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Abstract 
In this paper, we investigate the periodic wave solutions and solitary wave 
solutions of a (2+1)-dimensional Korteweg-de Vries (KDV) equation by ap-
plying Jacobi elliptic function expansion method. Abundant types of Jacobi 
elliptic function solutions are obtained by choosing different coefficients p, q 
and r in the elliptic equation. Then these solutions are coupled into an aux-
iliary equation and substituted into the (2+1)-dimensional KDV equation. As 
a result, a large number of complex Jacobi elliptic function solutions are 
obtained, and many of them have not been found in other documents. As 

1m → , some complex solitary solutions are also obtained correspondingly. 
These solutions that we obtained in this paper will be helpful to understand 
the physics of the (2+1)-dimensional KDV equation. 
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1. Introduction 

Solitary wave phenomena were first discovered by British scientist Russell in 
1834 [1]. In 1965, it was found that the particle velocity and waveform can re-
main unchanged after the interaction of solitary waves when solving KdV equa-
tion, which is called soliton [2]. After then, the concepts of soliton and solitary 
waves are widely used in various fields of physics. From hydrodynamics, plasma, 
optics, condensed matter physics to basic particle physics and even to astro-
physics, everywhere [3]-[8], it is all found that there are experimental facts or 
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physical mechanisms for the existence of solitons. Most physical laws can estab-
lish mathematical models under certain approximations, and many studies on 
nonlinear identification can be reduced to nonlinear evolution equations (NLEEs) 
finally. Therefore, seeking their exact solutions such as the breather, solitary 
wave and periodic wave solutions is very significant for the exploration of re-
lated nonlinear problems, which also has always been an important focus on the 
study of mathematics and physics. Significant progress has been made in recent 
centuries and many strong and effective methods have been proposed in the 
documents to obtain the exact solutions of NLEEs. For example, algebraic me-
thod [9], homogeneous balance method [10], tanh/sech method and the ex-
tended tanh/coth method [11] [12], the sine–cosine method [13], F-expansion 
method [14] [15], Jacobi elliptic function expansion method [16] [17], Expfunc-
tion method [18], the modified extended mapping method [19] [20] [21], aux-
iliary equation method [22] [23] [24], and so on.  

In this paper, we consider revealing the new periodic wave and solitary solu-
tions for the (2+1)-dimensional KDV equation [25] [26] [27] 

3 3 0t xxx x xu u v u vu+ − − =                         (1) 

x yu v=                                (2) 

which was first derived by Boiti et al. by using the idea of the weak Lax pair [26]. 
If v = u and y = x, Equation (1) degenerates into the (1 + 1)-dimensional KdV 
equation [2]. The (2+1) dimensional case involves more complex nonlinear 
phenomena, and this scan describes certain physics phenomena in plasmas and 
fluids, where ( ), ,u x y t  and ( ), ,v x y t  are real differential wave functions de-
pending on the 2-dimensional space variable x and y and 1-dimensional time 
variable t. Equation (1) was investigated in different methods. In Refs. [28] and 
[27], the variable separation solution of Equation (1) was obtained and some 
special types of solitary wave solutions were given in Ref. [29]. In Ref. [30], the 
exact periodic cross-kink wave solutions are obtained by using Hirota’s bilinear 
form and a generalized three-wave approach. In Ref. [30] Higherorder KDV eq-
uation is considered, many travelling solitary wave solutions are found. 

These methods are effective in solving (2+1)-dimensional KdV equation, 
however, there are still some new types of solutions to be explored. Here a new 
auxiliary equation is developed to construct abundant periodic wave solutions of 
(2+1)-dimensional KDV equation. With the help of the elliptic equation, many 
new types of solutions are obtained. 

2. Method  

We assume Equation (1) and Equation (2) have a traveling wave solution by 
taking  

( ) ( ), ,u x y t u ξ= , ( ) ( ), ,v x y t v ξ= , x y tξ ω= + +            (3) 

where ω is a wave parameter to be determined. Substituting Equation (3) into 
Equation (1) and Equation (2) yields 
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( )3 0u uv uω ′′ ′′′+ + =                          (4) 

u v′ ′=                                (5) 

where u' means du/dξ and v' means dv/dξ. Integrating the above two equation 
once and setting the integration constant in Equation (4) to zero yields 

( ) 23 3 0C u u uω ′′+ + + =                        (6) 

u v C= +                              (7) 

