trifida and I. 
triloba reference genomes. Sequencing data from this analysis has been submit-
ted to NCBI with the accession numbers OP273667-OP273690. 

Haplotype Identification within Cloned IbeIF4E Sequences. The analysis 
of cloned cDNA sequencing results from the putative IbeIF4E gene in Resisto 
identified four haplotypes with a total of seven SNP locations compared to the 
reference sequence I. trifida (Table 3 and Figure 3). However, when the nucleo-
tide sequences were translated to their predicted proteins, identical amino acid 
sequences resulting in synonymous mutations (Figure 4) were found in all the 
haplotypes. Following comparative sequence analysis with I. trifida, a pairwise 
sequence alignment was performed with predicted amino acid sequences ob-
tained from the putative eIF4E in Resisto with I. triloba, which showed a 98.7%  
 
Table 3. Example of SNP site distribution of mining cloned forms of ibeIF4E coding se-
quence in Resisto. 

Position 246 381 543 552 573 591 672 

I. trifida T A G A A G T 

I. triloba T A G C A G C 

Form 1 C C A C C A C 

Form 2 C C G A A G T 

Form 3 C C G A A G T 

Form 4 T C A C C A C 

Genotype 
Combinations 

C/T C G/A A/C A/C G/A T/C 
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Figure 3. Example of Resisto IbeIF4E Allelic Forms Nucleotide Multiple Sequence Alignment. Multiple sequence alignment of 
selected Resisto IbeIF4E allelic forms displaying C/T (246), C/A (381), C/T(432), A/G (543), C/A (552), C/A (573), A/G (591), C/T 
(672) polymorphisms. The first letter indicates the SNP nucleotide in the full length sweetpotato IbeIF4E haplotype sequence, the 
number gives the position of the nucleotide, and the second letter indicates the nucleotide sequence in the wild-type sequence. 
Highly conserved regions between allelic forms are shaded in black. Single nucleotide polymorphisms are denoted with a white 
background. Nucleotide positions are numbered on the above sequences. Note: Multi-sequence alignment also displays SNPs in 
comparison to I. triloba. 
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Figure 4. Amino Acid Sequence Alignment of Predicted IbeIF4E Sequences. All the 
IbeIF4E forms from sweetpotato cultivars Resisto, PI-318846, Jewel and Beauregard were 
compared with the reference ancestorial lines I. trifida (NSP306) and I. triloba (NSP323). 
Red asterisks indicate the location of amino acid variations observed between multiple al-
lelic forms and amongst reference sequences. Identical amino acid sequences are shaded 
in black. Amino acid sequence positions are numbered above each sequence. 
 
amino acid sequence identity with three of the amino acid variations in loca-
tions: M45I, S47N, and V54A (the first letter indicates the residue in the cloned 
sequence, the number indicates the amino acid position and the second letter 
indicates the residue present in the diploid reference I. triloba) (Figure 4). 

Of the total colonies screened from PI-318846, three were categorized as hap-
lotype one which displayed identical nucleotide sequences to the reference I. tri-
fida. The remaining colonies were identical to each other and were labeled as a 
second haplotype, with a nucleotide sequence identity, following pairwise analy-
sis, of 99.4% to I. trifida (T/C at nt 168), and a 98.7% sequence identity to I. tri-
loba (G/T at nt 135, G/A at nt 140, T/C at nt 161, G/A at nt 216, A/C at nt 384, 
G/A at nt 420, A/C at nt 552, C/T at nt 645, T/C at nt 672). Both haplotype se-
quences were translated to their predicted amino acid sequences which showed 
100% identity to I. trifida. However, in comparison to I. triloba, there was a 
98.7% identity between the amino acid sequences. Polymorphisms in locations 
135 and 140 and 161 resulting in amino acid variations M45I, S47N and V54A 
respectively (Figure 4).  

All colonies representing Beauregard IbeIF4E sequences showed a 99.4% nuc-
leotide sequence identity to I. trifida with four SNPs (T/C at nt 168, C/T at nt 
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246, C/A at nt 381, and A/C at nt 384), and a 98.3% sequence identity to I. trilo-
ba (G/T at nt 135; G/A at nt 140; T/C at nt 161; T/C at nt 168; A/G at nt 216; T/C 
at nt 246; A/C at nt 381; C/A at nt 384; G/A at nt 420; A/C at nt 552; C/T at nt 
645 and T/C at nt 672). Translated nucleotide sequences revealed a 100% amino 
acid sequence identity to I. trifida and a 98.7% amino acid sequence homology to 
I. triloba. 

We identified two haplotypes from the Jewel IbeIF4E colonies analyzed. Hap-
lotype one exhibited a 99.4% nucleotide sequence identity to I. trifida with four 
SNPs (T/C at nt 168; C/T at nt 246; C/A at nt 381; A/C at nt 384), and a 98.3% 
nucleotide sequence identity to I. triloba, however with 12 SNPs (G/T at nt 135; 
G/A at nt 140; T/C at nt 161; T/C at nt 168; G/A at nt 216; C/T at nt 246; C/A at 
nt 381; A/C at nt 384; G/A at nt 420; A/C at nt 552; C/T at nt 645 and T/C at nt 
672). Though several SNPs were detected, the translated nucleotide sequences of 
Jewel IbeIF4E haplotype one displayed a 100% amino acid sequence identity to I. 
trifida and a 99.6% amino acid identity to I. triloba. Polymorphisms in nucleo-
tide positions 135, 140 and 161 resulted in amino acid substitutions of M45I, 
S47N and V54A in the predicted protein sequence, respectively (Figure 4). 

