

Criteria for Selecting Carbon Subsurface and Ocean Storage Site in Developing Countries: A Review

Gregory Mwenketishi, Hadj Benkreira, Nejat Rahmanian*

School of Engineering, Faculty of Engineering and Digital Technologies, University of Bradford, Bradford, UK Email: tarteh9@gmail.com, n.*rahmanian@bradford.ac.uk

How to cite this paper: Mwenketishi, G., Benkreira, H., & Rahmanian, N. (2024). Criteria for Selecting Carbon Subsurface and Ocean Storage Site in Developing Countries: A Review. *American Journal of Climate Change*, *13*, 103-139. https://doi.org/10.4236/ajcc.2024.132007

Received: November 22, 2023 **Accepted:** May 25, 2024 **Published:** May 28, 2024

Copyright © 2024 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Abstract

Important first phases in the process of implementing CO₂ subsurface and ocean storage projects include selecting of best possible location(s) for CO₂ storage, and site selection evaluation. Sites must fulfill a number of criteria that boil down to the following basics: they must be able to accept the desired volume of CO_2 at the rate at which it is supplied from the CO_2 source(s); they must as well be safe and reliable; and must comply with regulatory and other societal requirements. They also must have at least public acceptance and be based on sound financial analysis. Site geology; hydrogeological, pressure, and geothermal regimes; land features; location, climate, access, etc. can all be refined from these basic criteria. In addition to aiding in site selection, site characterization is essential for other purposes, such as foreseeing the fate and impacts of the injected CO₂, and informing subsequent phases of site development, including design, permitting, operation, monitoring, and eventual abandonment. According to data from the IEA, in 2022, emissions from Africa and Asia's emerging markets and developing economies, excluding China's, increased by 4.2%, which is equivalent to 206 million tonnes of CO₂ and were higher than those from developed economies. Coal-fired power generation was responsible for more than half of the rise in emissions that were recorded in the region. The difficulty of achieving sustainable socio-economic progress in the developing countries is entwined with the work of reducing CO_2 emissions, which is a demanding project for the economy. Organisations from developing countries, such as Bangladesh, Cameroon, India, and Nigeria, have formed partnerships with organisations in other countries for lessons learned and investment within the climate change arena. The basaltic rocks, coal seams, depleted oil and gas reservoirs, soils, deep saline aquifers, and sedimentary basins that developing countries (Bangladesh, Cameroon, India, and Nigeria etc.) possess all contribute to the individual country's significant geological sequestration potential. There are limited or no carbon capture and storage or clean development mechanism projects running in these countries at this time. The site selection and characterization procedure are not complete without an estimate of the storage capacity of a storage location. Estimating storage capacity relies on volumetric estimates because a site must accept the planned volume of CO_2 during the active injection period. As more and more applications make use of site characterization, so too does the body of written material on the topic. As the science of CO_2 storage develops, regulatory requirements are implemented, field experience grows, and the economics of CO_2 capture and storage improve, so too will site selection and characterisation change.

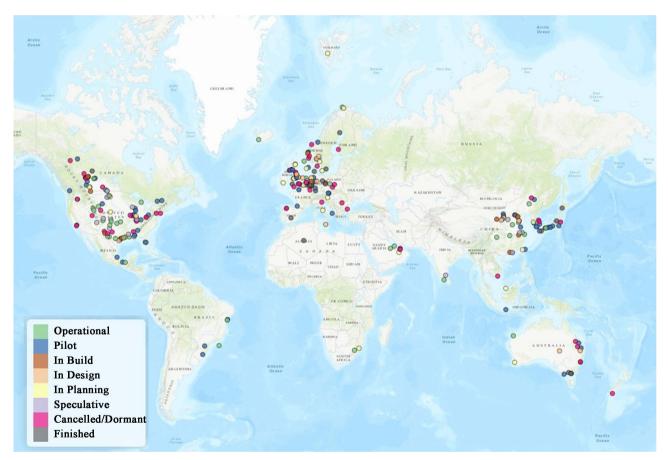
Keywords

Aquifer, CCUS Site Selection, Carbon Dioxide Capture and Storage (CCS), CO_2 Sequestration, CCS Governmental Regulation, CO_2 Environment Impact, Geological Storage

1. Introduction

Prior to CO_2 storage being developed and implemented, it's critical to ensure the reliability of the technology to be used, and establish criteria for the evaluation of storage locations, safe, dependable, reliable, ecologically responsible, and economically viable. This is particularly crucial in the event that there are neither regulations nor practices in place to guarantee ethical management. For businesses to make informed decisions about the costs and benefits of potential investments, the site assessment process must provide clear inputs in the form of evaluation criteria and recommendations (Knoope et al., 2015).

2. Key Selection Criteria


Research conducted by (Zhang & Bachu, 2011) and (Bachu, 2010) reveals the following are the most important factors to be considered when choosing a location for the confinement of CO_2 in geological reservoir formations:

- 1) Geothermal;
- 2) Hydrodynamic;
- 3) Geohazards;
- 4) Geological;
- 5) Basin maturity;
- 6) And hydrocarbon potential;
- 7) Economic, societal, and environmental issues.

There are currently 65 commercial CCUS facilities across the globe as of the year 2020 (**Figure 1**). Of these facilities, only 26 are operational, three are in the process of construction, 13 are in the advanced development stage, 21 are in the early development stage, and two have had their development halted altogether.

Together, they are responsible for the annual production of 40MT of CO₂. In order to put this into perspective, the total world emissions in 2019 came to 52 billion tonnes. If the overall conversion rate stays the same, it will take the present plants 130 years to sequester CO₂, and that's assuming there won't be any further emissions. This is an improbable occurrence, which is why there must be more plants of this kind developed. Table A1 and Figure 1 also confirmed there is no active CCUS plant in any of the developing countries, especially countries with big economic activities like Nigeria, Bangladesh, India and Cameroon but very few in developing countries in general. In 2018, the Intergovernmental Panel on Climate Change (IPCC) published a special study in which they analysed some 90 potential projects that would limit global warming to 1.5 degrees Celsius. To reach the goal of 1.5 degrees Celsius, they will need to permanently sequester 10 billion tonnes of CO₂ by the year 2050. The potential for carbon sequestration at this time is consequently shown to be woefully inadequate. To reach the IPCC targets (Kujur, Senthil-Kumar, & Kumar, 2021) that were voted upon at the Paris Summit, there will need to be approximately 2000 CCS plants.

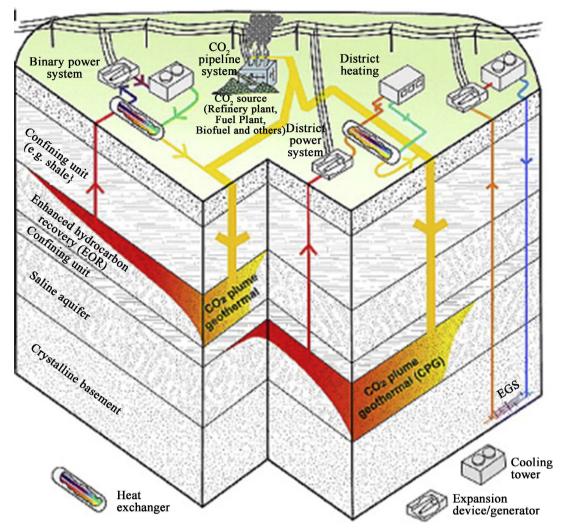
This article presents a general overview of carbon capture and storage (CCS) in the context of the CO_2 predicament. The primary focus of the paper is on

Figure 1. A map of the world that depicts the many carbon capture and storage facilities at various phases of operation (extracted from the Global CCS Institute's GCCSI (2020) and Scottish Carbon Capture & Storage (2023), http://sccs.org.uk/resources/global-ccs-map).

analysing the selection potentials, technologies, and current situations in the developing countries CCS arena. The challenges and opportunities in selecting CO2 storage sites has been highlighted in researches carried out with developing countries interest. On the other hand, several breakthroughs have been made in the sector over the course of the past 15 years; hence, a review article that is brought up to date was required especially with an African and Asian focus. We are aware that each sub-section in this article has the potential to expand into individual contributions, and we have taken that into consideration.

As written in the IPCC report 5th assessment, there is a widespread climate change impact globally both continentally and in the oceans. This effect gives rise to severe disruption of the food chain and ecosystem, hydraulic system, biodiversity, production of food, related health issues, and agriculture. (Tingem et al., 2008) reaffirmed the impacts of climate change as one of the major concerns facing humanity in the 21st century.

Developing countries including South East Asia and Africa are at the epicentral of climate change concern as its one of the most vulnerable continents in the world (UNEP, 2010). IPCC (1998) report shows that the exposed region to the effects of climate change is mainly developing countries. And so far, many studies have shown that Africa is one of the most affected continents by climate change.


Indeed, Africa faces the most severe impacts of climate change and some of these impacts include flooding, droughts, and storms of which the intensity and frequency are more likely to increase as time goes by if various risk mitigation is not evaluated and strategic adaption are not put in place. Likewise, the pattern and among of rainfall would effectively change.

The vulnerability of the African continent to the impact of climate change shows that these impacts are more prevalent in the Sub-Saharan African countries especially Cameroon and Nigeria just to name a few.

According to a report published by the IPCC, the mean global temperatures have increased by approximately 1° C over the past two century dating back to 1850. Interestingly, the last decade has seen the highest recorded period globally. It is also claimed in the IPCC AR5 report that global average temperature will rise from some 1° C to approximately 6.4° C as GHG emissions continue to increase.

2.1. The Gradient of Geothermal Energy

Past studies (Van der Meer, 1993) showed that a little shift in the geothermal gradient with depth might push CO_2 above its critical point. Hydrostatic pressure distribution across a sedimentary basin requires a minimum depth of roughly 800 m for injecting CO_2 at its supercritical phase with a temperature gradient of about 86°F/km and the surface temperature of 50°F (see Figure 2). Not all basins have the same hydrodynamic and geothermal characteristics, and even locations within the same bay might have very different hydrodynamic and geothermal environments. Some of the following factors would limit the geothermal

Figure 2. Schematic illustration of CO_2 migration in a geothermal system (adapted from Randolph & Saar, 2011).

regime in every sedimentary basin:

1) The kind of basin, age, and the sort of tectonism that has occurred over the years;

2) The movement of heat in the basin basement;

3) In the sedimentary succession, thermal conductivity and heat generation;

4) The temperature of the sedimentary rock at the very top of the series.

Only if CO_2 is adsorbed by coal, the minimum depth for ECBM projects should be 800 m. The Ketzin project is a prototype CO_2 storage experiment at a depth of 800 m Govindan et al. 2014). However, owing to worries about leakage, this initiative did not gain widespread public support (Szizybalski et al., 2014; Anon n.d.). CO_2 has also been proposed as a geothermal working fluid, because its thermodynamic properties is considered to be better in comparison to other water-based system (Esteves et al., 2019). The use of CO_2 as a working geothermal fluid has a number of benefits, including: a) greater flow velocities because of its lower viscosity, b) slow solubility for rock minerals and reduced power and energy consumption for geothermal fluid pumping due to its significant compressibility and ability to expand with ease. However, the development has not been fully understood and would require further investigation into it practically impacts and usefulness.

