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Abstract 
The purpose of the current study is to assess the effectiveness and exactness of 
the new Modification of the Adomian Decomposition (MAD) method in 
providing fast converging numerical solutions for the Chen-Lee-Liu (CLL) 
equation. In addition, we are able to simulate the scheme and provide a com-
parative analysis with the help of some exact soliton solutions in optical fi-
bers. Finally, the MAD method uncovered that the strategy is proven to be re-
liable due to the elevated level of accuracy and less computational advances, 
as demonstrated by a series of tables and figures.  
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1. Introduction 

In 2001, Wazwaz and El-Sayed proposed another powerful Modification of the 
Adomian Decomposition (MAD) method [1]. In this modification, the function 
( )f x  that normally emanates from the given initial condition and source func-

tion (when prescribed) is decomposed into infinite components via the applica-
tion of the Taylor’s series. In fact, this is contrary to the reliable modified tech-
nique of Adomian Decomposition Method (ADM) which decomposes the func-
tion ( )f x  into only two components ( )1f x  and ( )2f x  [2]. This modified 
method of decomposition has been shown to be numerically efficient in several 
mathematical models that arise in many applications of science and engineering 
[1] [2] [3] [4]. However, we aim in this paper to examine the type-II member of 
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the class of Derivative Nonlinear Schrodinger Equations (DNSE) called the 
Chen-Lee-Liu (CLL) equation [5] using the MAD method. The equation was in-
troduced in 1979 as an integrable model with a variety of applications, including 
ultrashort pulse propagation and modeling optical and photonic crystal fibers 
among others. More, the dimensionless form of the model for pulse propagation 
in a single-mode optical fiber is given as follows [5]: 

2 0t xx xiq aq b q q+ + =                      (1) 

where ( ),q q x t=  is a complex-valued function denoting the wave propagation 
profile in space x and time t, variables; a and b are real constants. Physically, the 
parameter a is group-velocity dispersion, while the parameter b denotes the 
self-steepening phenomena in optical fiber sense. Also, a Regular CLL (RCLL) 
equation is obtained from Equation (1) by setting 1a b= = .  

In addition, there have been several analytical considerations regarding the 
existence of valid exact optical soliton solutions for the CLL equation via various 
analytical methods [6] [7] [8]. Some of these solutions and their respective initial 
conditions are considered as follows: 

1) Bright solitons 
a) The first exact bright soliton solution of Equation (1) is given [6] as follows: 
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b) The second exact bright soliton solution of Equation (1) is given [6] as fol-
lows: 
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0δ∀ < , 0σ >  and 
( )2 23 1

16

σ λ
γ

δ

+
< . 

2) Dark solitons 
a) The exact dark soliton solution of Equation (1) is given in [7] as follows: 

( ) ( ) ( ), 1 sech ei kx t x vtq x t p x vt ω θµ − + + −  = − −                (4) 

with the corresponding initial condition 

( ) ( ),0 1 sech e ikxq x p xµ −= −  

where 
28 4 15, ,

5 5 64
p δ δ σµ γ

σ δ
= − = =  

0δ∀ >  and 0σ < . 
b) The exact gray soliton solution of Equation (1) is given in [7] as follows: 
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0, 0δ σ∀ < > ; , , , ,v kλ ω  and µ  are arbitrary constants. 
3) Singular solitons 
a) The first exact singular soliton solution of Equation (1) is given in [8] as 

follows: 

( ) ( ) ( ), 1 coth ei kx t x vtq x t p x vt ω θµ − + + −  = + −               (6) 

with the corresponding initial condition 

( ) ( ),0 1 coth e ikxq x p xµ −= +  
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b) The second exact singular soliton solution of Equation (1) is given in [8] as 
follows: 
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0, 0, 0δ σ γ∀ < < >  and 1R < − . 
Thus, we shall, therefore, use the aforementioned exact soliton solutions as 

benchmark solutions for establishing a comparative study with the numerical 
MAD method. Moreover, the recently constructed bright solitons of CLL equa-
tion were numerically confirmed by the ADM [9] and improved ADM [10]. 
Furthermore, the w-shaped solitons of CLL equation were also validated com-
putationally by coupling of Laplace transform and ADM [11]; see also [4] 
[12]-[21] for some related Adomian-based methods of decomposition to solve 
different partial differential equations. The paper is structured as follows: The 
recursive scheme for the CLL equation is derived in Section 2, using the MAD 
Method. The results provided by the method are shown and discussed in section 
3; while section 4 provides some concluding remarks. 