Haplotype Identification within Cloned IbeIF(iso)4E Sequences. Analysis 
of sequence variations of Resisto IbeIF(iso)4E clones revealed three different 
haplotypes. Haplotype one showed a 99.5% nucleotide sequence identity to both 
I. trifida, which harbored three SNPs (G/C at nt 63, T/C at nt 66, and C/G at nt 
534), and I. triloba with also three SNPs (T/C at nt 66, T/C at nt 171 and G/A at 
nt 589). Whereas haplotypes two & three showed a 99.2% nucleotide sequence 
identity to both ancestorial lines I. trifida and I. triloba. Specific to I. trifida, 
haplotype two and three displayed a total of five SNPs (haplotype two: G/C and 
nt 63, T/C at nt 66, A/G at nt 231, A/G at nt 510, C/G at nt 534; haplotype three: 
G/C at nt 63, T/C at nt 66, T/C at nt 321, A/G at nt 510 and C/G at nt 534). 
While the comparison of haplotype two and three to I. triloba revealed 5 SNPs 
each, with haplotype 2 consisting of T/C at nt 17, T/C at nt 66, A/G at nt 231, 
A/G at nt 510, and G/A at nt 589, and haplotype 3 comprised of T/C at nt 66, 
T/C at nt 171, T/C at nt 321, A/G at nt 510, and G/A at nt 589 (Figure 5). Al-
though we identified three haplotypes within Resisto, the predicted amino acid 
sequences of each haplotype revealed synonymous mutations, that resulted in 
100% amino acid sequence identity to both I. trifida and I. triloba wild-type rela-
tives (Figure 6).  

Sequencing results of cloned IbeIF(iso)4E from PI-318846 revealed three dif-
ferent allelic forms that resulted in two haplotypes possessing synonymous mu-
tations and one allelic form displaying a non-synonymous mutation. Haplotype 
one exhibited a 99.2% nucleotide sequence identity (Figure 4) to both I. trifida 
(haplotype one: G/C at nt 63; A/G at nt 267; A/G at nt 510; C/G at nt 534 and a 
A/G at nt 535), and I. triloba (haplotype one: T/C at nt 171; A/G at nt 267; A/G 
at nt 510; A/G at nt 535 and a G/A at nt 589). The analysis from haplotype two 
revealed a 99.5% nucleotide sequence identity to both wild types I. trifida  
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Figure 5. Example of Resisto IbeIF(iso)4E Allelic Forms Nucleotide Multiple Sequence Alignment. Multiple sequence align-
ment of selected Resisto IbeIF(iso)4E allelic forms are displaying (G/C (63), T/C (66), A/G (231), T/C (321), A/G (510), C/G 
(534)) polymorphisms in Resisto allelic forms (the first letter indicates the SNP nucleotide in the full length sweetpotato 
ibeIF4E haplotype sequence, the number gives the position of the nucleotide, and the second letter indicates the nucleotide 
sequence in the wild-type sequence). Highly conserved regions between allelic forms are shaded in black. Single nucleotide 
polymorphisms are denoted with a white background. Nucleotides are numbered above sequences. 
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Figure 6. Deduced amino acid sequence alignment of predicted IbeIF(iso)4E Se-
quences: Alignment of predicted IbeIF(iso)4E amino acids sequences from cloned 
sweetpotato cultivars Resisto, PI-318846, Jewel and Beauregard with Reference ances-
torial Lines I. trifida (NSP306) and I. triloba (NSP323). Red asterisks indicate amino 
acid variations observed between multiple allelic forms and amongst reference se-
quences. Conserved amino acid sequences are shaded in black. Numbers for amino ac-
id residue positions are indicated above the sequences. 
 
(haplotype two: G/C at nt 63; A/G at nt 510; and C/G at nt 534) and I. triloba 
(haplotype two: T/C at nt 171; A/G at nt 510; and G/A at nt 589). The third hap-
lotype identified within PI-318846 revealed a 98.5% nucleotide sequence identity 
to both diploid wild types I. trifida (haplotype three: T/G at nt 42; T/G at nt 60; 
and G/C at nt 63; C/T at nt 82; nt deletions in regions 193 - 195; A/G at nt 510 
and a C/G at nt 534) and I. triloba (haplotype three: T/G at nt 42; T/G at nt 60; 
C/T at nt 82; T/C at nt 170; nt deletions in regions 195 - 197; A/G at nt 510 and a 
G/A at nt 589). The predicted amino acid sequence of haplotype three contained 
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a missing codon at nucleotide positions 195 - 197, resulting in an in-frame dele-
tion in exon 1 (Figure 6). The in-frame deletion mutation appears to encode a 
tryptophan (W) residue. In other species, it has been characterized that all 
known eIF4E genes consist of 8 conserved tryptophan residues, some of which 
are involved in mRNA cap binding [74] [75]. Since PI-318846 possesses 3 allelic 
forms of IbeIF(iso)4E and only one allelic form contained an in-frame mutation 
that resulted in a missing tryptophan, it suggests that the two forms that do not 
possess the mutation must dominate the function of IbeIF(iso)4E. 