2.2. Hydrodynamics Impact

When CO₂ is injected into depleted oil and gas reservoirs, where hydrodynamic entrapment influences the migration of the CO₂ plume within the reservoir, the hydrodynamic regime of the formation water becomes particularly important for CO₂ storage (Heinemann et al., 2016; Wang et al., 2022). This is especially the case when drained hydrocarbon basins are refilled by injecting CO₂. A strong relationship exists between the different kinds of basins and the water currents that arise from the geological formation. For instance, lateral and vertical erosional rebound may have an impact on the development of water flow in intra-cratonic and foreland basins that have been subjected to at least some level of uplift and erosion. As seen in the Alberta basin in Canada, aquifers face the danger of being considerably under-pressured as a result (Thibeau et al., 2022), (Bachu, 2010). Because they are able to sustain increasing pressure throughout the injection process, under-pressured formations are well suited for CO₂ sequestration and geological containment. As a result of sealing processes inside the fault bodies, the function of faults in the hydrodynamic regime and their permeability structure needs to be determined (Voltattorni et al., 2009; Quattrocchi et al., 2011).

2.3. Geohazards Effects

Geohazards are considered to be temporary and permanent geological and environmental conditions that have the potential to aggravate substantial harm to geological storage system. They must be evaluated as part of storage site selection criteria. As a result, geologically dangerous regions should be avoided for efficient CO_2 containment following injection. Geohazards in storage systems are mostly linked with seismicity, landslides, and volcanic activity. (Buttinelli et al., 2011) discovered that both shallow and deep seismic activity, as well as magmatism, geodynamical domains such as the existence infrastructures that are releasing gas and irregular sources of heat flow that may have a significant impact on storage systems during their investigation of the spatial of cap-rock geological CO_2 storage quality and distribution patterns in Italy's deep saline aquifers. When choosing a prospective injection structure, they found that there are three key geological concerns that need to be taken into consideration:

1) Geophysical and geological investigations revealed seis-mogenic sources and regions;

2) The pattern of earthquake activity throughout time;

3) Naturally occurring widespread degassing networks.

This study might serve as a starting point for cataloguing potential geohazards

in Rio del Rey Basin, Southern Cameroon.

2.4. Geological Elements

Previous studies have shown that storing CO_2 in sedimentary basins, which are often found in close proximity to be at energy-intensive businesses, are the most effective method. These basins include sedimentary rocks that have appropriate levels of porosity and permeability (Hitchon et al., 1999). This shows how crucial it is to minimise the cost of transporting CO_2 to have a relatively large distance between the point source of the gas and the storage facility. To reduce the high transportation costs, other storage options may be more appealing for CO_2 point sources that are not located near appropriate sedimentary formations.

Important geological parameters for assessing storage sites include aquifer properties like reservoir pore volume and permeability, pressure and temperature, sweep efficiency (anisotropy), cap-rock permeability, fracture pressures, reactive mineral quantities, formation thickness the injection of CO_2 , solubility of CO_2 in brine, and potential for sequestration. Increasing storage security and determining a site's economic viability are two goals of the injectivity criteria (Grataloup et al., 2009; Wei et al., 2013). Anisotropy in permeability, rock compressibility, sufficient reservoir thickness, reservoir heterogeneity, reservoir and fracture pressures, and injection depth are all experimental parameters that influenced CO_2 injectivity. In this line of research, comprehensive several reservoir sandstone formations need investigations on CO_2 containment with regard to reservoir storage capacity and cap-rock integrity. These sandstone formations include those in the Gulf of Guinea, the Miocene Rio del Rey basin, and the South West Coastal Region of Cameroon (Owono et al., 2020; Kissaaka et al., 2020).

Geological site evaluation may be enhanced by employing systematic but widely recognised methods that evaluate and concentrate on injection capacity and containment concerns. Borrowing practises and methods in the petroleum sector is one of the ways that these advancements could be accomplished. In particular, numerical simulation models that are capable of quantifying the functions of significant CO_2 trapping mechanisms for basins are one sort of practise that may be hijacked from this sector of the business. For generated seismicity and potential leakage, it is necessary to conduct geophysical and geochemical risk assessments. However, a deeper study at the literature by Quattrocchi et al. (2011) finds significant gaps and flaws in these analyses.

2.5. The Potential for Hydrocarbons and the Maturity of the Basin

Multiple variables may limit CO_2 storage in basins with low or undiscovered resource potential, as previously studied (Han & Winston Ho, 2020; Yang et al., 2008); some of these factors include:

1) Although most hydrocarbon resources are still unknown, there are worries about contamination;

2) Development is still in its early stages; thus, no oil and gas reservoir are fully depleted;

3) The geology with basins' hydrogeology is poorly understood due to a lack of an intense investigation.

Putting faith in CO₂ storage in the hydrocarbon reservoirs appeared to be unfeasible because no energy sources have been discovered in such basins. It is only after considering environmental and economic aspects exhaustively that storage may be feasible, since deep saline aquifer formations are still a possibility in such basins (Yang et al., 2008). The mixing of CO₂-related compounds with hydrocarbons as a pollution contaminant is the most important issue that must be resolved prior to the use of technology for development and production in basins that have a latest geological record and are known to contain hydrocarbon potentials. This is the case in basins that have both these characteristics. One of the first stages in primary output in CO₂-EOR is also included. Storage site evaluation in developing or little explored basins is hindered by a lack of detailed subsurface information. Nonetheless, in all instances, 3D geophysical and geochemical modelling may help to enhance our understanding of such basins (Shi et al., 2023). Storage of CO_2 (Yang et al., 2008) in mature basins, on the other hand, is highly relevant to a variety of reasons, including the abundance of data on the geothermal regime, hydrocarbon reserves, and coal beds.

When choosing a location, the degree of basin development is another key element that must be taken into consideration. This is due to the fact that a lot of the same elements, alternatively, characteristics of a reservoir that are favourable for the extraction of oil and gas also make the reservoir advantageous for the production of CO_2 storage. To make sure that CO_2 storage and hydrocarbon extraction don't interfere with one another, careful planning is essential. For a basin that has been investigated extensively and has the potential to contain hydrocarbons, a substantial amount of rock-based information exists, reducing geological uncertainty. CO_2 -EOR-EGR, which reduces the cost of CO_2 storage, may be made possible due to the availability of oil and gas. Uncertainty in long-term storage may be increased, however, by the presence of thousands of hydrocarbon wells owing to an increased possibility of CO_2 leakage from boreholes.

2.6. Economic, Legal, Environmental and Societal Related Issues

Yang and team in 2008 put forward the economic concerns of CO_2 geological storage that are often at the core of current or needed infrastructure and are influenced by continuing climate change policies (Yang et al., 2008). The existence of operational facilities like pipeline transportation, injection wells, with various transport amenities may already be established in more developed continental basins. These basins have had more time to develop. In young basins, there is a possibility that infrastructure may not exist or would be severely limited. A significant issue in offshore basins is that CO_2 injection and storage may be prohibitively costly owing to the need for additional infrastructure, including lengthy

pipeline routes. As a result, a particular obligatory carbon tax, such as the one for features processes may be explored. However, the construction of infrastructure and regulatory frameworks for CO_2 storage must meet expectations and draw the attention of government authorities without jeopardising the safety of the storage facility or its environmental impact. Considering that the deployment of technology able to significantly reduce anthropogenic CO_2 emissions would take decades of significant expenditures, accomplishing these important goals is critical for storage economics.

Sedimentary basins in developing countries offer great potential as CO_2 storage facilities (Angola, Bangladesh, Cameroon, India, Nigeria, and Angola). Multiple recent studies (Sawyer et al., 2008) have shown that improving citizens' quality of life is the top priority for the vast majority of emerging nations. In terms of priority, this goal might even supersede those of combating climate change and implementing CCS. In industrialised regions, such as Europe and North America, the cost of storing CO_2 in a geological medium is expected to be lower. It is possible that the pace of CO_2 storage implementation will be influenced by factors such as the distribution of coal, oil, and gas, as well as other issues of pollution monitoring and ethical governance. There may be complications when trying to build a storage facility in a densely populated location, such as securing land and rights-of-way for the necessary infrastructure. Site characterization attempts must take these concerns into account.

Bangladesh CO_2 emission growth grew by 29.84 metric tonnes (Mt), GDP per capita by 3.5 million, and population by 3.5 million throughout the period of 1979 to 1983, which corresponds with the growth in CO_2 emissions of Bangladesh's power industry. An increase in an economic activity that had an effect on GDP per capita as well as an increase in the effects of population growth were the primary elements that contributed to the expansion of carbon emissions during this time frame. The number of people who were impacted by economic activity rose from 3.5033 million in the period of 1979-1983 to 593.309 million in the year of 2014-2018. In general, the trends in increasing emissions are the most relevant elements, although the influence of the expansion in population was not substantial.

During the period of 1984-1988, there was an increase of 152.3 Mt in carbon emissions. The most important contributors to this rise were the expansion of the economy and the population, each of which accounted for 6.83 million and 2.12 million of the total increase. The decrease in CO_2 emissions had an inverse relationship with the 54.8 Mt increase in energy intensity. There was not a discernible impact from the level of energy intensity. Between the years 1989 and 1993, there was an increase in emissions of 152.3 Mt, while the population grew by 32 million and GDP per capita grew by 32 million. These two metrics had the biggest margins. Additionally, the total energy consumption (TEC) emission per unit of GDP has significantly lowered by 6.49 Mt as a result of the reduction in emissions. During the years 2004-2008, the population expanded by 232.96 million, which led to an increase in GDP per capita of 232.96 million. On the other hand, the impacts of sub and EI were negative, with a total of 0.463 Mt and 40.58 Mt, respectively, contributing to the increase in carbon emissions.

This resulted in a 445.97 Mt increase in carbon emissions. The increased consumption of natural gas in Bangladesh is to blame for the country's rising levels of carbon dioxide emissions (Hossain et al., 2011). As a result of this examination into each time, it is possible to establish that population and GDP per capita are the two most essential driving variables for increasing carbon emissions in the power sector of Bangladesh.

In 2008, the government of Bangladesh issued a strategy on renewable energy with the goal of reducing CO_2 emissions in Bangladesh (Renewable Energy Policy of Bangladesh, 2008).

As a result of the implementation of new rules for renewable and solar energy, including collaborative endeavours with other countries, it is anticipated that there would be a positive shift in the amount of carbon emissions.

While also, Cameroon and Nigeria are among many countries located along the line of the equator and in particular it's located in the Gulf of Guinea. These countries are situated between latitude 1°40' and 13°05' north and longitude 8°30' to 16°10' east. They are currently undergoing various impacts of climate change. The average temperature in Cameroon for example has increased over the past 90 years (CEEPA, 2006).

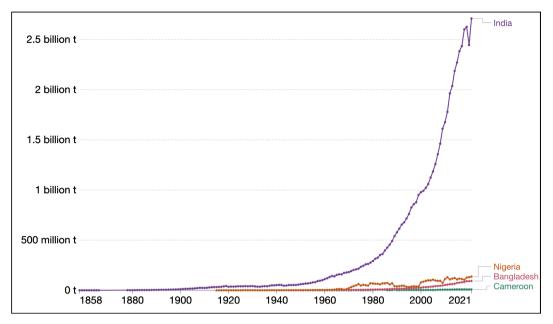
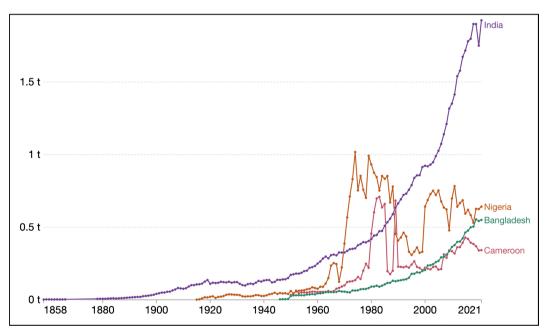

In September 2015, Cameroon under the Intended Nationally Determined Contributions (INDC) within the framework of the Paris climate Agreement submitted its new climate action plan to the UNFCCC. The main aim is to reduce greenhouse gas emissions by 32% compared to a business-as-usual scenario for 2035.

