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Abstract 
As a general feature, the electric field of a localized electric charge distribu-
tion diminishes as the distance from the distribution increases; there are ex-
ceptions to this feature. For instance, the electric field of a charged ring (being 
a localized charge distribution) along its symmetry axis perpendicular to the 
ring through its center rather than as expected being a diminishing field en-
counters a local maximum “bump”. It is the objective of this research-oriented 
study to analyze the impact of this bump on the characteristics of a massive 
point-like charged particle oscillating along the symmetry axis. Two scenarios 
with and without gravity along the symmetry axis are considered. In addition 
to standard kinematic diagrams, various phase diagrams conducive to a better 
understanding are constructed. Applying Computer Algebra System (CAS), 
[1] [2] most calculations are carried out symbolically. Finally, by assigning a 
set of reasonable numeric parameters to the symbolic quantities various 3D 
animations are crafted. All the CAS codes are included. 
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1. Introduction & Analysis 

1a. The electric field of a charged ring of radius R with charge Q along the sym-
metry axis of the ring through the center, perpendicular to the ring is [3] [4] 
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Aside from the electrostatic coupling constant, k = 9.0 × 109 Nm2/C2, and 
charge Q the plot of the distance-related term of the field for R = 20 cm is shown, 

EfieldRing[x_]:=kQ x/(R2+x2)3/2; 
plotEfieldRing=Plot[EfieldRing[x]/.{k−>1,Q−>1,R−>20 

10−2},{x,−2,2},PlotRange  
→All,PlotStyle→{Black,Thick},GridLines→Automatic,AxesLabel 
→{“x(m)”,“E_field”}] 

Figure 1 shows that the origin of the field is asymmetric and that at either side 
of the ring, it encounters a local extremum. As mentioned in the abstract one of 
the objectives of this investigation is to learn about the impact of this “bump” on 
the character of the related kinematic quantities, see upcoming paragraphs. Va-
riable x is being used for the distance because, at the first trial, the ring was as-
sumed oriented vertically with its symmetry axis along the x-axis. In this scenario, 
gravity has no impact on the mobile massive particle. Shortly in the upcoming sec-
tions, the ring is oriented horizontally making the gravity effectively active. 

 

 
Figure 1. The electric field of a charged ring along the symmetry axis through the center 
perpendicular to the ring. 

 
To observe the impact of the mentioned bump we consider a situation where a 

massive point-like charged particle is placed at the center of the ring. Wishing to 
throw the particle along the horizontal direction, the particle is given an initial 
speed. By trial and error to fulfill the desired scenario a set of parameters is as-
signed to the relevant quantities. These are stored in the values listing, units are: 
Q = 10 nC, q = −2 nC, and m = 2 nkg. The Q is the charge on the ring, particle’s 
charge and mass are, respectively. 

values={k→9 109,g−>9.8,R →20 10−2,Q→10 10−9,q→2 10−9,m→2 10−9}; 
A composite factor is defined, 
factor=kQq/m/.values; 
The equation of the motion of the particle is subject to, 
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Where over double-dot is the second order derivative w/time. 
eqn=x"[t]+(factor x[t]/(R2+x[t]2)3/2)/.values; 
Solving this equation numerically with the shown initial conditions yields the 

interested kinematic quantities, 
soleqn=NDSolve[{eqn==0,x[0.001]==0.0001(*(R/.values)*),x'[0]==25}, 
x[t],{t,0.001,1}]; 
{positionx,velocityx,accx}={x[t]/.soleqn,D[x[t]/.soleqn,{t,1}],D[x[t]/.soleqn,
{t,2}]}; 
Plots of these quantities are depicted in Figure 2. 
plotx=Plot[positionx,{t,0.001,1.0},AxesLabel->{"t(s)","x(m)"},PlotStyle->{T
hick,Black}, GridLines->Automatic]; 
plotvx=Plot[velocityx,{t,0.001,1.0},AxesLabel->{"t(s)","v(m/s)"},PlotStyle->{
Thick,Black}, GridLines->Automatic]; 
plotax=Plot[1/50accx,{t,0.001,1.0},AxesLabel->{"t(s)","a(m/s2)"},PlotStyle-> 
{Thick,Black}, GridLines->Automatic]; 
GraphicsGrid[{{Show[{plotx,ploty}],Show[{plotvx,plotvy}],Show[{plotax, 
plotay}]}},ImageSize->700] 

For the sake of size compatibility, some of the plots are scaled. 
The inclusion of Figure 2 is essential in showing the impact of the mentioned 

“bump” of the electric field depicted in Figure 1. Noticing, although curves in 
Figure 2(a) have the same characters, the impact of the mentioned “bump” is 
quite distinct shown in Figure 2(b) & Figure 2(c) these are intuitively unpredict-
able. 