It is assumed that Equation (4) has the following formal solution 

( ) ( ) ( ) ( ) ( )

( ) ( )

2
0 1 2

1

n n ni i i
i i ii i i

i
ii

n

u a f b f c f f

d f f

ξ ξ ξ ξ ξ

ξ ξ

− −
= = =

−
=

′= + +

′+

∑ ∑ ∑

∑

       (8) 

where ai, bi, ci and di are constants to be determined later. The positive integer n 
can be determined by the homogeneous balance method in Equation (6). f(ξ) 
expresses the solutions of the following elliptic equation 

( ) ( ) ( )4 2f pf qf rξ ξ ξ′ = + +                     (9) 

where p, q, r are parameters to be selected for Jacobi elliptic function. By selecting 
different p, q, r, the different Jacobi elliptic function solutions of Equation (9) are 
shown in Table 1. Furthermore, these solutions include hyperbolic function so-
lutions when 1m →  and trigonometric function solutions when 0m → . 
where 2 1i = − . Substituting Equation (8) and Equation (9) into (6), and setting 
the coefficients of ( ) ( )if fξ ξ′  to zero, then solving the resulting equations 
and using Table 1, the following new type of periodic wave solutions of Equa-
tion (4) can be obtained. 

Case 1  

( ) ( )2
1

4 3 2
6

q Cu pfωξ ξ+ +
= − −                  (10) 

where x y tξ ω= + + , 23 4 3C q prω = ± − . 
Case 2  

( )
( )2 2

4 3 12
6

q Cu r
f

ωξ
ξ

+ +
= − −                 (11) 

where x y tξ ω= + + , 23 4 3C q prω = ± − . 
Case 3  

( ) ( ) ( )2
3

3
6

q Cu pf p fωξ ξ ξ+ + ′= − − ±              (12) 

where x y tξ ω= + + , 23 12C q prω = + + . 
Case 4  

( )
( )

( )
( )4 2 2

3 1
6

fq Cu r r
f f

ξωξ
ξ ξ

′+ +
= − − ±             (13) 

where x y tξ ω= + + , 23 12C q prω = + + . 
Case 5  
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Table 1. Jacobi elliptic function solutions for Equation (9). 

( )f ξ  p q r 

( ) ( ) ( ) ( ),sn cd cn dnξ ξ ξ ξ=  2m  ( )21 m− +  1 

( )cn ξ  2m−  21 2m− +  21 m−  

( )dn ξ  −1 22 m−  21 m− +  

( ) ( )
1 ,ns

sn
ξ

ξ
=  

( ) ( ) ( )dc dn cnξ ξ ξ=  
1 ( )21 m− +  2m  

( ) ( )1nc cnξ ξ=  21 m−  21 2m− +  2m−  

( ) ( )1nd dnξ ξ=  21 m− +  22 m−  −1 

( ) ( ) ( )cs cn snξ ξ ξ=  1 22 m−  21 m−  

( ) ( ) ( )sc sn cnξ ξ ξ=  21 m−  22 m−  1 

( ) ( ) ( )sd sn dnξ ξ ξ=  ( )2 21m m− +  21 2m− +  1 

( ) ( ) ( )ds dn snξ ξ ξ=  1 21 2m− +  ( )2 21m m− +  

( ) ( )mcn dnξ ξ±  −1/4 ( )21 2m+  ( )221 4m− −  

( ) ( ),ns csξ ξ±  

( ) ( ) ( )( )21cn m sn dnξ ξ ξ− ±

( ) ( ),msn idnξ ξ±  

( ) ( )( )1sn cnξ ξ±  

1/4 ( )21 2 2m−  1/4 

( ) ( ) ( ) ( )( ), 1nc sc cn snξ ξ ξ ξ± ±  ( )21 4m−  ( )21 2m+  ( )21 4m−  

( ) ( )ns dsξ ξ±  1/4 ( )22 2m− +  4 4m  

( ) ( ),sn icnξ ξ±  

( ) ( ) ( )( )2 1dn m sn cnξ ξ ξ− ±  
4 4m  ( )22 2m− +  4 4m  

( ) ( )
2

2

1mdn cn
m

ξ ξ
 −

±  
 

 2

1
4m

 ( )21 2 2m−  4 4m  

( ) ( )( )1sn dnξ ξ±  4 4m  ( )22 2m− +  1/4 

( ) ( )( )1dn msnξ ξ±  ( )21 4m− +  ( )21 2m+  ( )21 4m− +  

( ) ( ) ( )( )sn cn dnξ ξ ξ±  ( )221 4m−  ( )21 2m+  1/4 

( ) ( )( )21cn m dnξ ξ− ±  4 4m  ( )22 2m− +  1/4 

( ) ( ) ( )( )sn cn dnξ ξ ξ  ( )221 m−  ( )22 1 m+  1 

( ) ( ) ( )cn dn snξ ξ ξ  1 ( )22 1 m+  ( )221 m−  

( )
( ) ( )