Figure 3 below shows illustrate annual CO_2 emissions in 2021 for Bangladesh—93.18 million tonnes, Cameroon—9.30 million tonnes, India—2.71 billion tonnes and Nigeria—136.99 million tonnes, the upward trend is a common factor for all these countries which in turn reflect across all the developing countries.


Figure 4 illustrate the per-capita CO_2 emissions from the burning of fossil fuels for energy and cement production stand in Bangladesh—0.55 tonnes, Cameroon—0.34 tonnes, India—1.93 tonnes and Nigeria—0.64 tonnes.

Hence, all these effects demonstrated that developing countries are among the most likely countries to be threatened by the impact of climate change. And the impact of climate change will certainly be a field across the socio-economic development, sustainable development of all the sectors of Cameroon especially the energy and agricultural sectors which appear to be the most vulnerable of the impacts and risks of climate change (UNEP, 2010; GEF, 2000; MINEF, 2001).

The main environmental risk associated with CSS in the developing countries relates to the long-term storage of the captured CO_2 . Leakage of CO_2 , either gradual or in a catastrophic leakage could negate the initial environmental benefits of capturing and storing CO_2 emissions and may also have harmful effects on human health as the Lake Nyos disaster illustrates (Evans et al., 1993). Alternatively,

Figure 3. Annual CO_2 emissions from burning fossils fuels for energy in 2021. Source: Global Carbon Project; CO_2 Information Analysis Centre (adapted from Our World in Data, <u>https://ourworldindata.org/</u>).

Figure 4. Per Capita Carbon Dioxide emissions from burning fossils fuels for energy in 2021. Source: Global Carbon Project; Carbon Dioxide Information Analysis Centre (adapted from Our World in Data, https://ourworldindata.org/).

long-term leakage from the geological reservoirs could be actively countered by re-sequestration to stabilize climate at some desired level. However, there will be serious concerns connected with this. It would be difficult to gauge the national leakage rate that would have to be matched by the re-sequestration rate. National long-term monitoring of atmospheric CO_2 concentrations would probably be the best way to address this but natural carbon-cycle fluctuations would compli-

cate this approach.

CSS has the long-term potential to make a substantial positive impact on the amount of CO_2 emitted into the atmosphere by the stationary energy sector. Therefore, the potential risks will need to be weighed against the potential benefits, and as well the possible consequences of inactivity.

Bearing in mind that GHG emissions in Cameroon undoubtedly increasing annually oil and gas industry and the importance to continue exploiting the oil and gas energy resources. This has created a dilemma and which needs addressing with urgency to meet the government climate emergency targets. It is inevitable to mitigate the risk poise by these toxic gases while at the same time supplying the energy required to sustain the economy sustainably. The main issues will include capturing CO_2 from fossil fuel-related energy sources and selecting the right geological sequestration approach safely in the short, mid, and long term. As history has shown, on August 21, 1986, an eruption of CO_2 (lethal gas) from Lake Nyos in Cameroon kills nearly 2000 people and wipes out four villages. CO_2 though ubiquitous in Earth's atmosphere can be deadly in large quantities, as was evident in this disaster.

The Lake Nyos disaster has often been cited as evidence of the potential risks that have hobbled efforts to commercialize carbon dioxide sequestration which is the only realistic way to satisfy the world's enormous energy needs without accelerating the pace of climate change. Irrespective of the risk, the benefits of CSS make it hard to ignore. Power plants equipped with CSS technology produce about 80% to 90% less carbon than those without it. CS could reduce the cost of climate stabilization by 30%.

In addition, the present of high-quality natural commodities especially oil and gas resources, cement manufacturing and other natural resources and other minerals might be affected by the storage of CO_2 (Li et al., 2023). As a consequence of this, early regional planning on complementary and competing areas of interest is of the utmost importance. It is impossible to achieve a meaningful reduction in anthropogenic CO_2 emissions without the rapid adoption of CO_2 storage technology by the majority of nations, particularly rising ones. As a result, CCS industry players must engage in technology transfer to develop national capacity. For the local population, awareness efforts must emphasise the worldwide significance of storage deployment. Furthermore, CO_2 storage should be market as an ecologically friendly pastime and a way to solve community environmental issues.

With regard to India, according to the estimates carried out in the IEAGHG CO_2 sources inventory, it determined that each individual state might have annual emissions of between 28 and 29 Mt CO_2 . If they have a lifespan of 35 years, it is probable that each of them will release around one gigaton of CO_2 , and if they are equipped with CO_2 collection, they will transmit substantially more CO_2 for storage.

There is currently no regulatory structure in place in Nigeria that regulates

CCS; nevertheless, the Petroleum Industry Act, 2021 recognises the need for decarbonization, and as a result, it offers a legal basis for the implementation of CCS. In order to comply with the requirements of the Act, every concessionaire of a petroleum licence or lease must include an environmental management plan in their field development plan. This plan outlines the measures that the concessionaire plans to take in order to reduce the adverse effects that their operations will have on the surrounding environment. If CCS is feasible, the plan can include it as one of the potential preventative and corrective actions that could be taken.

The Climate Change Act 2021 (also known as the "CC Act") provides the legislative framework for achieving low GHG emissions as well as supporting sustainable economic growth, and it establishes a target for the year 2050-2070 for the attainment of a net-zero GHG emission in Nigeria. This objective was established in order to meet the requirements of the Paris Agreement on climate change.

The CC Act does not make any reference to specific technologies such as CCS; instead, it provides a framework for facilitating the coordination of climate change action required to achieve the long-term climate objectives of Nigeria. The nature of CCS places it within the options available for achieving the long-term climate objectives of Nigeria; however, the CC Act does not make any reference to specific technologies such as CCS. The CC Act established the National Council on Climate Change (the "Council"), which is required to, among other things, approve and oversee the implementation of the National Climate Change Action Plan, which establishes the climate adaptation goals and prescribes the mechanisms for achieving Nigeria's climate change goals. The National Council on Climate Change is required to do this because it is required by the CC Act, which states that it is required to oversee the implementation of the National Climate Change Action Plan. The effect of a carbon tax would be to invariably encourage the use of technologies such as CCS to decrease the tax exposure of a corporation and to earn carbon credits to offset the potential liability of carbon taxes. In other words, the subsequent effect of a carbon tax would have the effect of encouraging the use of technology.

The Nigerian Upstream Petroleum Regulatory Commission (NUPRC) has made an effort to recognise CCS. In one of the draught regulations released on acreage management in the upstream oil and gas sector, this draught regulation states that "with the consent of the Commission, the lessee may provide carbon capture and storage services with respect to reservoirs contained in the lease area." This draught regulation was released on the topic of acreage management in the upstream oil and gas sector. When it was finally put into effect, the acreage regulation that is the subject of this discussion would make it possible for dry wells located inside a lease area to be used for carbon storage with the approval of the NUPRC. As was said previously, selection of the location chosen for the carbon storage facility is extremely important. The geological make-up of the storage area needs to be such that the rock at the surface is impermeable. This will ensure that the CO_2 will not escape into the surrounding environment.

That said, the relevant factors for assessing the suitability of potential storage locations have been discussed. The potential of a storage location is evaluated by the combination of these parameters. When analysing storage facilities, in addition to the fundamental requirements outlined, one must also take into account any extra aspects that may be exclusive to that particular storage facility. These additional considerations could also include, but are not limited to, the following:

1) The size and characteristics of the proposed expansion location;

2) Partisan considerations, including the potential for local development projects in the future;

3) Native title claims are a part of cultural heritage because they allow an individual or group to assert legal ownership of a piece of land or territory without resorting to formal legal action or a formal treaty.

The cost of CCS is the largest expense associated with carbon capture and storage, accounting for between 60 and 80 percent of the total cost of the CCS system (IEA, 2008). However, in these developing economies, such an investigation of the viability of CCS cost has not been carried out to assess the overall feasibility.

Future Challenge

In developing countries, CCS is still a relatively novel technology. In spite of the fact that several evaluations and potential analyses have been carried out across Bangladesh, Cameroon, India and Nigeria for example, there have only been a limited number of actual pilot commercial implementations. In order to slow down the rate at which the environment in these countries is deteriorating and to encourage CO_2 sequestration, a number of different considerations need to be given priority.

Participation from international bodies is essential to the process of creating and expanding CO₂ sequestration. In a wide variety of spheres, most developing countries such as Bangladesh, India and Nigeria have already initiated a number of CCS pilot initiatives in conjunction with other countries. However, in order to make progress, additional coordinated efforts are required.

The use of technology is the primary factor in determining the success of CCS operations. This includes the methodology behind carbon capture, transportation, evaluation, and storage. The majority of developing countries' oilfields have a complicated formation structure, which manifests as strong heterogeneity, low or ultralow permeability, low porosity, and poor oil property (Xuan & He, 2010). Techniques for CO_2 -EOR would face difficulties if high miscible pressure, severe gas channelling, significant solid deposition, and the development of a complex reservoir were to occur (Yue et al., 2007).

On the other hand, it is advised that appropriate policies be implemented in developing countries in order to stimulate and boost the CCS business. There is a need for the development of alternative methods for capturing CO_2 and reducing CO_2 emissions from a variety of sources.

For these countries to have a future with low carbon emissions, the market mechanism must play a significant role in reducing carbon emissions (Li, 2013).

3. Discussion and Conclusion

The paper has provided a comprehensive analysis of the current situation and future possibilities of CCS selection criteria, with a primary focus on developing countries (Bangladesh, Cameroon, India and Nigeria). We are further into a new decade in which climate-related action will be at the forefront, therefore a review of this nature was very much needed. The CCS will be very important to the process of energy transition. Due to the enormous scope of the subject matter, this paper does not dig further into specific selection technologies measures or other subtopics.

This article gives a comprehensive analysis of CCS in the context of developing countries such as Bangladesh, Cameroon, India and Nigeria and paints a clear picture of the current situation in these countries. Each component can be explored further to provide a more in-depth study of the full possibilities and limitations of the CCS selection criteria in question. There are now multiple pilot projects that are in the stage of study and development in some of these developing countries especially Bangladesh, Cameroon, India and Nigeria. In addition to this, developing countries have significant geological storage basins and biological sequestration capacities which CCS process is still in its infantry.

In this context, the framework for private and public partnerships has the potential to play a significant role and should be considered. Site preferences or criteria need to be supplemented with policy measures that are appropriate, adaptive, and walkable, and they should be geared towards CCS in developing countries' specific needs. Because the cost of carbon storage continues to make up the majority of the total cost of sequestration, each of these factors needs to work towards lowering that cost on a per-unit basis. The main elements that will be necessary to accomplish this objective are ongoing appraisal as well as policies that are focused.