Three haplotypes were identified in Beauregard following the cloning of the 
putative IbeIF(iso)4E in relationship to both I. trifida and I. triloba. Compared 
to I. trifida, BRG IbeIF(iso)4E haplotype one and three displayed a 99.2% nuc-
leotide sequence identity, however, they exhibited SNPs at different positions 
(haplotype one: G/C at nt 63; A/G at nt 267; A/G at nt 510; C/G at nt 534, A/T at 
nt 567; haplotype three: G/C nt 63; T/C nt 321; T/C nt 171, A/G at nt 267, A/G at 
nt 510, A/T at nt 567, G/A at nt 589). Haplotype two showed a 99.2% nucleotide 
sequence identity (C/G at nt 63, C/T at nt 114, T/C at nt 171, A/G at nt 510, and 
G/A at nt 589). The deduced amino acid sequences of haplotype one and two 
have a 100% amino acid sequence identity to I. trifida and I. triloba, inferring 
that the different SNPs detected resulted in synonymous mutations. On the oth-
er hand, haplotype three displayed a 99.5% amino acid sequence identity. How-
ever, the SNP resulted in a F120L in comparison to both parental lines (Figure 
4). 

We identified two forms of the cloned IbeIF(iso)4E gene in Jewel in compari-
son to the wild-type reference sequences. Haplotype one had a 99.2% nucleotide 
sequence identity to I. trifida (T/G at nt 42; G/C at nt 63; C/T at nt 82; A/G at nt 
510; C/G at nt 534); resulting in a 100% amino acid sequence identity. The 
comparison against I. triloba showed a 99.2% nucleotide sequence identity (T/G 
at nt 42; C/T at nt 82; T/C at nt 171; A/G at nt 510; G/A at nt 589); however, it 
harbored two SNPs in separate regions of the nucleotide sequence in contrast to 
the pairwise alignment with I. trifida. Although we were able to identify SNPs 
within haplotype one, the SNPs identified did not alter the amino acid sequence; 
therefore, form one possessed a 100% amino acid sequence identity to both I. 
trifida and I. triloba. Haplotype two results revealed a 99.2% nucleotide sequence 
identity to both reference genes: I. trifida (T/G at nt 60; G/C at nt 63; G/T at nt 
376; A/G at nt 510; C/G at nt 534), and I. triloba (T/G at nt 60; T/C at nt 171; 
G/T at nt 376; A/G at nt 510; G/A at nt 589). In the predicted amino acid se-
quence, we observed that the SNP at nucleotide 376 resulted in a V126L amino 
acid change, which are both non-polar amino acids. This mutation led to a 
99.5% amino acid sequence identity (Figure 4).  

Haplotype Identification within Cloned IbCBP Sequences. The analysis of 
cloned sequences representing the cap binding protein in Resisto revealed 2 
haplotypes, in contrast to the reference sequences. Haplotype one showed a 
99.6% nucleotide sequence identity to I. trifida with 3 SNPs (C/G at nt 44; T/C at 
nt 90; G/A at nt 276) (Figure 7), while its amino acid sequence identity was  
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Figure 7. Example of resisto IbCBP allelic forms nucleotide multiple sequence alignment. Multiple sequence alignment of selected 
Resisto IbeIF(iso)4E allelic forms displaying C/G (44), C/A (84), T/C (90) G/A, G/A (276), G/A (432), A/T(507), A/G (615), T/A 
(627), T/C (639) polymorphisms in Resisto allelic forms compared to both I. trifida and I. triloba reference genomes. Highly con-
served regions between allelic forms are shaded in black. Single nucleotide polymorphisms are denoted with a white background. 
Nucleotides are numbered above rows. 
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99.6% due to the nucleotide substitution in position 44 leading to a T15S amino 
acid change. In contrast to I. triloba, haplotype one displayed a 99.3% nucleotide 
identity (A/C at nt 84; T/C at nt 90; T/G at nt 369; A/G at nt 432; T/A at nt 627) 
leading to a synonymous mutation due to the nucleotide substitution in position 
84 that altered the amino acid sequence to R28S causing a 99.6% amino acid se-
quence identity (Figure 8). Haplotype two analyzed in Resisto revealed a 99.1% 
nucleotide sequence identity in comparison to both reference species. The re-
sults against I. trifida showed six SNPs (C/G at nt 44; G/A at nt 276; G/A at nt  
 

 
Figure 8. Deduced amino acid sequence alignment of predicted IbCBP Sequences. Amino acid sequence alignment of Predicted 
IbCBP amino acid sequences from the cloned haplotypes compared to the reference ancestorial lines I. trifida (NSP306) and I. 
triloba (NSP323). Sweetpotato Cultivars Resisto (Resis), PI-318846 (D-3), Jewel (Jew) and Beauregard (BRG). Red asterisks indi-
cate amino acid variations observed between multiple allelic forms and amongst reference sequences. Conserved amino acid se-
quences are shaded in black. 
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430; A/T at nt 507; A/G at nt 615; T/C at nt 639) resulting in the same syn-
onymous mutation as haplotype one, where nucleotide substitution at position 
44 changed the amino acid sequence to T15S, which is identical to the amino 
acid located in the same position in I. triloba. The alignment of haplotype two 
against I. triloba identified a 99.1% nucleotide sequence identity (A/C at nt 84; 
T/G at nt 369; A/T at nt 507; A/G at nt 615; T/A at nt 627; T/C at nt 639) with 
the same synonymous mutation as haplotype one in contrast to I. triloba show-
ing a 99.6% amino acid sequence identity altering R28S, which is also identical to 
the amino acid located in the same position in I. trifida. 