,
cn

sn dn
ξ

ξ ξ
 

( ) ( ) ( )sn dn cnξ ξ ξ  
1 ( )22 1 2m−  1 

( ) ( ) ( )sn cn dnξ ξ ξ  4m  ( )22 2 m− +  1 

( ) ( ) ( )( )dn sn cnξ ξ ξ  1 ( )22 2 m− +  4m  
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( ) ( )
( )

( ) ( )
( )

2
5 2 2

6 3 1
6

fq pr C
u pf r p f r

f f
ξω

ξ ξ ξ
ξ ξ

′± + +
′= − − − ± ±   (14) 

where x y tξ ω= + + , 23 132 60C q pr q prω = + + ± . 
These solutions are a set of solutions containing a large number of Jacobiellip-

tic functions, hyperbolic functions and trigonometric functions according to 
Table 1. If ( ) ( )f snξ ξ= , ( )cn ξ , ( )cd ξ , ( )dn ξ , ( )ns ξ , ( )dc ξ , ( )nc ξ , 

( )nd ξ , ( )cs ξ , ( )sc ξ , ( )sd ξ  and ( )dc ξ , the Equation (10) and Equation 
(11) are the solutions that can be obtained by Refs. [16] [17]. If ( ) ( )f snξ ξ= , 

2p m= , ( )21q m= − +  and 1r = , the solutions of (2+1)-dimensional KDV 
equation are shown as  

( )
( )

( )
2

2 2
11

1 3
2

6

m C
u m sn

ω
ξ ξ

+ − −
= −                (15) 

where x y tξ ω= + + , ( )22 23 1 3C m mω = − ± + − . 

( )
( )

( )

2

21 2

1 3 12
6

m C
u

sn

ω
ξ

ξ

+ − −
= −                (16) 

where x y tξ ω= + + , ( )22 23 1 3C m mω = − ± + − . 

( )
( )

( ) ( ) ( )
2

2 2
31

1 3

6

m C
u m sn mcn dn

ω
ξ ξ ξ ξ

+ − −
= − ±         (17) 

where x y tξ ω= + + , ( )22 23 1 12C m mω = − + + + . 

( )
( )

( )
( ) ( )

( )

2

41 2 2

1 3 1
6

m C cn dn
u

sn sn

ω ξ ξ
ξ

ξ ξ

+ − −
= − ±          (18) 

where x y tξ ω= + + , ( )22 23 1 12C m mω = − + + + . 

( )
( )

( )
( )

( ) ( ) ( ) ( )
( )

2
2 2

51 2

2

1 6 3 1
6

m m C
u m sn

sn

cn dn
mcn dn

sn

ω
ξ ξ

ξ

ξ ξ
ξ ξ

ξ

+ ± − −
= − −

± ±

       (19) 

where x y tξ ω= + + , ( ) ( )22 2 23 1 132 60 1C m m m mω = − + + + ± + . 

These five types of periodic wave solutions of (2+1)-dimensional KDV equa-
tion are shown as Figure 1, where m = 0.2, t = 0, C = 0 and “−” are chosen in 
Equations (17), (18) and (19). It can be seen in Figure 1 that the solution ex-
pressed by Equation (15) changes periodically with the spatial position and the 
amplitude will change accordingly, while the solution expressed by Equation 
(16) has no change in period, but the amplitude changes greatly compared with 
Equation (15). The period of the solution expressed by Equation (17) is longer 
than that expressed in Equation (15), and the amplitude increases slightly. The 
period of the solution expressed by Equation (18) is similar to that expressed  
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Figure 1. Periodic wave solutions of (2+1)-dimensional KDV equation when 
( ) ( )f snξ ξ= . (a) solution expressed by Equation (15), (b) solution expressed by Equation 

(16), (c) solution expressed by Equation (17), (d) solution expressed by Equation (18), (e) 
solution expressed by Equation (19), where m = 0.2, t = 0, C = 0 and “−” are chosen in Equ-
ations (17), (18) and (19). 
 
by Equation (17) while the amplitude increases greatly. The period and ampli-
tude of the solution expressed in Equation (19) are similar to that expressed by 
Equation (18). 