The next two decades will be essential for the continued development of CCS technology in developing countries (Bangladesh, Cameroon, India and Nigeria). These countries would work to close the technological gap in their power production and distribution sector in order to improve their prospects of successfully implementing CCS technologies in cements/power plants built after the year 2035 or so. This action would secure developing countries' place on the global energy map as well as the map depicting the decrease of carbon emissions.

In Bangladesh, Cameroon, India and Nigeria for example, there is potential for storing CO_2 underground in depleted oil and gas reservoirs, salty aquifers, and coal beds. In several regions of these countries, a vast number of initiatives/pilot studies have been carried out to demonstrate the viability of CCS, investigate the potential for CCS on a commercial scale, and evaluate the storage capacity and possibility of carbon sequestration and enhanced oil recovery.

Other potential methods for CO_2 sequestration include amending soil, planting trees, and re-using CO_2 . The process of lowering emissions can be significantly advanced by the combination of a number of different selective strategies.

When compared to other Western countries, these developing countries are behind in the amount of carbon that they can sequester. In addition to that, almost all the CO_2 storage projects in developing countries are still in the stage of appraisal and assessment. To make further progress, additional efforts are required, which should involve international cooperation, innovative technology, constructive policy, and societal mechanisms.

Declaration

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. This work is an outcome of ongoing research work in the Department of Chemical Engineering, Faculty of Engineering and Informatics, University of Bradford, Bradford in Carbon Capture and Storage.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

- Anon (n.d.). Communication Supporting the Research on CO₂ Storage at the Ketzin Pilot Site, Germany—A Status Report after Ten Years of Public Outreach. Elsevier Enhanced Reader.
- Bachu, S. (2010). Screening and Selection Criteria, and Characterisation Techniques for the Geological Sequestration of Carbon Dioxide (CO₂). *Developments and Innovation in Carbon Dioxide (CO₂) Capture and Storage Technology, 2*, 27-56. https://doi.org/10.1533/9781845699581.1.27
- Buttinelli, M., Procesi, M., Cantucci, B., Quattrocchi, F., & Boschi, E. (2011). The Geo-Database of Caprock Quality and Deep Saline Aquifers Distribution for Geological Storage of CO₂ in Italy. *Energy*, *36*, 2968-2983. https://doi.org/10.1016/j.energy.2011.02.041
- CEEPA (2006). *Climate Change and African Agriculture Policy Note No. 10. Centre for Environmental Economics and Policy in Africa (CEEPA).* University of Pretoria.
- Esteves, A. F., Santos, F. M., & Magalhães Pires, J. C. (2019). Carbon Dioxide as Geothermal Working Fluid: An Overview. *Renewable and Sustainable Energy Reviews*, 114, Article ID: 109331. https://doi.org/10.1016/j.rser.2019.109331
- Evans, W. C., Kling, G. W., Tuttle, M. L., Tanyileke, G., & White, L. D. (1993). Gas Buildup in Lake Nyos, Cameroon: (1993) The Recharge Process and Its Consequences. *Applied Geochemistry*, *8*, 207-221. <u>https://doi.org/10.1016/0883-2927(93)90036-G</u>
- GEF (2000). Bangladesh Biodiversity Strategic Action Plan.
- Grataloup, S., Bonijoly, D., Brosse, E., Dreux, R., Garcia, D., Hasanov, V., Lescanne, M., Renoux, P., & Thoraval, A. (2009). A Site Selection Methodology for CO₂ Underground Storage in Deep Saline Aquifers: Case of the Paris Basin. *Energy Procedia*, *1*, 2929-2936. https://doi.org/10.1016/j.egypro.2009.02.068

- Han, Y., & Winston Ho, W. S. (2020). Recent Advances in Polymeric Facilitated Transport Membranes for Carbon Dioxide Separation and Hydrogen Purification. *Journal of Polymer Science*, 58, 2435-2449. <u>https://doi.org/10.1002/pol.20200187</u>
- Heinemann, N., Stewart, R. J., Wilkinson, M., Pickup, G. E., & Haszeldine, R. S. (2016). Hydrodynamics in Subsurface CO₂ Storage: Tilted Contacts and Increased Storage Security. *International Journal of Greenhouse Gas Control*, 54, 322-329. https://doi.org/10.1016/j.ijggc.2016.10.003
- Hitchon, B., Gunter, W. D., Gentzis, T., & Bailey, R. T. (1999). Sedimentary Basins and Greenhouse Gases: A Serendipitous Association. *Energy Conversion and Management*, 40, 825-843. https://doi.org/10.1016/S0196-8904(98)00146-0
- Hossain, A., Mathur, J., & Denich, M. (2011). Impacts of CO₂ Emission Constraints on Technology Selection and Energy Resources for Power Generation in Bangladesh. *Energy Policy*, 39, 2043-2050.
- IEA (2008). Climate Change Act.
- IPPC (1998). Climate Change. The IPCC Scientific Assessment.
- Kissaaka, J. B. I., Moulaye, A. S. M., Kwetche, P. G. F., Owono, F. M., & Ntamak-Nida, M. J. (2020). Well Log Petrophysical Analysis and Fluid Characterization of Reservoirs, Rio Del Rey Basin, Cameroon (West African Margin, Gulf of Guinea). *Earth Science Research*, 10. https://doi.org/10.5539/esr.v10n1p1
- Knoope, M. M. J., Ramírez, A., & Faaij, A. P. C. (2015). The Influence of Uncertainty in the Development of a CO₂ Infrastructure Network. *Applied Energy*, *158*, 332-347. <u>https://doi.org/10.1016/j.apenergy.2015.08.024</u>
- Kujur, S., Senthil-Kumar, M., & Kumar, R. (2021). Plant Viral Vectors: Expanding the Possibilities of Precise Gene Editing in Plant Genomes. *Plant Cell Reports, 40*, 931-934. https://doi.org/10.1007/s00299-021-02697-2
- Li, R. Y. (2013). Report on the Development of Low Carbon Economy of China.
- Li, S., Wang, P., Wang, Z., Cheng, H., & Zhang, K. (2023). Strategy to Enhance Geological CO₂ Storage Capacity in Saline Aquifer. *Geophysical Research Letters, 50*, e2022GL101431. https://doi.org/10.1029/2022GL101431
- MINEF (2001). Priority Setting for Conservation in South-West Cameroon.
- Mwenketishi, G., Benkreira, H., & Rahmanian, N. (2023). Carbon Dioxide Sequestration Methodothologies—A Review. *American Journal of Climate Change*, *12*, 579-627.
 <u>https://doi.org/10.4236/ajcc.2023.124026</u>
 https://www.scirp.org/journal/paperinformation.aspx?paperid=129308
- Our World Data. https://ourworldindata.org/
- Owono, F. M., Atangana, J. N., Owona, S., Dauteuil, O., Nsangou Ngapna, M., Guillocheau, F., Koum, S., Boum, R. B. E., & Ntamak-Nida, M. J. (2020). Tectono-Stratigraphic Evolution and Architecture of the Miocene Rio Del Rey Basin (Cameroon Margin, Gulf of Guinea). *International Journal of Earth Sciences*, 109, 2557-2581. <u>https://doi.org/10.1007/s00531-020-01917-6</u>
- Quattrocchi, F., Galli, G., Gasparini, A., Magno, L., Pizzino, L., & Sciarra Voltattorni, N. (2011). Very Slightly Anomalous Leakage of CO₂, CH₄ and Radon along the Main Activated Faults of the Strong L'Aquila Earthquake (Magnitude 6.3, Italy). Implications for Risk Assessment Monitoring Tools & Public Acceptance of CO₂ and CH₄ Underground Storage. *Energy Procedia*, *4*, 4067-4075. https://doi.org/10.1016/j.egypro.2011.02.349

Randolph, J. B., & Saar, M. O. (2011). Combining Geothermal Energy Capture with Geo-

logic Carbon Dioxide Sequestration. *Geophysical Research Letters, 38*, L10401. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011GL047265 https://doi.org/10.1029/2011GL047265

- Renewable Energy Policy of Bangladesh (2008). *Ministry of Power, Energy and Mineral Resources Government of the People's Republic of Bangladesh (December).*
- Sawyer, D., Harding, R., Pozlott, C., Dickey, P., Harding, R., Pozlott, C. et al. (2008). *Carbon Capture and Storage—The Environmental and Economic Case and Challenges.* https://www.pembina.org/reports/ccs-discuss-environment-economic-all.pdf
- Shi, Y., Lu, Y., Rong, Y., Bai, Z., Bai, H., Li, M., & Zhang, Q. (2023). Geochemical Reaction of Compressed CO₂ Energy Storage Using Saline Aquifer. *Alexandria Engineering Journal*, 64, 679-689. https://doi.org/10.1016/j.aej.2022.11.031
- Shukla, R., Ranjith, P., Haque, A., & Choi, X. (2010). A Review of Studies on CO2 Sequestration and Caprock Integrity. *Fuel*, *89*, 2651-2664. https://doi.org/10.1016/j.fuel.2010.05.012
- Szizybalski, A., Kollersberger, T., Möller, F., Martens, S., Liebscher, A., & Kühn, M. (2014). Communication Supporting the Research on CO₂ Storage at the Ketzin Pilot Site, Germany—A Status Report after Ten Years of Public Outreach. *Energy Procedia*, 51, 274-280. https://doi.org/10.1016/j.egypro.2014.07.032
- Thibeau, S., Chatelan, L., Jazayeri Noushabadi, M., Adler, F., & Millancourt, F. (2022). Pressure-Derived Storage Efficiency for Open Saline Aquifer CO₂ Storage. SSRN Electronic Journal.
- Tingem, M., Rivington, M., Bellocchi, G., Azam-Ali, S., & Colls, J. (2008). Effects of Climate Change on Crop Production in Cameroon. *Climate Research*, *36*, 65-77. <u>https://doi.org/10.3354/cr00733</u>
- UNEP (2010). Annual Report on United Nations Environment Programme.
- Van der Meer, L. G. H. (1993). The Conditions Limiting CO₂ Storage in Aquifers. *Energy Conversion and Management*, 34, 959-966.
 https://doi.org/10.1016/0196-8904(93)90042-9
- Voltattorni, N., Sciarra, A., Caramanna, G., Cinti, D., Pizzino, L., & Quattrocchi, F. (2009). Gas Geochemistry of Natural Analogues for the Studies of Geological CO₂ Sequestration. *Applied Geochemistry*, 24, 1339-1346. https://doi.org/10.1016/j.apgeochem.2009.04.026
- Wang, D., Fan, J., & Xue, Z. (2022). Hydrodynamic Analysis of CO₂ Migration in Heterogeneous Rocks: Conventional and Micro-Bubble CO₂ Flooding Experiments and Pore-Scale Numerical Simulations. *Water Resources Research*, 58, e2021WR031874. https://doi.org/10.1029/2021WR031874
- Wei, N., Li, X., Wang, Y., Dahowski, R. T., Davidson, C. L., & Bromhal, G. S. (2013). A Preliminary Sub-Basin Scale Evaluation Framework of Site Suitability for Onshore Aquifer-Based CO₂ Storage in China. *International Journal of Greenhouse Gas Control, 12,* 231-246. <u>https://doi.org/10.1016/j.ijggc.2012.10.012</u>
- Xuan, Z., & He, S. (2010). Potential and Early Opportunity-Analysis on CO₂ Geo-Sequestration in China. In *Proceedings of the 72nd European Association of Geoscientists and Engineers Conference and Exhibition (SPE EUROPEC '10)* (pp. 842-848). <u>https://doi.org/10.2523/130358-MS</u>
- Yang, K., Pinker, R. T., Ma, Y., Koike, T., Wonsick, M. M., Cox, S. J., Zhang, Y., & Stackhouse, P. (2008). Evaluation of Satellite Estimates of Downward Shortwave Radiation over the Tibetan Plateau. *Journal of Geophysical Research Atmospheres*, 113, 842. https://doi.org/10.1029/2007JD009736

- Yue, X. A., Zhao, R. B., & Zhao, F. L. (2007). Technological Challenges for CO₂ EOR in China. *Science paper Online*, 2, 487-491.
- Zhang, M., & Bachu, S. (2011). Review of Integrity of Existing Wells in Relation to CO₂
 Geological Storage: What Do We Know? *International Journal of Greenhouse Gas Control, 5*, 826-840. https://doi.org/10.1016/j.ijggc.2010.11.006

Abbreviations

CO ₂ -EOR	Carbon dioxide Enhanced Oil Recovery;
GEF	Global Environment Facility;
GHG	Greenhouse Gas;
IEA	International Energy Agency;
IPCC	Intergovernmental Panel on Climate Change.