In cv. PI-318846, two allelic forms of the cloned IbCBP gene were identified in 
comparison to I. trifida. The results from haplotype one revealed a 99.6% nuc-
leotide sequence identity (T/C at nt 90; G/A at nt 276; G/A at nt 432) leading to a 
99.6 % amino acid sequence identity. Nucleotide substitution of position 90 re-
sulted in an amino acid change in T30A. Whereas haplotype one in contrast 
with I. triloba shows a 99.3% nucleotide similarity (G/C at nt 44; A/C at nt 84; 
T/C at nt 90; T/G at nt 369; T/A at nt 627) with a 98.7% amino acid sequence 
identity. The amino acid changes occurred in the following positions (S15T, 
R28S, T30A) as a result of the nucleotide substitutions in positions 44, 84, and 90 
(Figure 8). Sequencing results from haplotype two revealed a 99.1% nucleotide 
sequence identity with I. trifida (A/G at nt 88; T/C at nt 90; G/A at nt 106; G/A 
at nt 276; C/T at nt 507; T/C at nt 624); which generated a 100% amino acid se-
quence identity following the translation of sequencing results. Haplotype two 
sequencing data compared to I. triloba revealed a 98.5% nucleotide sequence 
identity (G/C at nt 44; A/C at nt 84; A/G at nt 88; T/C at nt 90; G/A at nt 106; 
T/G at nt 369; A/G at nt 432; C/T at nt 507; T/C at nt 624; T/A at nt 627) result-
ing in a 99.6% amino acid sequence identity displaying amino acid changes in 
S15T, R28S that also derived from the previously mentioned nucleotide substitu-
tions in positions 44 and 84 (Figure 8). 

In total, we identified two allelic forms of the IbCBP gene in cultivar Beaure-
gard when assessing cloned sequences. In the first haplotype, we performed a 
pairwise alignment against I. trifida revealing a 99% nucleotide sequence identi-
ty, showing 7 SNPs (C/G at nt 44; A/G at nt 88; T/C at nt 90; G/A at nt 106; G/A 
at nt 276; G/A at nt 432; T/C at nt 624). The results from the translated nucleo-
tide sequence revealed a 98.7% amino acid sequence identity showing amino ac-
id changes in T15S, T30A and V36I as a result of nucleotide substitutions in po-
sitions 44, 90 and 106 (Figure 8). Pairwise alignment results assessed from hap-
lotype one and I. triloba revealed the same identity percentage as I. trifida dis-
playing a total of 7 SNPs (A/C at nt 84; A/G at nt 88; T/C at nt 90; G/A at nt 106; 
T/G at nt 369; T/C at nt 624 and T/A at nt 627). However, we were able to iden-
tify a different base substitution in position 84 that gave rise to the R28S amino 
acid change in conjunction with T30A and V36I amino acid changes which ex-
hibited a 98.7% amino acid sequence identity. We then assessed variations in 
haplotype two, against I. trifida and it was revealed that there is a 99.7% nucleo-
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tide sequence identity; displaying three SNPs (C/G at nt 44 and G/A at nt 276) 
that translated into a 99.6% amino acid sequence identity showing a T15S muta-
tion, that was derived from a nucleotide substitution in nucleotide position 44. 
Next, the pairwise alignment with haplotype 2 and I. triloba revealed a 99.4% 
nucleotide sequence identity (A/C at nt 84; T/G at nt 369; A/G at nt 432 and T/A 
at nt 627) resulting in a 99.6% amino acid sequence identity that is derived from 
a nucleotide substitution in position 84 that resulted in a R28S amino acid 
change (Figure 8).  

Jewel also displayed two allelic forms of the cloned IbCBP gene with a 99.7% 
nucleotide sequence identity to I. trifida (A/G at nt 88; G/A at nt 276). The de-
duced amino acid sequence revealed a 99.6% amino acid sequence identity with 
a T30A amino acid change based on the nucleotide substitution in position 88 
(Figure 8). In comparison to I. triloba, haplotype one displayed a 99.1% nucleo-
tide sequence identity (G/C at nt 44; A/C at nt 84; A/G at nt 88; T/G at nt 369; 
A/G at nt 432; T/A at nt 627). The translated sequence revealed a 98.7% amino 
acid sequence identity with the following mutations: S15T, R28S, T30A (Figure 
8). Haplotype two results compared with I. trifida showed a 99.1% nucleotide 
sequence identity (T/C at nt 90; G/A at nt 106; G/A at nt 201; G/A at nt 276; G/A 
at nt 432; T/C at nt 624) that revealed a single amino acid change V36I from the 
SNP located in position 106 with a 99.6% amino acid identity. Results inferred 
from I. triloba revealed a 98.8% nucleotide sequence identity (G/C at nt 44; A/C 
at nt 84; T/C at nt 90; G/A at nt 106; G/A at nt 201; T/G at nt 369; T/C at nt 624; 
T/A at nt 627). Translated sequences also showed a 98.7% amino acid sequence 
identity that resulted in the following amino acid changes S15T, R28S, V36I 
(Figure 8). 