If 1m → , the corresponding solitary wave solutions of (2+1)-dimensional 
KDV equation are shown as  

( ) ( )2
12

2 3 2 tanh
6

Cu ωξ ξ− −
= −                   (20) 

where x y tξ ω= + + , 3 1Cω = − ± . 

( ) ( )2
22

2 3 2coth
6

Cu ωξ ξ− −
= −                   (21) 

where x y tξ ω= + + , 3 1Cω = − ± . 

( ) ( ) ( )2 2
32

2 3 tanh sech
6

Cu ωξ ξ ξ− −
= − ±              (22) 
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where x y tξ ω= + + , 3 4Cω = − + . 

( ) ( ) ( )2 2
42

2 3 coth csch
6

Cu ωξ ξ ξ− −
= − ±              (23) 

where x y tξ ω= + + , 3 4Cω = − + . 

( ) ( ) ( ) ( ) ( )2 2 2 2
52

2 6 3 tanh coth sech csch
6

Cu ωξ ξ ξ ξ ξ± − −
= − − ± ±   (24) 

where x y tξ ω= + + , 3 136 120Cω = − + ± . 
These five types of solitary wave solutions of (2+1)-dimensional KDV equa-

tion are shown in Figure 2, where C = 0, t = 0, “−” is chosen in Equation (23), 
“+” is chosen in Equation (22) and “+” is chosen for the previous “±” and “−” is 
chosen for the next. It can be seen that these five solitary wave solutions are all  
 

 
Figure 2. Corresponding solitary wave solutions of (2+1)-dimensional KDV equation 
when ( ) ( )f snξ ξ= . (a) solution expressed by Equation (20), (b) solution expressed by 

Equation (21), (c) solution expressed by Equation (22), (d) solution expressed by Equa-
tion (23), (e) solution expressed by Equation (24), where C = 0, t = 0, “−” is chosen in 
Equations (23), “+” is chosen in Equations (22) and “+” is chosen for the previous “±” 
and “−” is chosen for the next. 
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bell-type, but there are some differences in amplitude and phase of the solitary 
wave. 

If ( ) ( ) ( )( )1f sn cnξ ξ ξ= + , 1 4p = , ( )21 2 2q m= −  and 1 4r = , the 
solutions of (2+1)-dimensional KDV equation are shown as  

( )
( ) ( )

( )( )

2 2

61 2

2 1 2 3

6 2 1

m C sn
u

cn

ω ξ
ξ

ξ

− + +
= − −

+
            (25) 

where x y tξ ω= + + , ( )224 1 2 3C mω = − ± − − . 

( )
( ) ( )( )

( )

22

71 2

2 1 2 3 1
6 2

m C cn
u

sn

ω ξ
ξ

ξ

− + + +
= − −             (26) 

where x y tξ ω= + + , ( )223 4 1 2 3C mω = − ± − − . 

( )
( ) ( )

( )( )
( )
( )( )

2 2

81 2

1 2 2 3

6 2 14 1

m C sn dn
u

cncn

ω ξ ξ
ξ

ξξ

− + +
= − − ±

++
    (27) 

where x y tξ ω= + + , ( )2213 1 2 3
2

C mω = − + − + . 

( )
( ) ( )( )

( )
( ) ( )( )

( )

22

91 2 2

1 2 2 3 1 1
6 4 2

m C cn dn cn
u

sn sn

ω ξ ξ ξ
ξ

ξ ξ

− + + + +
= − − ±    (28) 

where x y tξ ω= + + , ( )2213 1 2 3
2

C mω = − + − + . 

( )
( ) ( )

( )( )

( )( )
( )

( )
( )( )

( ) ( )( )
( )

2 2

101 2

2

2 2

1 2 2 3 2 3

6 4 1

1 1
4 22 1

m C sn
u

cn

cn dn cndn
sn sncn

ω ξ
ξ

ξ

ξ ξ ξξ
ξ ξξ

− ± + +
= − −

+

+ +
− ± ±

+

      (29) 

where x y tξ ω= + + , ( ) ( )22 213 1 2 33 30 1 2
2

C m mω = − + − + ± − . 