Appendix

 Table A1. Worldwide CCS initiatives encompassing large-scale commercial projects that have been previously operational and pilot development operations (Shukla et al., 2010; Mwenketishi, Benkreira, & Rahmanian, 2023).

Facility Name	Facility Category	Facility Status	Country	Operational	Facility Industry
In Salah CO ₂ Storage	Commercial CCS Facility	Completed	Algeria	2004	Natural Gas Processing
Bridgeport Energy Moonie CCUS project	Commercial CCS Facility	Advanced Development	Australia	2023	CO ₂ Transport and Storage
Burrup CCS Hub	Commercial CCS Facility	Early Development	Australia		CO ₂ Transport and Storage
Callide Oxyfuel Project	Pilot and Demonstration CCS Facility	Completed	Australia	2012	Power Generation
CarbonNet	Commercial CCS Facility	Advanced Development	Australia		CO ₂ Transport and Storage
Cliff Head CCS Project (Mid West Clean Energy Project)	Commercial CCS Facility	Advanced Development	Australia	2025	CO ₂ Transport and Storage
CO ₂ CRC Otway	Pilot and Demonstration CCS Facility	Operational	Australia	2008	Natural Gas Processing
CTSCo Surat Basin CCS Project	Pilot and Demonstration CCS Facility	Advanced Development	Australia	2023	Power Generation
Gorgon Carbon Dioxide Injection	Commercial CCS Facility	Operational	Australia	2019	Natural Gas Processing
Hazelwood Carbon Capture and Mineral Sequestration Pilot Plant	Pilot and Demonstration CCS Facility	Completed	Australia	2009	Power Generation
Hydrogen Energy Supply Chain (HESC) project	Commercial CCS Facility	Advanced Development	Australia		Hydrogen Production
Hydrogen Energy Supply Chain (HESC) project	Pilot and Demonstration CCS Facility	Completed	Australia	2028	Hydrogen Production
INPEX CCS Project Darwin	Commercial CCS Facility	Early Development	Australia	2026	Natural Gas Processing
Mid-West Modern Energy Hub	Commercial CCS Facility	Early Development	Australia		Hydrogen Production
Moomba CCS hub (Santos Cooper Basin CCS Project)	Commercial CCS Facility	In Construction	Australia	2024	Hydrogen Production
National Geosequestration Laboratory (NGL) Australia	Pilot and Demonstration CCS Facility	Operational	Australia	2015	Research and Development
Otway Natural Gas Plant CCS	Commercial CCS Facility	Early Development	Australia	2026	Natural Gas Processing
Post-Combustion Capture (PCC)@CSIRO	Pilot and Demonstration CCS Facility	Operational	Australia	2005	Power Generation
South East Australia Carbon Capture Hub	Commercial CCS Facility	Early Development	Australia	2025	Natural Gas Processing
South West Hub	Pilot and Demonstration CCS Facility	Completed	Australia		Fertiliser Production

Continued					
Wallumbilla Renewable Methane Demonstration Project	Pilot and Demonstration CCS Facility	Advanced Development	Australia	2021	Direct Air Capture
Antwerp@C - BASF Antwerp CCS	Commercial CCS Facility	Advanced Development	Belgium	2030	Chemical Production
Antwerp@C - Exxonmobil Antwerp Refinery CCS	Commercial CCS Facility	Early Development	Belgium	2030	Chemical Production
Antwerp@C – Borealis Antwerp CCS	Commercial CCS Facility	Early Development	Belgium	2030	Chemical Production
Antwerp@C – Ineos Antwerp CCS	Commercial CCS Facility	Early Development	Belgium	2030	Chemical Production
LEILAC	Pilot and Demonstration CCS Facility	In Construction	Belgium	2025	Cement Production
Steelanol	Utilisation Facilities	Operational	Belgium	2023	Iron and Steel Production
FS Lucas do Rio Verde BECCS Project	Commercial CCS Facility	Early Development	Brazil		Ethanol Production
Miranga CO ₂ Injection Project	Pilot and Demonstration CCS Facility	Completed	Brazil	2009	Fertiliser Production
Petrobras Santos Basin Pre-Salt Oil Field CCS	Commercial CCS Facility	Operational	Brazil	2008	Natural Gas Processing
Air Products Net-Zero Hydrogen Energy Complex	Commercial CCS Facility	Advanced Development	Canada	2024	Hydrogen Production
Alberta Carbon Conversion Technology Centre (ACCTC)	Pilot and Demonstration CCS Facility	Operational	Canada	2018	Power Generation
Alberta Carbon Trunk Line (ACTL)	Commercial CCS Facility	Operational	Canada	2020	CO ₂ Transport and Storage
Blue But Better	Commercial CCS Facility	In Construction	Canada	2024	Hydrogen Production
Boundary Dam Unit 3 Carbon Capture and Storage Facility (BD3 CCS facility)	Commercial CCS Facility	Operational	Canada	2014	Power Generation
Capital Power Genesee CCS Project	Commercial CCS Facility	Advanced Development	Canada	2026	Power Generation
Caroline Carbon Capture Power Complex	Commercial CCS Facility	Early Development	Canada	2025	Power Generation
CMC Research Institutes (CMCRI)	Pilot and Demonstration CCS Facility	Operational	Canada	2018	Research and Development
CO ₂ Solutions Valleyfield Carbon Capture Demonstration Project	Pilot and Demonstration CCS Facility	Completed	Canada	2015	Research and Development
Enhance Energy Clive CO_2 -EOR (ACTL)	Commercial CCS Facility	Operational	Canada	2020	CO ₂ Transport and Storage
Federated Co-operatives Limited (Ethanol)	Commercial CCS Facility	Advanced Development	Canada	2024	Ethanol Production

Continued					
Federated Co-operatives Limited (Refinery)	Commercial CCS Facility	Advanced Development	Canada	2026	Oil Refining
Glacier Gas Plant MCCS	Commercial CCS Facility	Operational	Canada	2022	Natural Gas Processing
Husky Energy Lashburn and Tangleflags CO ₂ Injection in Heavy Oil Reservoirs Project	Pilot and Demonstration CCS Facility	Operational	Canada	2012	Ethanol Production
Nauticol Energy Net Zero Methanol (ACTL)	Commercial CCS Facility	Early Development	Canada	2025	Methanol Production
Northwest Redwater CO ₂ Recovery Unit Sturgeon Refinery (ACTL)	Commercial CCS Facility	Operational	Canada	2020	Oil Refining
Origins Project Carbon Storage Hub	Commercial CCS Facility	Early Development	Canada	2026	CO ₂ Transport and Storage
Pembina Cardium CO ₂ Monitoring Pilot	Pilot and Demonstration CCS Facility	Completed	Canada	2005	Natural Gas Processing
Polaris CCS Project	Commercial CCS Facility	Early Development	Canada	2025	Hydrogen Production
Quest	Commercial CCS Facility	Operational	Canada	2015	Hydrogen Production
Saskatchewan NET Power Plant	Commercial CCS Facility	Early Development	Canada	2025	Power Generation
Shand Carbon Capture Test Facility (CCTF)	Pilot and Demonstration CCS Facility	Operational	Canada	2015	Research and Development
Southeast Saskatchewan CCUS Hub - Storage	Commercial CCS Facility	Advanced Development	Canada		CO ₂ Transport and Storage
Svante and Husky Energy VeloxoTherm Capture Process Test	Pilot and Demonstration CCS Facility	Advanced Development	Canada	2018	Oil Refining
WCS Redwater CO ₂ Recovery Unit (ACTL)	Commercial CCS Facility	Operational	Canada	2020	Fertiliser Production
Zama Field Validation Test	Pilot and Demonstration CCS Facility	Completed	Canada	2005	Natural Gas Processing
Australia-China Post Combustion Capture (PCC) Feasibility Study Project	Pilot and Demonstration CCS Facility	Completed	China	2010	Power Generation
Australia-China Post Combustion Capture (PCC) Feasibility Study Project	Pilot and Demonstration CCS Facility	Completed	China	2010	Power Generation
China Coalbed Methane Technology Sequestration Project	Pilot and Demonstration CCS Facility	Completed	China	2004	Research and Development
China National Energy Guohua Jinjie	Commercial CCS Facility	Operational	China	2020	Power Generation
China National Energy Taizhou	Commercial CCS Facility	In Construction	China	2023	Power Generation
Chinese-European Emission-Reducing Solutions (CHEERS)	Pilot and Demonstration CCS Facility	Advanced Development	China	2022	Oil Refining

Continued					
CNOOC Enping CCS Offshore Project	Commercial CCS Facility	Operational	China	2023	Natural Gas Processing
CNPC Jilin Oil Field CO ₂ EOR	Commercial CCS Facility	Operational	China	2018	Natural Gas Processing
CNPC Jilin Oil Field EOR Demonstration Project	Pilot and Demonstration CCS Facility	Completed	China	2008	Natural Gas Processing
Daqing Oil Field EOR Demonstration Project	Pilot and Demonstration CCS Facility	Operational	China	2003	Natural Gas Processing
Guanghui Energy CCUS	Commercial CCS Facility	In Construction	China		Methanol Production
Haifeng Carbon Capture Test Platform	Pilot and Demonstration CCS Facility	Operational	China	2018	Power Generation
Huaneng GreenGen IGCC Demonstration-scale System (Phase 2)	Pilot and Demonstration CCS Facility	In Construction	China	2025	Power Generation
Huaneng Longdong Energy Base Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	China	2023	Power Generation
ITRI Calcium Looping Pilot	Pilot and Demonstration CCS Facility	Operational	China	2013	Cement Production
Jinling Petrochemical CCUS (Nanjing Refinery)	Commercial CCS Facility	Operational	China	2023	Oil Refining
Karamay Dunhua Oil Technology CCUS EOR Project	Commercial CCS Facility	Operational	China	2015	Methanol Production
PetroChina Changqing Oil Field EOR CCUS	Pilot and Demonstration CCS Facility	Operational	China	2017	Fuel transformation
Shenhua Group Ordos Carbon Capture and Storage (CCS) Demonstration Project	Pilot and Demonstration CCS Facility	Completed	China	2011	Fuel transformation
Shuncheng CO ₂ -TO-METHANOL Anyang Petrochemical	Utilisation Facilities	Operational	China	2022	Chemical Production
Sinopec Nanjing Chemical Industries CCUS Cooperation Project	Commercial CCS Facility	Operational	China	2021	Chemical Production
Sinopec Qilu-Shengli CCUS Project	Commercial CCS Facility	Operational	China	2022	Chemical Production
Sinopec Shengli Oilfield Carbon Capture Utilization and Storage Pilot Project		Operational	China	2010	Power Generation
Sinopec Shengli Power Plant CCS	Commercial CCS Facility	Advanced Development	China	2025	Power Generation
Sinopec Zhongyuan Carbon Capture Utilization and Storage	Pilot and Demonstration CCS Facility	Completed	China	2006	Chemical Production