4. Phylogenetic Analysis of Sweetpotato eIF4E Subclasses  

Evolutionary Analysis of Sweetpotato IbeIF4E. To characterize putative 
IbeIF4E genes, a phylogenetic analysis was performed utilizing MUSCLE within 
the MEGA7 platform to investigate evolutionary relationships among eIF4E or-
thologues previously identified in other plant species (Figure 9). The phyloge-
netic analysis was developed from predicted amino acid sequences assessed from 
cloned samples representing allelic forms that were identified. As displayed in 
Figure 9, the dendrogram suggests that the eIF4E family is separated into three 
distinct classes. Cloned IbeIF4E sequences, eIF4E from I. nil (IN_ XP 
019169243.1), and the eIF4E sequences obtained from the reference genomes 
were clustered into the same subgroup, which suggests that the eIF4E protein 
has a similar function as the eIF4E protein in other Ipomoea species such as I. 
nil. The amino acid sequence comparison of IbeIF4E displayed its highest se-
quence identity with IN_XP 019169243.1 from Ipomoea nil (~96% - 97%), and 
the lowest identity with At_NP_193538.1. from Arabidopsis thaliana (~72%) 
displayed on the genetic distance and identity map shown in supplemental Fig-
ure S1 data image. Interestingly, when assessing the predicted amino acid se-
quence alignment of IbeIF4E compared with other eIF4E proteins from various  
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Figure 9. Molecular phylogenetic analysis of the ibeIF4E multigene family by maximum likelihood method against other species. 
The evolutionary history was inferred using Maximum-Likelihood method based on the JTT matrix-based model [82]. The tree 
with the highest log likelihood (−4193.37) is shown. Initial tree(s) for the heuristic search were obtained automatically by applying 
Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, then selecting the topology 
with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 
categories (+G, parameter = 0.7004)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per 
site. The numbers adjacent to the branches represent the percentage of the replicate trees where the associated taxa clustered 
within the bootstrap test. The analysis involved 56 amino acid sequences. All positions containing gaps and missing data were 
eliminated. There is a total of 180 positions in the final dataset. Evolutionary analyses were performed in MEGA7 [66]. 
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plant species, 109 identical regions were identified amongst all species. Of the 
109 conserved regions, eIF4e has been characterized to contain a large consensus 
of tryptophan (W) residues that have been proven to play a significant role in 
binding to the 5’ mRNA cap in other plant species [21] [26] [74] [75]. In IbeIF4E, 
our results revealed a total of nine W residues that are identical amongst all spe-
cies (Figure 10). Of the nine residues identified, three W residues (W-78, W-124 
and W-183) and a glutamic acid (E-125) were found to be identical in all classi-
fied eIF4E family members and have been shown to interact with the mRNA cap 
binding structure as previously described by Joshi et al. in 2005 and Monzingo et 
al. in 2007 [74] [76] [77] [78].  

Evolutionary Analysis of Sweetpotato IbeIF(iso)4E. The results generated 
from the phylogeny revealed that the cloned sequence haplotypes from IbeIF(iso)4E, 
the IbeIF(iso)4E sequences from the reference genomes and eIF(iso)4E from 
I. nil (IN XP 019181316.1)were clustered into the same subgroup, which also 
suggests that the IbeIF(iso)4E protein possesses the similar function to eIF(iso)4E 
proteins in other Ipomoea species. The amino acid sequence identity of 
IbeIF(iso)4E with pre-existing eIF(iso)4Es from other plant species revealed its 
highest identity with Ipomoea nil (96.24%) and the lowest with Arabidopsis 
thaliana (67.20%) AT_NP_001332369.1 (Figure 6). The alignment analysis of 
IbeIF(iso)4E in comparison to other species revealed 82 conserved regions 
(Supplemental Figure S2), nine of which were conserved tryptophan (W) re-
sidues as previously observed in the eIF(iso)4E amino acid sequence align-
ments of other species [76]. Residues W-48, W-94, E-95 and W-194 were 
identified as positions that were equivalent to residues that are directly asso-
ciated with IbeIF4E-mRNA-cap binding in other species [22] [23] [79] 
(Figure 10).  

Evolutionary Analysis of Sweetpotato IbCBP. Based on the sequence ho-
mology from other plant species, IbCBP haplotypes clustered into a subgroup 
with IbCBP sequences from the reference genomes and CBP from I. nil, there-
fore, suggesting that IbCBP share similar functions as the CBP proteins in 
other Ipomoea species. The amino acid sequence alignment performed for 
IbCBP in comparison to other species revealed a high amino acid identity with 
XP_019173242.1 from I. nil (98% - 99%); whereas AAC17220.1 of Arabidopsis 
thaliana is shown as its lowest sequence identity (73% - 74%) based on the dis-
tance map generated from the amino acid sequence alignment (Supplemental 
Figure S3). We expected for I. nil to possess high sequence homology to IbCBP 
sequences as they share the same genus [80].  