These five types of periodic wave solutions of (2+1)-dimensional KDV equa-
tion are shown in Figure 3. As shown in the figure, Equations (25), (26) and 
Equations (27), (28) have similar periodic wave solutions in terms of period and 
amplitude respectively. While the period of the solution expressed by Equation 
(29) becomes smaller and the amplitude becomes larger compared with the pre-
vious four groups of solutions. 

If 1m → , the solutions expressed by Equations (25) and (26) have no cor-
responding hyperbolic function solutions, the solutions of the rest three groups 
of corresponding solitary wave solutions of (2+1)-dimensional KDV equation 
are as follows 

( ) ( )
( )( )

( )
( )( )

2

82 2

1 3 tanh sech2
6 2 1 sech4 1 sech

C
u

ω ξ ξ
ξ

ξξ

− + +
= − − ±

++
       (30) 
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Figure 3. Periodic wave solutions of (2+1)-dimensional KDV equation when 

( ) ( ) ( )( )1f sn cnξ ξ ξ= + . (a) solution expressed by Equation (25), (b) solution ex-

pressed by Equation (26), (c) solution expressed by Equation (27), (d) solution expressed 
by Equation (28), (e) solution expressed by Equation (29), where m = 0.2, t = 0, C = 0 and 
“−” are chosen in Equations (27), (28) and (29). 
 
where x y tξ ω= + + , 3 1Cω = − + . 

( )
( )( )
( )

( ) ( )( )
( )

2

92 2 2

1 3 1 sech sec 1 sech2
6 4 tanh 2 tanh

C h
u

ω ξ ξ ξ
ξ

ξ ξ

− + + + +
= − ±      (31) 

where x y tξ ω= + + , 3 1Cω = − + . 

( )
( )( )

( )( )
( )

( )
( )( )

( ) ( )( )
( )

22

102 2 2

2

1 sech1 2 3 2 3 tanh ( )
6 4 tanh4 1 sech

sech 1 sechsech
2 tanh2 1 sech

Cu
ξω ξξ
ξξ

ξ ξξ
ξξ

+− ± + +
= − − −

+

+
± ±

+

   (32) 

where x y tξ ω= + + , 13 34 30
2

Cω = − + ± . 

These three types of solitary wave solutions of (2+1)-dimensional KDV equation  
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Figure 4. Corresponding solitary wave solutions of (2+1)-dimensional KDV equation 
when ( ) ( ) ( )( )1f sn cnξ ξ ξ= + . (a) solution expressed by Equation (20), (b) solution 

expressed by Equation (21), (c) solution expressed by Equation (22), where C = 0, t = 0, 
“−” is chosen in Equations (31)and (32), “+” is chosen in Equation (30). 
 
are shown as Figure 4, where C = 0, t = 0, “−” is chosen in Equations (31) and 
(32), “+” is chosen in Equation (30). It can be seen that these three solitary wave 
solutions are all bell-type, and there are still some differences in the amplitude 
and phase of the solitary wave. 

There are still a large number of periodic wave solutions of (2+1)-dimensional 
KDV equation, according to Equations (9), (10), (11), (12), (13), (14) and Table 
1. These solutions may also have solitary solutions under the conditions of 

1m → . The corresponding solutions of v(ξ) can be obtained from Equation (7). 
Limited to this scope, we will not give examples one by one. 

3. Conclusion 

In this paper, we apply the extended Jacobi elliptic function expansion method 
to explore the exact solution of the (2+1)-dimensional KDV equation. With the 
cooperation of the auxiliary Equations (8), (9) and its Jacobi elliptic function so-
lution set Table 1, we have constructed abundant and new periodic wave solu-
tions for (2+1)-dimensional KDV equation. Under the conditions of 1m → , the 
corresponding solitary solutions are also obtained. We also study the images of 
periodic wave and solitary wave solutions in different phase spaces. It is found 
that different types of periodic wave solutions have different periods and ampli-
tudes, which implies that the corresponding periodic wave can be generated un-
der certain phase space conditions. Several solitary wave solutions we explored 
are all bell-type solitary waves, and there are only some differences in the ampli-
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tude and phase of the solitary wave. This method has broad application pros-
pects for constructing abundant periodic wave solutions and solitary wave solu-
tions, and can be used as a useful guide for a wide range of nonlinear problems 
in mathematical and physical research. The solutions we obtained in this paper 
will be helpful to understand the physics of the (2+1)-dimensional KDV equa-
tion. 
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