Continued					
Yanchang Integrated CCS Demonstration	Commercial CCS Facility	Operational	China	2012	Chemical Production
Geothermal Plant with CO ₂ Re-injection	Pilot and Demonstration CCS Facility	Operational	Croatia	2018	Power Generation
CASTOR	Pilot and Demonstration CCS Facility	Completed	Denmark	2006	Power Generation
CESAR	Pilot and Demonstration CCS Facility	Completed	Denmark	2008	Power Generation
Copenhill (Amager Bakke) Waste to Energy CCS	Commercial CCS Facility	Advanced Development	Denmark	2025	Waste Incineration
Greenport Scandinavia	Commercial CCS Facility	Early Development	Denmark	2025	Bioenergy
Project Greensand	Commercial CCS Facility	Advanced Development	Denmark	2025	CO ₂ Transport and Storage
Air Liquide CalCC	Commercial CCS Facility	Early Development	France	2028	Lime Production
Air Liquide Normandy CCS	Commercial CCS Facility	Early Development	France	2025	Hydrogen Production
C2A2 Field Pilot - Le Havre	Pilot and Demonstration CCS Facility	Completed	France	2013	Power Generation
DMX™ Demonstration in Dunkirk	Pilot and Demonstration CCS Facility	Operational	France	2022	Iron and Steel Production
K6	Commercial CCS Facility	Early Development	France	2028	Cement Production
Lacq CCS Pilot Project	Pilot and Demonstration CCS Facility	Completed	France	2010	Power Generation
CEMEX, Rüdersdorf, Germany	Commercial CCS Facility	Early Development	Germany	2026	Cement Production
Ketzin Pilot Project	Pilot and Demonstration CCS Facility	Completed	Germany	2004	Power Generation
Schwarze Pumpe Oxy-fuel Pilot Plant	Pilot and Demonstration CCS Facility	Completed	Germany	2008	Power Generation
Wilhelmshaven CO ₂ Capture Pilot Plant	Pilot and Demonstration CCS Facility	Completed	Germany	2012	Power Generation
MOL Szank field $\rm CO_2 EOR$	Commercial CCS Facility	Operational	Hungary	1992	Natural Gas Processing
CarbFix Project	Pilot and Demonstration CCS Facility	Operational	Iceland	2012	Power Generation
CODA Shipping	Commercial CCS Facility	Advanced Development	Iceland	2026	CO ₂ Transport and Storage
CODA Terminal Onshore Infrastructure	Commercial CCS Facility	Advanced Development	Iceland	2026	CO ₂ Transport and Storage
CODA Terminal Pipeline	Commercial CCS Facility	Advanced	Iceland	2026	CO ₂ Transport and

CODA Terminal Storage

Development

Development

Iceland

2026

Commercial CCS Facility Advanced

Storage

Storage

 CO_2 Transport and

Continued

Mammoth	Commercial CCS Facility	In Construction	Iceland	2024	Direct Air Capture
Orca	Commercial CCS Facility	Operational	Iceland	2021	Direct Air Capture
Carbon Clean Solutions Solvay Vishnu Capture Project	Pilot and Demonstration CCS Facility	Completed	India	2012	Power Generation
NTPC Vindhyachal Super Thermal Power Station CCS	Utilisation Facilities	Operational	India	2022	Power Generation
Tata Steel Jamshedpur Steel Plant	Pilot and Demonstration CCS Facility	Operational	India	2021	Iron and Steel Production
Tuticorin (TTPS)- Carbon Clean Solution	Utilisation Facilities	Operational	India	2016	Power Generation
Tuticorin Alkali Chemicals and Fertilizers Ltd	Pilot and Demonstration CCS Facility	Operational	India	2016	Chemical Production
Arun CCS Hub	Commercial CCS Facility	Early Development	Indonesia	2029	CO_2 Transport and Storage
Gundih CCS Pilot	Pilot and Demonstration CCS Facility	Advanced Development	Indonesia	2025	Natural Gas Processing
PAU Central Sulawesi Clean Fuel Ammonia Production with CCUS	Commercial CCS Facility	Early Development	Indonesia	2025	Fertiliser Production
Repsol Sakakemang Carbon Capture and Injection	Commercial CCS Facility	Early Development	Indonesia	2026	Natural Gas Processing
Sukowati CCUS	Commercial CCS Facility	Early Development	Indonesia	2028	Oil Refining
Ervia Cork CCS	Commercial CCS Facility	Early Development	Ireland	2028	Power Generation
Heletz, Israel pilot CO ₂ injection site	Pilot and Demonstration CCS Facility	Completed	Israel	2026	Research and Development
Brindisi CO ₂ Capture Pilot Plant	Pilot and Demonstration CCS Facility	Completed	Italy	2010	Power Generation
Ravenna CCS Hub	Commercial CCS Facility	Early Development	Italy	2027	CO ₂ Transport and Storage
COURSE 50 - CO ₂ Ultimate Reduction in Steelmaking Process by Innovative Technology for Cool Earth 50	Pilot and Demonstration CCS Facility	Operational	Japan	2008	Iron and Steel Production
EAGLE	Pilot and Demonstration CCS Facility	Completed	Japan	2002	Power Generation
Kashiwazaki Clean Hydrogen/Ammonia Project	Pilot and Demonstration CCS Facility	In Construction	Japan	2024	Hydrogen Production
Mikawa Post Combustion Capture Demonstration Plant	Pilot and Demonstration CCS Facility	Operational	Japan	2020	Power Generation
Nagaoka CO ₂ Storage Project	Pilot and Demonstration CCS Facility	Completed	Japan	2003	Natural Gas Processing

DOI: 10.4236/ajcc.2024.132007

American Journal of Climate Change

Osaki CoolGen Project	Pilot and Demonstration CCS Facility	In Construction	Japan	2020	Power Generation
Taiheiyo Cement Corporation	Pilot and Demonstration CCS Facility	Operational	Japan	2021	Cement Production
Tomakomai CCS Demonstration Project	Pilot and Demonstration CCS Facility	Operational	Japan	2016	Hydrogen Production
Kasawari	Commercial CCS Facility	In Construction	Malaysia	2025	Natural Gas Processing
Lang Lebah CCS	Commercial CCS Facility	Advanced Development	Malaysia	2026	Natural Gas Processing
Air Liquide Refinery Rotterdam CCS	Commercial CCS Facility	Advanced Development	Netherlan ds	2024	Hydrogen Production
Air Products Refinery Rotterdam CCS	Commercial CCS Facility	Advanced Development	Netherlan ds	2024	Hydrogen Production
Buggenum Carbon Capture (CO ₂ Catch-up) Pilot Project	Pilot and Demonstration CCS Facility	Completed	Netherlan ds	2011	Power Generation
Delta Corridor Pipeline Network	Commercial CCS Facility	Early Development	Netherlan ds	2026	CO ₂ Transport and Storage
ExxonMobil Benelux Refinery CCS	Commercial CCS Facility	Advanced Development	Netherlan ds	2024	Hydrogen Production
Hydrogen 2 Magnum (H2M)	Commercial CCS Facility	Early Development	Netherlan ds	2024	Power Generation
K12-B CO ₂ Injection Project	Pilot and Demonstration CCS Facility	Completed	Netherlan ds	2004	Natural Gas Processing
L10 Carbon Capture and Storage	Commercial CCS Facility	Early Development	Netherlan ds	2026	Hydrogen Production
Porthos - Compressor Station	Commercial CCS Facility	Advanced Development	Netherlan ds	2024	CO ₂ Transport and Storage
Porthos - Offshore Pipeline	Commercial CCS Facility	Advanced Development	Netherlan ds	2024	CO ₂ Transport and Storage
Porthos - Onshore Pipeline	Commercial CCS Facility	Advanced Development	Netherlan ds	2024	CO ₂ Transport and Storage
Porthos Storage	Commercial CCS Facility	Advanced Development	Netherlan ds	2024	CO ₂ Transport and Storage
Shell Energy and Chemicals Park Rotterdam	Commercial CCS Facility	In Construction	Netherlan ds	2024	Bioenergy
Yara Sluiskil	Commercial CCS Facility	Early Development	Netherlan ds	2025	Fertiliser Production
Zeeland Refinery Azur	Commercial CCS Facility	Early Development	Netherlan ds	2026	Hydrogen Production
Project Pouakai Hydrogen Production with CCS	Commercial CCS Facility	Early Development	New Zealand	2024	Hydrogen Production

001111404					
Barents Blue	Commercial CCS Facility	Early Development	Norway	2025	Fertiliser Production
Borg CO ₂	Commercial CCS Facility	Early Development	Norway		CO ₂ Transport and Storage
СЕМСАР	Pilot and Demonstration CCS Facility	Completed	Norway	2015	Cement Production
CO ₂ Capture Test Facility at Norcem Brevik	Pilot and Demonstration CCS Facility	Completed	Norway	2013	Cement Production
Equinor Smeaheia (Norway)	Commercial CCS Facility	Early Development	Norway	2028	CO ₂ Storage
Fortum Oslo Varme - Shipping Route	Commercial CCS Facility	Early Development	Norway	2025	Waste Incineration
Hafslund Oslo Celsio	Commercial CCS Facility	In Construction	Norway	2024	Waste Incineration
Hafslund Oslo Celsio- Truck Route	Commercial CCS Facility	Advanced Development	Norway	2025	Waste Incineration
Norcem Brevik - Cement Plant	Commercial CCS Facility	In Construction	Norway	2024	Cement Production
Norcem Brevik - Shipping Route	Commercial CCS Facility	In Construction	Norway	2024	Cement Production
Northern Lights - Pipeline	Commercial CCS Facility	Early Development	Norway	2024	CO ₂ Transport and Storage
Northern Lights - Storage	Commercial CCS Facility	In Construction	Norway	2024	CO ₂ Transport and Storage
Polaris Carbon Storage	Commercial CCS Facility	Advanced Development	Norway	2024	Hydrogen Production
Sleipner CCS Project	Commercial CCS Facility	Operational	Norway	1996	Natural Gas Processing
Snohvit CO ₂ Storage	Commercial CCS Facility	Operational	Norway	2008	Natural Gas Processing
Technology Centre Mongstad (TCM)	Pilot and Demonstration CCS Facility	Operational	Norway	2012	Oil Refining
Project Hajar	Commercial CCS Facility	In Construction	Oman	2024	Direct Air Capture
Papua LNG CCS	Commercial CCS Facility	Early Development	Papua New Guinea	2027	Natural Gas Processing
GO4ECOPLANET	Commercial CCS Facility	Early Development	Poland	2027	Cement Production
North Field East Project (NFE) CCS	Commercial CCS Facility	In Construction	Qatar	2025	Natural Gas Processing
Qatar LNG CCS	Commercial CCS Facility	Operational	Qatar	2019	Natural Gas Processing
Novatek Yamal LNG CCS	Commercial CCS Facility	Early Development	Russia	2027	Natural Gas Processing
Uthmaniyah CO ₂ -EOR Demonstration	Commercial CCS Facility	Operational	Saudi Arabia	2015	Natural Gas Processing
Pilot Carbon Storage Project (PCSP) - Zululand Basin, South Africa	Pilot and Demonstration CCS Facility	Advanced Development	South Africa	2020	Under Evaluation