The phylogenetic analysis revealed that IbeIF4E, IbeIF(iso)4E and IbCBP were 
members of three distinctly different evolutionary clades. When assessing the 
amino acid sequence alignment of IbCBP, a total of 51 conserved regions were 
identified, of which seven residues accounted for the tryptophan residue. One of 
the primary observations noted in the amino acid sequence variations of CBP in 
comparison to eIF4E and eIF(iso)4E was the presence of two amino acid 
substitutions in CBP in lieu of the first two conserved tryptophan residues in  
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Figure 10. Amino acid sequence alignment of sweetpotato IbeIF4E, IbeIF(iso)4E and IbCBP Deduced from Cloned Haplo-
types against Several Plant species. For IbeIF4E, sequences were compared with eIF4E sequences from A. thaliana 
(AT_NP193538.1), pepper (C. annuum; CA_XP_016557968.1), cassava (M. esculenta; ME_XP_021598522.1), Japanese 
morning glory (I. nil; IN_XP_019169243.1), coffee (C. canephora; CC_CDP14577.1), rice (O. sativa; OS_NP_001359122.1), 
soybean (G. max; GM_KAG4956073.1), pea (P. sativum; PS_AHV79422.1), tomato (S. lycopersicum; SL_NP_001307578.1), 
wheat (T. aestivum; CAA78262.2), and potato (S. tuberosum ST_QQP16443.1). For IbeIF(iso)4E, sequences were compared 
with eIF(iso)4E sequences from A. thaliana (AT_NP001332369.1), C. annuum (CA_XP_001311631.1), M. esculenta 
(ME_XP_021606525.1), I. nil (IN_XP_019181316.1), C. canephora (CC_CDO99285.1), O. sativa (OS_NP_015615056.1), G. 
max (GM_001356078.1), P. sativum (PS_ABH09880.1), S. lycopersicum (SL_QPB75810.1), T. aestivum (TA_M95818) and S. 
tuberosum (ST_QQP16447.1). For IbCBP, sequences were compared with CBP sequences from A. thaliana (AT_AAC17220.1), 
C. annuum (CA_XP_016548322.1), M. esculenta (ME_XP_021620559.1), I. nil (IN_XP_019173242.1), C. canephora 
(CC_CDP14308.1), O. sativa (OS_XP_015631510.1), G. max (GM_NP_001235427.1), P. sativum (PS_AHV79423.1), S. lyco-
persicum (SL_XP_004249299.1), T. aestivum (CD934979) and S. tuberosum (ST_XP_006351360.1). The multiple sequence 
alignment was performed using Blosum [66] and shaded with ESPript 3.0 [68]. Highly conserved tryptophan residues were 
indicated by numbers. IbCBP sequences differentiated by amino acid substitutions in conserved Trp residues are numbered 
and contain red asterisks. Yellow amino acid residues signify sequence similarities within each group. The principal sequence 
eIF4E superfamily domain most identified in all eukaryotic translation initiation factors 4Es were underlined in red. Num-
bers above the sequences indicate amino acid positions from the N-terminal direction. 
 

Arabidopsis thaliana eIF4E and eIF(iso)4E [81]. In exchange, the amino acid re-
sidues were replaced with alternative aromatic amino acid residues. In this 
study, it was observed that the first and the third tryptophan residues in IbeIF4E 
and IbeIF(iso)4E were substituted for an alternative aromatic amino acid, tyro-
sine, in IbCBP. The observations regarding the conservation of tryptophan resi-
dues in sweetpotato further confirm the specificity of each gene that was se-
quenced. 