2. The Describe MAD Method 
This section describes the MAD method for the CLL equation. Firstly, we con-

sider the operator notation by letting L
t
∂

=
∂

 and its corresponding inverse op-

erator ( )1
0

. d
t

L t− = ∫ . Employing this inverse 1L−  on the CLL equation given in 

Equation (1), we obtain 

( )
0 0

d d
t t

xxq f x ai q t b A t= + −∫ ∫                    (8) 

where ( )f x  emanates from the associated initial condition of the equation; 
that is, ( ) ( ),0f x q x= , and the nonlinear term 2

xA q q= . 
The solution q based on the Adomian method is decomposed into a sum of 

infinite components given by the following series 

0 nnq q∞

=
= ∑                            (9) 

The nonlinear expression A is represented by the sum of infinite Adomian 
polynomials of the form 

( )0 10 , , ,n nnA A q q q∞

=
= ∑                      (10) 

where nA  are Adomian polynomials that are computed for any form of nonli-
nearity using the following formula given in compact form as follows  
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= ≥∑                 (11) 

Now, using Equation (10) with 2
xA q q= , some of the Adomian polynomials 

nA  are calculated by the Equation (11) as follows  

0 0 0 0xA q q q=  
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The new modification [1] suggests that the function ( )f x  be expressed in 
Taylor series 

( ) ( )0 nnf x f x∞

=
= ∑                      (12) 

Consequently, putting Equations (9)-(12) in Equation (8), we get the general 
solution recursively as follows 
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           (13) 

Therefore, the aiming general recursive scheme by the MAD method is de-
termined in Equation (13); this scheme will be simulated alongside the exact so-
liton solutions given in Section 1in the next section. 

3. Results and Discussions 

This section presents the obtained numerical results using the said method and 
carries out some comparative analysis. Considering bright, dark, gray and sin-
gular soliton solutions, we are able to numerically simulate the derived recursive 
scheme with the help of the Maple software and present the corresponding ab-
solute error analysis in Tables 1-6 and their respective graphical representations 
in Figures 1-12. Looking at the minimal error discrepancies revealed, it is noted 
that the MAD approach performs effectively in respect of the benchmark solu-
tions under consideration; this also is in conformity with most related numerical 
literature that the MAD method performs greatly. 
 
Table 1. The absolute error of the MAD method for the first kind of bright solitons of 
CLL equation when 3 40.03, 10, 10 , 10a b v k− −= = − = =  and 510w −= . 

x 
E MADq q−  

0.1t =  0.3t =  0.5t =  

−3 4.941049070 × 10−9 1.482317224 × 10−8 2.470522806 × 10−8 
−2 4.941705997 × 10−9 1.482523539 × 10−8 2.470871078 × 10−8 
−1 4.942170785 × 10−9 1.482649605 × 10−8 2.471083810 × 10−8 
0 4.942302549 × 10−9 1.482690765 × 10−8 2.471151274 × 10−8 
1 4.942149932 × 10−9 1.482646967 × 10−8 2.471079523 × 10−8 
2 4.941806153 × 10−9 1.482527998 × 10−8 2.470885735 × 10−8 
3 4.941073165 × 10−9 1.482319533 × 10−8 2.470533641 × 10−8 
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Table 2. The absolute error of the MAD method for the second kind of bright solitons of 
CLL equation when 2 3 510 , 10, 10 , 10a b v kα − − −= = = − = =  and 410w −= . 

x 
E MADq q−  

0.1t =  0.3t =  0.5t =  

−3 3.490142858 × 10−8 1.047034922 × 10−7 1.745048753 × 10−7 

−2 3.760986543 × 10−8 1.128292002 × 10−7 1.880476928 × 10−7 

−1 3.939351251 × 10−8 1.181805534 × 10−7 1.969668890 × 10−7 

0 3.999454342 × 10−8 1.199836437 × 10−7 1.999727533 × 10−7 

1 3.932113861 × 10−8 1.179636145 × 10−7 1.966065171 × 10−7 

2 3.747566437 × 10−8 1.124275103 × 10−7 1.873800097 × 10−7 

3 3.472394786 × 10−8 1.041723244 × 10−7 1.736215630 × 10−7 

 
Table 3. The absolute error of the MAD method for the dark soliton of CLL equation 
when 410 , 10a v b−= = =  and 510k w −= = . 

x 
E MADq q−  

0.1t =  0.3t =  0.5t =  

−3 3.408520537 × 10−9 1.022557878 × 10−8 1.704192591 × 10−8 

−2 4.198070193 × 10−9 1.259422605 × 10−8 2.099049057 × 10−8 

−1 5.006381143 × 10−9 1.501953589 × 10−8 2.503260278 × 10−8 

1 5.006378921 × 10−9 1.501942179 × 10−8 2.503255387 × 10−8 

2 4.198065064 × 10−9 1.259391626 × 10−8 2.099018573 × 10−8 

3 3.407046316 × 10−9 1.022405804 × 10−8 1.704031246 × 10−8 

 
Table 4. The absolute error of the MAD method for the gray soliton of CLL equation 
when 1, 1, 0.1, 0.001a b v k wµ= = = = = = =  and 610λ −= . 