Continucu					
Boryeong - KoSol Process for CO_2 Capture (KPCC) Test	Pilot and Demonstration CCS Facility	Completed	South Korea	2010	Power Generation
Hadong - Dry-sorbent CO ₂ Capture System Test	Pilot and Demonstration CCS Facility	Completed	South Korea	2014	Power Generation
Korea-CCS 1 & 2	Commercial CCS Facility	Early Development	South Korea	2025	Power Generation
CIUDEN: CO ₂ Capture & Transport Technology Development Plant	Pilot and Demonstration CCS Facility	Completed	Spain	2012	Power Generation
CIUDEN: CO ₂ Storage Technology Development Plant	Pilot and Demonstration CCS Facility	Operational	Spain	2015	Research and Development
ELCOGAS Pre-combustion Carbon Capture Pilot Project: Puertollano	Pilot and Demonstration CCS Facility	Completed	Spain	2010	Power Generation
La Pereda Calcium Looping Pilot Plant	Pilot and Demonstration CCS Facility	Completed	Spain	2012	Power Generation
Cementa CCS (Slite Cement plant)	Commercial CCS Facility	Early Development	Sweden	2030	Cement Production
Cinfracap - Pipeline	Commercial CCS Facility	Early Development	Sweden	2026	CO ₂ Transport and Storage
Cinfracap - Shipping Route	Commercial CCS Facility	Early Development	Sweden	2026	CO ₂ Transport and Storage
Karlshamn Field Pilot	Pilot and Demonstration CCS Facility	Completed	Sweden	2009	Power Generation
Preem Refinery CCS	Commercial CCS Facility	Early Development	Sweden	2025	Hydrogen Production
STEPWISE Pilot of SEWGS Technology at Swerea/Mefos	Pilot and Demonstration CCS Facility	Operational	Sweden	2017	Iron and Steel Production
Stockholm Exergi BECCS	Commercial CCS Facility	Advanced Development	Sweden	2027	Bioenergy
Stockholm Exergi BECCS - Shipping Route	Commercial CCS Facility	Advanced Development	Sweden	2027	Bioenergy
PTTEP Arthit CCS	Commercial CCS Facility	Advanced Development	Thailand	TBC	Natural Gas Processing
Bayu-Undan CCS	Commercial CCS Facility	Advanced Development	Timor- Leste	2027	Natural Gas Processing
Abu Dhabi CCS (Phase 1 being Emirates Steel Industries)	Commercial CCS Facility	Operational	United Arab Emirates	2016	Iron and Steel Production
Abu Dhabi CCS Phase 2: Natural gas processing plant	Commercial CCS Facility	Advanced Development	United Arab Emirates	2025	Natural Gas Processing
Ghasha Concession Fields	Commercial CCS Facility	Advanced Development	United Arab Emirates	2025	Natural Gas Processing

	Dil . 15	<u> </u>	** . *		
Aberthaw Pilot Carbon Capture Facility	Pilot and Demonstration CCS Facility	Completed	United Kingdom	2013	Power Generation
Acorn	Commercial CCS Facility	Early Development	United Kingdom	2024	Hydrogen Production
Acorn (Minimum Viable CCS Development)	Pilot and Demonstration CCS Facility	Advanced Development	United Kingdom	2025	CO ₂ Transport and Storage
Acorn CO ₂ Pipeline	Commercial CCS Facility	Early Development	United Kingdom	2026	CO ₂ Transport and Storage
Acorn Direct Air Capture Facility	Commercial CCS Facility	Early Development	United Kingdom	2026	Hydrogen Production
Acorn Hydrogen	Commercial CCS Facility	Early Development	United Kingdom	2025	Hydrogen Production
Acorn Storage Site	Commercial CCS Facility	Advanced Development	United Kingdom	2025	CO ₂ Transport and Storage
Buxton Lime Net Zero	Commercial CCS Facility	Early Development	United Kingdom	2024	Lime Production
Caledonia Clean Energy	Commercial CCS Facility	Early Development	United Kingdom	2025	Power Generation
CF Fertilisers Billingham Ammonia CCS	Commercial CCS Facility	Early Development	United Kingdom	2023	Fertiliser Production
Damhead Pipeline (Medway Hub)	Commercial CCS Facility	Early Development	United Kingdom		Power Generation
Damhead Power Station (Medway)	Commercial CCS Facility	Early Development	United Kingdom		Power Generation
Drax BECCS Project	Commercial CCS Facility	Early Development	United Kingdom	2027	Power Generation
Drax bioenergy carbon capture pilot plant	Pilot and Demonstration CCS Facility	Operational	United Kingdom	2019	Power Generation
East Coast Cluster Humber Pipeline	Commercial CCS Facility	Advanced Development	United Kingdom	2025	CO ₂ Transport and Storage
East Coast Cluster Teesside Pipeline	Commercial CCS Facility	Advanced Development	United Kingdom	2025	CO ₂ Transport and Storage
Endurance Storage Site	Commercial CCS Facility	Advanced Development	United Kingdom	2025	CO ₂ Transport and Storage
Esmond and Forbes Carbon Storage (Medway Hub)	Commercial CCS Facility	Early Development	United Kingdom		Power Generation
Ferrybridge Carbon Capture Pilot (CCPilot100+)	Pilot and Demonstration CCS Facility	Completed	United Kingdom	2011	Power Generation
Grain Power Station (Medway)	Commercial CCS Facility	Early Development	United Kingdom		Power Generation
H2NorthEast	Commercial CCS Facility	Early Development	United Kingdom	2027	Hydrogen Production

Continueu					
Hydrogen to Humber Saltend	Commercial CCS Facility	Early Development	United Kingdom	2025	Hydrogen Production
HyNet Hydrogen Production Project (HPP)	Commercial CCS Facility	Early Development	: United Kingdom	2025	Hydrogen Production
HyNet North West	Commercial CCS Facility	Early Development	United Kingdom	2026	Hydrogen Production
HyNet North West - Hanson Cement CCS	Commercial CCS Facility	Early Development	United Kingdom	2026	Cement Production
HyNet Pipeline	Commercial CCS Facility	Early Development	United Kingdom	2025	CO ₂ Transport and Storage
Hynet Storage Site	Commercial CCS Facility	Early Development	United Kingdom	2025	CO ₂ Transport and Storage
Isle of Grain LNG Terminal (Medway Hub)	Commercial CCS Facility	Early Development	United Kingdom	2026	Power Generation
Keady 3 CCS Power Station	Commercial CCS Facility	Early Development	United Kingdom	2027	Power Generation
Killingholme Power Station	Commercial CCS Facility	Early Development	United Kingdom	2027	Hydrogen Production
Medway Hub Shipping	Commercial CCS Facility	Early Development	: United Kingdom		Power Generation
Medway Power Station	Commercial CCS Facility	Early Development	: United Kingdom		Power Generation
NET Power Plant (East Coast Cluster)	Commercial CCS Facility	Early Development	: United Kingdom	2025	Power Generation
Net Zero Teesside - CCGT Facility	Commercial CCS Facility	Early Development	: United Kingdom	2025	Power Generation
Net Zero Teesside – BP H2Teesside	Commercial CCS Facility	Early Development	United Kingdom	2027	Hydrogen Production
Northern Gas Network H21 North of England	Commercial CCS Facility	Early Development	United Kingdom	2026	Hydrogen Production
Pembroke Power Station	Commercial CCS Facility	Early Development	United Kingdom	2030	Power Generation
Peterhead CCS Power Station	Commercial CCS Facility	Advanced Development	United Kingdom	2026	Power Generation
Phillips 66 Humber Refinery CCS	Commercial CCS Facility	Advanced Development	United Kingdom	2028	Hydrogen Production
Prax Lindsey Carbon Capture Project (PLCCP)	Commercial CCS Facility	Advanced Development	United Kingdom	2028	Oil Refining
Redcar Energy Centre	Commercial CCS Facility	Early Development	United Kingdom	2025	Power Generation
Renfrew Oxy-fuel (Oxycoal 2) Project	Pilot and Demonstration CCS Facility	Completed	United Kingdom	2007	Power Generation

Continued					
Suez Waste to Energy CCS (East Coast Cluster)	t Commercial CCS Facility	Early Development	United Kingdom	2027	Waste Incineration
Tees Valley Energy Recovery Facility Project (TVERF)	Commercial CCS Facility	Early Development	United Kingdom	2026	Bioenergy
UKCCSRC Pilot-scale Advanced Capture Technology (PACT)	Pilot and Demonstration CCS Facility	Completed	United Kingdom	2012	Power Generation
Vertex Hydrogen	Commercial CCS Facility	Early Development	United Kingdom	2025	Oil Refining
Viking CCS Pipeline	Commercial CCS Facility	Advanced Development	United Kingdom	2027	CO ₂ Transport and Storage
Viking CCS Storage Site	Commercial CCS Facility	Advanced Development	United Kingdom	2027	CO ₂ Transport and Storage
Viridor Runcorn Carbon Capture	Commercial CCS Facility	Early Development	United Kingdom		Waste Incineration
VPI Immingham Power Plant CCS	Commercial CCS Facility	Advanced Development	United Kingdom	2027	Power Generation
Whitetail Clean Energy	Commercial CCS Facility	Early Development	United Kingdom		Power Generation
ADM Illinois Industrial	Commercial CCS Facility	Operational	USA	2017	Ethanol Production
ArcelorMittal Texas (formerly voestalpine Texas)	Commercial CCS Facility	Early Development	USA		Iron and Steel Production
Arkalon CO2 Compression Facility	Commercial CCS Facility	Operational	USA	2009	Ethanol Production
Ascension Clean Energy (Louisiana)	Commercial CCS Facility	Early Development	USA	2027	Hydrogen Production
Atkinson Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
Bayou Bend CCS	Commercial CCS Facility	Advanced Development	USA	2025	CO ₂ Transport and Storage
Baytown Low Carbon Hydrogen	Commercial CCS Facility	Advanced Development	USA	2027	Hydrogen Production
Bell Creek - Incidental CO_2 Storage Associated with a Commercial EOR Project	Pilot and Demonstration CCS Facility	Operational	USA	2010	Natural Gas Processing
Bonanza BioEnergy CCUS EOR	Commercial CCS Facility	Operational	USA	2012	Ethanol Production
Borger CO ₂ Compression Facility	Commercial CCS Facility	Completed	USA	2001	Fertiliser Production
Bushmills Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
Cal Capture	Commercial CCS Facility	Advanced Development	USA	2027-28	Power Generation
		-			