5. Discussion 

In this study, hexaploid sweetpotato cultivars Jewel, Resisto, Beauregard, and 
PI-318846 which exhibit unknown, tolerance or susceptibility to SPFMV served 
as donors for the cloning and characterization of the eIF4E family because the 
commercial varieties (Jewel and Beauregard) show periodic resistance to SPFMV 
due to low viral load during the growing season [5] [6]. Three eIF4E full-length 
cDNAs were annotated in these cultivars through two routes: 1) di-
rect-sequencing of PCR-amplified cDNA amplicons and 2) sequencing of the 
cloned cDNA amplicons that were compared against the sweetpotato genomics 
resource database (http://sweetpotato.uga.edu/) containing the reference ge-
nomes of I trifida and I. triloba [59]. Additionally, each gene sequence was 
blasted against the conserved consensus sequences of M. esculenta and A. tha-
liana eIF4Es. Results mined from the direct-sequencing of PCR-amplified cDNA 
and the cloned sequences along with their protein prediction and phylogenetic 
analyses revealed multiple haplotypes of each gene among the cultivars assessed 
(Figures 3-8) in comparing all sequences to I. trifida. We detected a total of four 
haplotypes in Resisto, two haplotypes in D-3 and Jewel, and one haplotype in 
Beauregard. While IbeIF(iso)4E sequencing assessment demonstrated the pres-
ence of three haplotypes in cultivars Resisto, D-3, and Beauregard, and two hap-
lotypes in Jewel. We also determined that IbCBP had two haplotypes within each 
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of the four cultivars. Similar results were obtained in root the crop cassava and 
the polyploidy species of sugarcane, where the cloning of the eIF4E protein gene 
family revealed varying gene copy numbers for eIF(iso)4E, CBP and eIF4E [14] 
[26] [27] [33] [34] [35] [36] [37]. Screening for the polymorphisms revealed that 
nucleotide variations against I. trifida were identical to the I. triloba genome. 
The outcome from these results further concurs with Austin’s [67] postulation 
that hexaploid sweetpotato species emerged from an allopolyploid origin [67]. 
However, a selection of the hexaploid sweetpotato predicted translated allelic 
forms in this work showed silent mutations, therefore encoding the same amino 
acid sequences resulting in no conformational changes to the protein except for 
D-3 ibeIF(iso) haplotype 3, which had an in-frame deletion. The CDS sequences 
for each gene length were confirmed as 696 bp (IbeIF4E), and 606 bp 
(IbeIF(iso)4E) and 675 bp (IbCBP) encoding 232, 202 and 225 amino acids re-
spectively. The multi-sequence alignment analysis revealed that the deduced 
amino acid sequence for all IbeIF4E classes displayed homology to eIF4E classes 
from other species, including the conserved 160 amino acid IF4E superfamily 
domain located in-between the N-terminal and C-terminal ends (Figure 10). In 
conjunction, we identified conserved tryptophan residues within each class that 
is known to interact with the mRNA-cap structure of eIF4Es from other organ-
isms such as T. asetivum, H. sapiens (human) and M. musculus (mouse) as de-
picted in Figure 10 [27] [74] [75] [78].  

Furthermore, when comparing the deduced amino acid sequences of each 
haplotype against both Ipomoea reference genomes, amino acid variations were 
detected within the commercial varieties Jewel (IbeIF4E haplotype two, 
IbeIF(iso)4E haplotype two, IbCBP haplotype one, and haplotype two) and 
Beauregard (IbeIF(iso)4E haplotype three, IbCBP haplotype one, and haplotype 
two) (Table 4). We examined a unique amino acid residue variation within these  

 
Table 4. A consensus of Amino acid variations identified from cloned ibeif4e super-family protein sequences. 

Gene/Amino Acid position I. trifida I. triloba Beauregard Jewel Resisto PI-318846 

IbeIF4E47 S N S N S S 

IbeIF(iso)4E65 W W W W W In-frame deletion 

IbeIF(iso)4E120 L L F L L L 

IbeIF(iso)4E126 V V V L V V 

IbeIF(iso)4E179 D D D D D N 

IbCBP15 S T T S T T/S 

IbCBP30 A A T/A T/A A T/A 

IbCBP36 I I V/I I/V I I 

a. A representation of amino acid residue differences in detected haplotype sequences among commercial varieties Jewel (IbeIF4E 
haplotype two, IbeIF(iso)4E haplotype two, IbCBP haplotype one and haplotype two) and Beauregard (three (IbeIF(iso)4E haplo-
type three, IbCBP haplotype one and haplotype two) in comparison to susceptible and unknown cultivars (Resisto and D-3), and 
to the WT diploid species. Different haplotypes are represented by the forward slash /. Columns in gray indicate commercial va-
rieties and amino acid variations among varieties are indicated in red. 
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commercial varieties in IbCBP position 36 in which one of the haplotypes con-
tained a valine (V) in comparison to the reference sequences and other cultivars 
possessing an isoleucine (I) residue. Both I and V have branched-chain amino 
acids that have not been documented in CBPs of other plant species. Currently, 
there is limited information on the structural composition of the divergent initi-
ation factor CBP. However, we predicate that these variations can play a role in 
protein-protein binding affinity. Further work needs to be performed to estab-
lish the role of this mutation among the cultivars. In the unknown and suscepti-
ble cultivars an in-frame deletion in PI-318846 IbeIF(iso)4E haplotype three, and 
single amino acid variations in PI-318846 IbCBP haplotype one and Resisto 
haplotype one were detected (Table 4). Similar to our postulation regarding the 
unique amino acid variation in IbCBP within the commercialized varieties, it is 
suspected that these amino acid variations contribute to protein-protein interac-
tions resulting in virus susceptibility. For example, German-Retana et al. [77] 
reported eIF4E mutations located in the highly conserved tryptophan residues 
interfered with cap binding capabilities. 