x 
E MADq q−  

0.1t =  0.3t =  0.5t =  

−3 9.926833579 × 10−10 2.978140609 × 10−9 4.963598661 × 10−9 

−2 9.910304091 × 10−10 2.973118609 × 10−9 4.955207967 × 10−9 

−1 9.899120579 × 10−10 2.969740106 × 10−9 4.949569139 × 10−9 

0 9.895153635 × 10−10 2.968546259 × 10−9 4.947577640 × 10−9 

1 9.899152583 × 10−10 2.969742165 × 10−9 4.949568936 × 10−9 

2 9.910568611 × 10−10 2.973143360 × 10−9 4.955229306 × 10−9 

3 9.927731452 × 10−10 2.978228977 × 10−9 4.963684231 × 10−9 

 
Table 5. The absolute error of the MAD method for the first kind of singular solitons of 
CLL equation when 610a v k w −= = = =  and 10b = − . 

x 
E MADq q−  

0.1t =  0.3t =  0.5t =  

−3 5.487892336 × 10−12 1.655185228 × 10−11 2.757640349 × 10−11 
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Continued 

−2 1.544323282 × 10−11 4.533920170 × 10−11 7.533425774 × 10−11 

−1 8.862920745 × 10−11 2.653001416 × 10−10 4.421670840 × 10−10 

1 1.406053708 × 10−10 4.217227544 × 10−10 7.028406424 × 10−10 

2 7.635477303 × 10−11 2.290850955 × 10−10 3.818155035 × 10−10 

3 7.707209127 × 10−11 2.311986559 × 10−10 3.853426395 ×10−10 

 
Table 6. The absolute error of the MAD method for the second kind of singular solitons 
of CLL equation when 0.0001, 10, 0.001a v k b w= = = = =  and 6R = − . 

x 
E MADq q−  

0.1t =  0.3t =  0.5t =  

−3 8.936541858 × 10−11 2.680042918 × 10−10 4.465258727 × 10−10 

−2 2.027981400 × 10−9 6.081814504 × 10−9 1.013304751 × 10−8 

−1 3.625151370 × 10−8 1.087261596 × 10−7 1.811639691 × 10−7 

1 3.626097765 × 10−8 1.088083658 × 10−7 1.813956181 × 10−7 

2 2.028661466 × 10−9 6.087994808 × 10−9 1.014999902 × 10−8 

3 8.939474934 × 10−11 2.682722396 × 10−10 4.472720510 × 10−10 

 

  
Figure 1. Comparison between the exact and MAD method solutions for the first kind of 
bright soliton of CLL equation when t = 0.1 and t = 0.3. 
 

 
Figure 2. Comparison between the exact and MAD method solutions for the first kind of 
bright soliton of CLL equation when t = 0.5. 
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Figure 3. Comparison between the exact and MAD method solutions for the second kind 
of bright solitons of CLL equation when t = 0.1 and t = 0.3. 
 

 
Figure 4. Comparison between the exact and MAD method solutions for the second kind 
of bright solitons of CLL equation when t = 0.5. 
 

  
Figure 5. Comparison between the exact and MAD method solutions for the dark soliton 
of CLL equation when t = 0.1 and t = 0.3. 
 

 
Figure 6. Comparison between the exact and MAD method solutions for the dark soliton 
of CLL equation when t = 0.5. 
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Figure 7. Comparison between the exact and MAD method solutions for the gray soliton 
of CLL equation when t = 0.1 and t = 0.3. 
 

 
Figure 8. Comparison between the exact and MAD method solutions for the gray soliton 
of CLL equation when t = 0.5. 
 

  
Figure 9. Comparison between the exact and MAD method solutions for the first kind of 
singular solitons of CLL equation when t = 0.1 and t = 0.3. 
 

 
Figure 10. Comparison between the exact and MAD method solutions for the first kind 
ofsingular solitons of CLL equation when t = 0.5. 
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Figure 11. Comparison between the exact and MAD method solutions for the second 
kind of singular solitons of CLL equation when t = 0.1 and t = 0.3. 
 

 
Figure 12. Comparison between the exact and MAD method solutions for the second 
kind of singular solitons of CLL equation when t = 0.5. 

4. Conclusion 

In conclusion, a fast converging numerical scheme for the CLL equation was de-
rived using the Wazwaz and El-Sayed MAD method. Recent exact optical solu-
tions in optical fibers including bright, dark, gray and singular solitons have 
been considered for the numerical simulation and consequently led to the 
comparative study. The results of this study are showed in Tables 1-6 and il-
lustrated in Figures 1-12, respectively. The comparison of results between the 
numerical MAD method solutions and the exact soliton solutions for given in 
Equations (2)-(7) is carried out for different values of x and t. In Figures 1-12, 
we plotted the graphs comparing the two solutions for different time levels in-
cluding t = 0.1, t = 0.3 and t = 0.5; while the parameters are arbitrary chosen 
according to the conditions of each type. The obtained results affirmed the 
precision and minimal error of the method as demonstrated in the presented 
tables and figures. Thus, the MAD method is recommended being an amazing 
approach to solving different kinds of evolution equations with different forms 
of nonlinearities. 
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