Continued Cane Run CCS	Commercial CCC Eastlite	Farly Davelorm			Power Generation
	Commercial CCS Facility			2025	
Carbon TerraVault I Project	Commercial CCS Facility	Early Development	USA	2025	CO ₂ Transport and Storage
CarbonFree Skymine	Utilisation Facilities	Operational	USA	2015	Cement Production
Casselton Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
Central City Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
Central Louisiana Regional Carbon Storage (CENLA) Hub	Commercial CCS Facility	In Construction	USA	2027	CO ₂ Transport and Storage
Century Plant	Commercial CCS Facility	Operational	USA	2010	Natural Gas Processing
Clean Energy Systems BiCRS Plant - Madera County	Commercial CCS Facility	Early Development	USA	2027	Power Generation
Clean Energy Systems Carbon Negative Energy Plant - Central Valley	Commercial CCS Facility	Early Development	USA	2025	Power Generation
CO ₂ Sequestration Field Test: Deep Unminable Lignite Seam	Pilot and Demonstration CCS Facility	Completed	USA	2009	Research and Development
Coastal Bend CCS	Commercial CCS Facility	Early Development	USA	2026	CO ₂ Transport and Storage
Coffeyville Gasification Plant	Commercial CCS Facility	Operational	USA	2013	Fertiliser Production
Core Energy CO ₂ -EOR	Commercial CCS Facility	Operational	USA	2003	Natural Gas Processing
Coyote Clean Power Project	Commercial CCS Facility	Advanced Development	USA	2025	Power Generation
CPV Shay Energy Center (CPV West Virginia Natural Gas Power Station CCS)	Commercial CCS Facility	Early Development	USA		Power Generation
Cranfield Project	Pilot and Demonstration CCS Facility	Operational	USA	2009	Research and Development
Cyclus Power Generation	Commercial CCS Facility	Early Development	USA		Bioenergy
Dave Johnston Plant Carbon Capture	Commercial CCS Facility	Early Development	USA	2025	Power Generation
Deer Park Energy Centre CCS Project	Commercial CCS Facility	Advanced Development	USA		Power Generation
Diamond Vault CCS	Commercial CCS Facility	Early Development	USA	2028	Power Generation
Donaldsonville	Commercial CCS Facility	In Construction	USA	2025	Ammonia Production
Dry Fork Integrated Commercial Carbon Capture and Storage (CCS)	Commercial CCS Facility	Early Development	USA	2025	Power Generation
E.W. Brown 0.7 MWe Pilot Carbon Capture Unit	Pilot and Demonstration CCS Facility	Operational	USA	2014	Power Generation

commuta					
El Dorado CCS Project	Commercial CCS Facility	Early Development	USA	2026	Fertiliser Production
Enid Fertilizer	Commercial CCS Facility	Operational	USA	1982	Fertiliser Production
Fairmont Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
Farley DAC Project	Commercial CCS Facility	Advanced Development	USA		Direct Air Capture
Farnsworth Unit EOR Field Project - Development Phase	Pilot and Demonstration CCS Facility	Operational	USA	2013	Ethanol Production
Freeport LNG CCS project	Commercial CCS Facility	Cancelled	USA	2024	Natural Gas Processing
Frio Brine Pilot	Pilot and Demonstration CCS Facility	Completed	USA	2004	Research and Development
Fuel Cell Carbon Capture Pilot Plant	Pilot and Demonstration CCS Facility	Operational	USA	2016	Power Generation
G2 Net-Zero LNG	Commercial CCS Facility	Early Development	USA		Natural Gas Processing
Galva Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
Gerald Gentleman Station Carbon Capture	Commercial CCS Facility	Advanced Development	USA	2025	Power Generation
Goldfield Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
Grand Forks Blue Ammonia Capture plant	Commercial CCS Facility	Early Development	USA		Natural Gas Processing
Grand Junction Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
Granite Falls Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
Great Plains Synfuels Plant and Weyburn-Midale	Commercial CCS Facility	Operational	USA	2000	Hydrogen Production
Hackberry Carbon Sequestration Project (Sempra)	Commercial CCS Facility	Early Development	USA		CO ₂ Transport and Storage
Haynesville Gas Processing (CENLA Hub)	Commercial CCS Facility	In Construction	USA	2027	Natural Gas Processing
Heartland Greenway Storage	Commercial CCS Facility	Early Development	USA	2025	Ethanol Production
Heartland Hydrogen Hub	Commercial CCS Facility	Advanced Development	USA		Power Generation
HeidelbergCement CCS	Commercial CCS Facility	Advanced Development	USA	2023	Cement Production
Heron Lake Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
Huron Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production

Continued					
Illinois Allam-Fetvedt cycle power plant	Commercial CCS Facility	Early Development	USA	2025	Power Generation
Illinois Basin Decatur Project (CO ₂ Injection Completed, Monitoring Ongoing)	Pilot and Demonstration CCS Facility	Completed	USA	2011	Ethanol Production
James M. Barry Electric Generating Plant CCS Project	Commercial CCS Facility	Advanced Development	USA	2030	Power Generation
Kevin Dome Carbon Storage Project - Development Phase	Pilot and Demonstration CCS Facility	Completed	USA	2013	Research and Development
LafargeHolcim Cement Carbon capture	Commercial CCS Facility	Early Development	USA	2025	Cement Production
LafargeHolcim Ste. Genevieve Cement Plant CCS	Commercial CCS Facility	Early Development	USA		Cement Production
Lake Charles Methanol	Commercial CCS Facility	Advanced Development	USA	2025	Chemical Production
Lamberton Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
Lawler Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
Linde hydrogen plant for OCI fertilizer blue ammonia Beaumont	Commercial CCS Facility	In Construction	USA	2025	Hydrogen Production
Lone Cypress Hydrogen Project	Commercial CCS Facility	Early Development	USA	2025	Hydrogen Production
Lost Cabin Gas Plant	Commercial CCS Facility	Operational	USA	2013	Natural Gas Processing
Louisiana Clean Energy Complex	Commercial CCS Facility	In Construction	USA	2025	Hydrogen Production
Marcus Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
Marshall County ECBM Project	Pilot and Demonstration CCS Facility	Completed	USA	2009	Research and Development
Mason City Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
Mendota BECCS	Commercial CCS Facility	Early Development	USA	2025	Bioenergy
Merrill Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
MGSC Validation Phase (Phase II): CO ₂ Storage and Enhanced Oil Recovery: Bald Unit Oil Field Test Site		Completed	USA	2009	Research and Development
MGSC Validation Phase (Phase II): CO ₂ Storage and Enhanced Oil Recovery: Sugar Creek Oil Field Test Site		Completed	USA	2009	Research and Development

Continued					
Michigan Basin (Phase II) Geologic CO_2 Sequestration Field Test	Pilot and Demonstration CCS Facility	Completed	USA	2008	Natural Gas Processing
Michigan Basin Large-Scale Injection Test	Pilot and Demonstration CCS Facility	Operational	USA	2013	Natural Gas Processing
Midwest AgEnergy Blue Flint ethanol CCS	Commercial CCS Facility	Early Development	USA	2022	Ethanol Production
Mina Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
Mountaineer Validation Facility	Pilot and Demonstration CCS Facility	Completed	USA	2009	Power Generation
Mt. Simon CCS Hub (Iowa Illinois Carbon Pipeline)	Commercial CCS Facility	Early Development	USA		CO ₂ Transport and Storage
Mustang Station of Golden Spread Electric Cooperative Carbon Capture	Commercial CCS Facility	Advanced Development	USA		Power Generation
National Carbon Capture Center (NCCC)	Pilot and Demonstration CCS Facility	Operational	USA	2011	Research and Development
NET Power Clean Energy Large-scale Pilot Plant	Pilot and Demonstration CCS Facility	Operational	USA	2018	Power Generation
Nevada Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
Next Decade Rio Grande LNG CCS	Commercial CCS Facility	Early Development	USA	2025	Natural Gas Processing
Norfolk Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
Northern Delaware Basin CCS	Commercial CCS Facility	Advanced Development	USA	2023	Natural Gas Processing
NuDACCS - Nuclear Direct Air CCS Project	Pilot and Demonstration CCS Facility	Advanced Development	USA		Direct Air Capture
OCI Fertiliser	Commercial CCS Facility	In Construction	USA	2025	Fertiliser Production
One Earth Energy facility Carbon Capture	Commercial CCS Facility	Advanced Development	USA	2025	Ethanol Production
Onida Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
Otter Tail Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
Oxy-combustion of Heavy Liquid Fuels - 15 MW Pilot Test	Pilot and Demonstration CCS Facility	Completed	USA	2012	Power Generation
PCS Nitrogen	Commercial CCS Facility	Operational	USA	2013	Fertiliser Production
Petra Nova Carbon Capture Project	Commercial CCS Facility	Operational	USA	2017	Power Generation

Plainview Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
Plant Barry & Citronelle Integrated Project	Pilot and Demonstration CCS Facility	Completed	USA	2012	Power Generation
Plant Daniel Carbon Capture	Commercial CCS Facility	Advanced Development	USA		Power Generation
Pleasant Prairie Power Plant Field Pilot	Pilot and Demonstration CCS Facility	Completed	USA	2008	Power Generation
Polk Power Station CCS	Commercial CCS Facility	Advanced Development	USA	Under Evaluation	Power Generation
Prairie State Generating Station Carbon Capture	Commercial CCS Facility	Advanced Development	USA	2025	Power Generation
Project Interseqt - Hereford Ethanol Plant	Commercial CCS Facility	Early Development	USA	2023	Ethanol Production
Project Interseqt - Plainview Ethanol Plant	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
Project Tundra	Commercial CCS Facility	Advanced Development	USA	2026	Power Generation
Red Trail Energy CCS	Commercial CCS Facility	Operational	USA	2022	Ethanol Production
Redfield Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
River Bend CCS Louisiana Pipeline	Commercial CCS Facility	Early Development	USA	2026	CO ₂ Transport and Storage
San Juan Basin ECBM Storage Test	Pilot and Demonstration CCS Facility	Completed	USA	2008	Research and Development
Shenandoah Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
Shute Creek Gas Processing Plant	Commercial CCS Facility	Operational	USA	1986	Natural Gas Processing
Sioux Center Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
Steamboat Rock Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
STRATOS (1PointFive Direct Air Capture)	Commercial CCS Facility	In Construction	USA	2024	Direct Air Capture
Summit Carbon Solutions - Storage	Commercial CCS Facility	Advanced Development	USA	2024	CO ₂ Transport and Storage
Summit Pipeline	Commercial CCS Facility	Advanced Development	USA	2024	Bioenergy
Superior Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production

Continued					
Terrell Natural Gas Processing Plant (formerly Val Verde Natural Gas Plants)	Commercial CCS Facility	Operational	USA	1972	Natural Gas Processing
The Illinois Clean Fuels Project	Commercial CCS Facility	Early Development	USA	2025	Chemical Production
Valero Port Arthur Refinery	Commercial CCS Facility	Operational	USA	2013	Hydrogen Production
Velocys' Bayou Fuels Negative Emission Project	Commercial CCS Facility	Early Development	USA	2026	Chemical Production
Wabash CO ₂ Sequestration	Commercial CCS Facility	Advanced Development	USA	2022	Fertiliser Production
Watertown Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
Wentworth Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
West Pearl Queen CO ₂ Sequestration Pilot Test and Modelling Project	Pilot and Demonstration CCS Facility	Completed	USA	2002	Research and Development
Wood River Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production
Wyoming Integrated Test Center (ITC)	Pilot and Demonstration CCS Facility	Operational	USA	2018	Power Generation
York Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production