In many words for instance Figure 2(a) shows for the chosen parameters un-
der the impact of the electric field the particle within a short period, e.g. 0.3 s 
returns to the initial position, while in a much longer time, the linear force takes 
e.g. 0.65 s to do the same. One may easily conclude similar conclusions focusing 
on Figure 2(b) & Figure 2(c). 

As a crude approximation, the curve in Figure 1 may be viewed as two lines 
joined at the bump one with a positive and the other with a negative slope. Al-
though this appears a rough approximation, nevertheless it sustains the general 
feature. Based on the mentioned observation an interested individual may try 
augmenting the scope of this work. 

 

 
(a)                                    (b)                                  (c) 

Figure 2. Each frame depicts a pair of identical kinematic quantities. From left to right, the first one is the positions vs. time. The 
rest of the frames are self-explained. The solid curves are with the electric force, the dashed ones result from the assumed linear 
force! Moreover, the description of the linear force is forth shortcoming. 
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For a deeper understanding, we extend the graphic analyses by including ad-
ditional plots, namely, a standard, and then extended “phase” diagrams. Here 
again, each shown frame of Figure 3 embodies identical paired curves similar to 
the pairs shown in Figure 2. 

Notice that the equations of motions conducive to the shown plots in Figure 3 
are different. The solid curves depict the impact of electric force, and the dashed 
curves the linear mechanical force. For the sake of understanding the impact of 
the geometry terms the same factor and initial velocities are considered. Specif-
ically, for the electric force. 

factor [x(t)/(R2+x(t)2)3/2], and for the linear mechanical force, factor [x(t)] is 
used. Note also while plotting the curves we have applied various magnification 
factors adjusting the size of the graphics pieces. 

Now for instance, if one focuses on one of the frames of Figure 3, e.g. 3C, it 
reveals some of the kinematic characteristics of the oscillations. E.g. the electric 
and the mechanical oscillations do begin at the same initial position. Noticing, in 
the shown period each oscillator ends up at the max shown respective distance. 
And, the dotted curve is stretched much further than the solid curve, this shows 
the impact of the geometry i.e. distance term of the force. Then the oscillator re-
verses its motion sliding back to the other end continues repetition. Similar con-
clusions are applied to Figure 3(b) & Figure 3(c). 

1b. In subsection 1a for the vertically held ring a negatively charged particle 
was placed on a horizontal axis and was projected with an initial speed. Because 
of the contrast of the sign of the charges, this scenario was conducive to oscilla-
tions. In an alternative counterintuitive situation in this subsection, we consider 
a scenario in which the ring is held horizontally. Placing a negative charge on the 
vertical symmetry axis that is thrown downward may be tuned resulting in not a 
fall but an oscillation. In contrast to the situation described in 1a gravity effec-
tively contributes to the kinematics of the oscillation. If the parameters are not 
chosen properly the particle under gravity will fall through the ring. Yet the pa-
rameters are adjusted conducive to oscillations. The oscillation’s equation of 
motion is given by (3). Therefore, it is natural to analyze the impact of gravity 
and compare its impact to case 1a. 

 

 
Figure 3. The solid curves are electric and the dashed are the linear force. 
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The modified version of the equation of motion including gravity is, 
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eqz=z”[t]+(factor z[t]/(R2+z[t]2)3/2)+g/.values; 
Solving (3) numerically with the same initial conditions as used in solving (2) 

yields, 
soleqz=NDSolve[{eqz==0,z[0.001]==0.001(*(R/.values)*),z'[0]==25}, 

z[t],{t,0.001,10}]; 
Utilizing these solutions the needed kinematic quantities are plotted. These 

are depicted in Figure 4. 
The inclusion of gravity adds an additive term, g to the equation of motion. 