Initially, the amino acid variations were compared to the I. trifida genome for 
assessment; however, further comparison of these amino acid changes against 
the I. triloba genome revealed variations between I. trifida and I. triloba results. 
Previously, it was indicated that both I. trifida and I. triloba were the closest rel-
atives of Ipomoea batatas according to morphological and taxonomic observa-
tions performed by Austin, 1988 [73]. As research progresses, it has been docu-
mented that our understanding of the origin and reorganization of the hexaploid 
sweetpotato genome is restricted [1] [56] [57] [59]. One might question if these 
variations and the different homeoalles contribute to a degree of yearly/ periodic 
resistance to SPFMV, based on previous work indicating how homeoalleles may 
potentially contribute to differentially regulating mRNA translation during de-
velopment under stress [18] [27] [35]. As published earlier from experiments in 
several plants, individual knockout, and downregulation of these proteins had 
no negative effect on Arabidopsis and Nicotiana growth and development [5] 
[13] [18] [27] [35]. Traditionally, SNPs have been characterized to give rise to 
phenotypic traits such as pathogen resistance or differences in allelic forms; 
however, SNPs that do not translate to altered protein sequences are often over-
looked [83]. Based on our nucleotide sequence analysis, we postulate that the 
SNPs identified amongst the four varieties may contribute to mRNA folding 
which can result in differences in viral protein and host interaction responses. 
The findings from the previous work performed in other plant species provided 
more insight into how the amino acid variations from the allelic forms discov-
ered in this study, against the two reference genomes, compare amongst the 
commercial (BRG, JWL) varieties and other cultivars (D3 and Resisto) in avoid-
ing SPFMV symptom development post-infection [5] [7] [9] [10] [13] [53] [55] 
[84] [85]. 

One suggestion for studying the allelic variations from this work may be to 
utilize them as an outline for conserved sequence detection to design gRNAs for 
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CRISPR editing of the eIF4E family in the complex hexaploid sweetpotato, 
which has been performed in other model organisms [26] [27] [86]. Natural ge-
netic variants have been associated with physiological characteristics, such as 
disease resistance [32] [87]. In the last decade, eukaryotic translation initiation 
factors 4E, iso4E, and CBP have been cloned and characterized, which have been 
documented to play roles in recessive gene-mediated defense in other plant spe-
cies [14] [22] [30] [44] [45]. For example, natural amino acid substitutions in 4E, 
iso4E, or CBP are shown to confer resistance to potyviruses in the following 
plant species: Capsicum annuum, Hordeum vulgare, Pisum sativum, Oryza sati-
va, and Cucumis melo [22] [37] [45] [87] [88] [89]. Since most commercial 
sweetpotato cultivars such as BRG and JWL are described as periodic resistant to 
SPFMV due to the mild or absent symptom development after infection in addi-
tion to previous findings [7] [54]; therefore, the results garnered in Table 4 may 
shed light on the correlation between resistance and susceptible of the cultivars 
tested. While we have surveyed natural variations amongst sweetpotato cultivars 
with tolerant, susceptible, and unknown responses to SPFMV, it is unclear how 
these SNPs identified are associated with phenotypic disease responses. Further 
work will be necessary to comprehend how these variations function at the mo-
lecular level. 

6. Conclusion 

This work reports the isolation and characterization of the eIF4E gene subfamily 
from four hexaploid sweetpotato cultivars (BRG, JWL, Res, and D3) annotated as 
IbeIF4E, IbeIF(iso)4E, and IbCBP with multiple allelic forms identified when com-
pared against the diploid reference genome I. trifida (http://sweetpotato.uga.edu/). 
Our data on IbeIF4E revealed four haplotypes in Resisto, two haplotypes in D-3 
and Jewel, and one haplotype in Beauregard. While IbeIF(iso)4E sequencing as-
sessment demonstrated the presence of three haplotypes in cultivars Resisto, D-3 
and Beauregard, and two haplotypes in Jewel. We also determined IbCBP had 
two haplotypes within each of the four cultivars. It could be inferred from the 
above findings on the various haplotypes, that genetic diversity among resistant, 
susceptible and unknown sweetpotato cultivars exists in their response to infec-
tion. All open reading frames were in the length of 696 bp IbeIF4E, 606 bp 
IbeIF(iso)4E, and 675 bp IbCBP, each encoding a single polypeptide chain of 
232, 202, and 225 amino acids, respectively. The gene structures inferred from 
these results showed that both IbeIF4E and IbeIF(iso)4E contained five exons 
and four introns each, while IbCBP had six exons and five introns in comparison 
to I. trifida reference genomic sequences. Further sequence mining, protein pre-
diction studies and phylogenetic analysis indicated that IbeIF4E, IbeIF(iso)4E 
and IbCBP were highly conserved with other eIF4E proteins previously identi-
fied in other plant species, especially the conserved aromatic residues (trypto-
phan, phenylalanine, and histidine) within each class that is known to interact 
with the mRNA-cap structure of eIF4Es from other organisms. This research 
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outcome substantiates the significance of the continued investigation into the 
function and mechanisms of the eIF4E gene subfamily in hexaploid sweetpotato 
for the further development of viral-resilient cultivars through genetic and new 
breeding technologies such as CRISPR. Furthermore, gene editing studies may 
be performed to reach a conclusion correlating resistance, unknown and suscep-
tible cultivars tested to confirm genetic diversity among host susceptibility fac-
tors. 
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Supplemental Data Figures 

 
Figure S1. Percent identity matrix of IbeIF4E sequences with eIF4E sequences from other plant species. 
 

 
Figure S2. Percent identity matrix of IbeI(iso)F4E sequences with eIF(iso)4E sequences from other plant species. 
 

 
Figure S3. Percent identity matrix of IbCBP sequences with CBP sequences from other plant species. 
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