Utilizing the solution, the instantaneous speed and acceleration are calculated 
and graphed, respectively. These are shown in Figure 4. 
eqz = Derivative[2][z][t] + factor*(z[t]/(R^2 + z[t]^2)^(3/2)) + 4*g /. values; 
soleqz=NDSolve[{eqz==0,z[0.001]==0.001(*(R/.values)*),z'[0]==25},z[t], 
{t,0.001,10}]; 
plotvz=ParametricPlot[Flatten[{50positionz,velocityz}],{t,0.001,2},AxesLab
el->{“z(m)”,”v(m/s)”},PlotStyle->{Black,Thick},GridLines->Automatic,Plot
Range->All]; 
plotaz=ParametricPlot[Flatten[{150positionz,0.5accz}],{t,0.001,2}, AxesLa-
bel->{“z(m)”,”a(m/s2)”},PlotStyle->{Black,Thick},GridLines->Automatic,Pl
otRange->All]; 
plotvaz=ParametricPlot[Flatten[{200velocityz,5accz}],{t,0.001,2},AxesLabel 
->{“v(m/s)”,”a(m/s2)”},PlotStyle->{Black,Thick},GridLines->Automatic,Plo
tRange->All]; 

As explained earlier, for the case where gravity has the value of g the phase 
diagrams almost are indistinguishable vs. the solid curves of Figure 2. Yet the 
dashed plots of Figure 4 are different from Figure 2, this shows the impact of a 

 

 
Figure 4. Phase diagrams associated with 4 g and g, the dashed and the solid, respectively. Labeled axes are de-
scriptive of the shown frames. 
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strong gravity 4 g. A similar observation applied to Figure 4(c) vs. Figure 2(c). 
In general, for a regular gravity pull the impact of gravity is miniscule. Never-

theless, as intuitively might have been expected the oscillation of the particle about 
the center of the ring is not quite symmetric. This is shown in Figure 4(a). The 
mentioned feature is not quite vivid in Figure 4(b) & Figure 4(c). 

Alternatively, the gravity acceleration may be adjusted as if the setup is consi-
dered on a different planet. Figure 5 displays the impact of gravity which is 4 g. 
The black curve is the regular g, while the dashed curve shows the impact of 4 g. 
As expected, the 4 g case pulls the charged particle further downward and, in the 
meantime, increases the oscillation period. 

Having all this detailed information on hand we decided to complete this 
analysis by including 3D animations of the motion, each case has its features. 
For the sake of briefing, only two animated frames are included. 

GraphicsGrid[{{plot3DVertical,plot3Dhorizontal}},ImageSize->500] 
The Mathematica codes creating the two frames shown in Figure 6 are lengthy  

 

 
Figure 5. Oscillation characters under two different gravity pulls are compared. The black 
and the dashed curves are associated with g and 4 g gravities. respectively. 

 

 
Figure 6. An animation frame depicting a charged horizontal ring, in Red. A negatively charged particle on 
the vertical symmetry axis, in Blue. 
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hence are suppressed. The code above Figure 6 has two pieces, plot3DVertical 
and plot3Dhorizontal. The Mathematica version of the article is capable of 
animation but neither the docx nor the pdf versions. The author is willing to 
forward the Mathematica codes of the animation to interested individuals. 

2. Conclusions and Remarks 

The motivation for crafting this research-oriented article is to justify that counter- 
balancing gravity with electric force is a plausible scenario conducive to oscillation. 

We considered a massive, charged point-like particle moving along the symmetry 
axis of a horizontally held charged ring such that instead of “falling” through the 
ring it oscillates. 

The entire analysis is done utilizing a Computer Algebra System (CAS), spe-
cifically Mathematica. Our approach to computation/calculation avoids using 
the traditional paper and pencil promoting the usefulness and the power of CAS. 
Most of the CAS codes are included to assist interested readers in practicing. To 
this end, one project has been suggested as conducive to a related augmented 
version of the current work. Interested readers may find references [5] [6] and 
[7] [8] [9] resourceful and insightful for the physics of nonuniform electric fields 
and Mathematica coding, respectively. The narrow scope objective of the pre-
vious work [7] in this current work has been expanded focusing on and com-
paring the impact of the various scenarios of gravity. 
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