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Abstract 
Antibiotic resistant β-lactamases are diverse and complex enzymes produced 
by most of the Gram-negative bacteria that are mediated by number of plas-
mids. The impact of these enzymes has posed a major threat to the health 
sectors and has challenged the available treatment options for both commu-
nity and hospital acquired infections. These include the uncomplicated most 
severe life-threatening infections. Moreover, with resistance to the cepha-
losporin drugs these Multidrug Resistance strains exhibit co-resistance pat-
terns with different class of antibiotics which is a cause of concern that leads 
to narrow the limited treatment options. It is alarming situation since there is 
a steep rise in MDR—Beta lactamase pathogens mainly in Escherichia coli, 
Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aerugi-
nosa. Currently, the clinical detection of Extended Spectrum of β-Lactamases 
(ESβL) and MβL producing pathogens are carried out by antibiotic sensitivity 
test on the guidelines of Clinical and Laboratory Standards Institute (formerly 
the National Committee for Clinical Laboratory Standards) since, the other 
methods being too expensive. The choice of antimicrobial treatment for in-
fections should rely on the clinical data and the tests (AST) in asymptomatic 
and mild cases. However, this does not imply for critical infections. The last 
resorts of treatment for ESβL pathogens are carbapenem and nevertheless, re-
sistances have also been reported for the same. With increasing resistance 
rate to the antibiotics, it is very essential to follow the guidelines for detection, 
implementation of antibiotic rotation to reduce these pathogens, followed by 
the efficient infection control practices and strategies to avoid such outbreaks. 
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1. Introduction 

Infectious diseases are the potential transmission of a pathogenic agent from one 
species to another and these pathogens are contagious, which are also known as 
communicable diseases [1]. These pathogens have shown high resistance to the 
antibiotics, which has become a worldwide problem with the consequences on 
the infectious disease’s treatment. Usually antibiotics are given empirically be-
fore the laboratory results of culture are available to ensure appropriate therapy. 
There is an alarming increase of antibiotic resistance in bacteria that cause either 
community infections or hospital acquired infections. Many of these multidrug 
pathogens are of particular interest such as, Escherichia coli, Klebsiella pneumoniae, 
Acinetobacter baumannii, methicillin-resistant Staphylococcus aureus, penicil-
lin-resistant Streptococcus pneumoniae, vancomycin-resistant Enterococcus, and 
extensively drugs resistant Mycobacterium tuberculosis [2].  

According to WHO (2018) reports, 750,000 deaths every year may shoot high 
due to bacteria exhibiting resistance if proper action is not taken. Hence, antibi-
otic resistance has become one of the greatest threats to global health and sur-
vival statistics, which may be linked to global problem. Dispersion of the suc-
cessful clones of Multidrug Resistant (MDR) bacteria is found to be common 
with the importance of plasmids carrying MDR markers in Shigella sps., and E. 
coli first described in the seminal work in Japan over 57 years ago [3]. Leplae 
and his coworkers (2006) showed the mechanism of transmission of mosaic 
plasmids from one bacterium to other to give rise to the MDR phenotype [4].  

β-lactam antibiotics are the most common drugs used for the treatment of 
Gram-negative bacteria and their continuous misuse has led to the resistance 
worldwide [5]. Bacterial strains have induced continuous production and muta-
tion of β-lactamases, due to the continuous exposure Beta lactam drugs, ex-
panding their activity even against the newly developed β-lactam antibiotics. In-
cidence and treatment of ESβL-producing MDR strains is a matter of scientific 
concern for the difficulties to resolve due to various reasons, difficulty in detect-
ing ESβL production and inconsistencies in reporting [6]. Recently, a significant 
increase in the incidents of ESβL-related infections has been observed through-
out the globe [7] [8].  

Microorganisms that produce beta-lactamases can break and enable the 
beta-lactam molecules inactive thus, conferring the resistance to the pathogens. 
More than 500 beta-lactamases have been reported so far  
(http://www.lahey.org/studies). These beta-lactamases are widespread across the 
world that are mostly reported in Gram negative organisms with common resis-
tance mechanism mediated by plasmid or expressed chromosomally, specifically 
the CTX-M-15 family. Chromosomally located inducible expression is also com-
mon, while plasmid mediated enzymes are generally expressed constitutively in 
these Gram-negative organisms [9] [10]. 

ESβL enzymes are commonly found in the members of Enterobacteriaceae 
family and are of over 120 types. ESβLs are generally acquired by horizontal gene 
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transfer and confer resistance to oxyimino-cephalosporins, some being mutant 
derivatives of established plasmid-mediated β-lactamases (TEM/SHV) or mobi-
lized from environmental bacteria (CTX-M) and these enzymes hydrolyze peni-
cillin, broad-spectrum cephalosporins and monobactams. However, they do not 
affect cephamycin and carbapenems, and they are inhibited by clavulanic acid 
[11]. ESβL has generally been defined as transmissible β-lactamases that can be 
inhibited by clavulanic acid, tazobactam or sulbactam, and which are encoded by 
genes that can be exchanged between bacteria [11]. Clavulanic acid is used in 
combination with amoxicillin and ticarcillin, sulbactam sodium is used in com-
bination with ampicillin and cefoperazone, and tazobactam in combination with 
piperacillin [12]. 

Emergence of Metallo-β-Lactamases (MβLs) with activity against carbape-
nems (e.g. the VIM and IMP families of enzymes) has compromised the clinical 
utility of this class of antibiotics [13] [14]. Resistance to carbapenems may also 
be induced as a result of increased production of either AmpC or ESβL, coupled 
with a decrease in porin production or increased efflux [14] [15]. In India, the 
high rates of ESβL producers have recently increased the usage of carbapenem 
antibiotics, which may provide a selective pressure for the spread of strains pro-
ducing carbapenems in the near future [16] [17].  

2. Mechanism of Antibiotic Resistance by Beta-Lactamases 

In the year 1940, β-lactam antibiotics came into clinical use and it has been ob-
served that many strains of bacteria have emerged resistant to these drugs [18]. 
Resistance to these agents is in both Gram-positive and Gram-negative bacterial 
pathogens and occurs as a result of drug inactivation by β-lactamases, target site 
(i.e. PBP) alterations, diminished permeability and efflux of drugs [19]. The pri-
mary mechanism of the β-lactam resistance is by enzymatic cleavage of the β-lactam 
ring by β-lactamases produced by microbes [18]. 

In 1983, SHV-2, a plasmid borne ESβL produced by K. ozaenae was discov-
ered in Germany. Other ESβL types, TEM and SHV were predominant until 
1990. Later on, prevalence of SHV, TEM and a new CTX-M family of ESβL 
coproduced mainly by E. coli had emerged. CTX-M has become the predomi-
nant and CTX-M-producing E. coli has spread globally and has been involved in 
nosocomial outbreaks and community acquired infections [20]. In 1990 the first 
blaCTX-M was detected in clinically isolated E. coli in Germany [21] then on 
CTX-M-producing Enterobacteriaceae has been detected globally [22] [23].  

Beta-lactamases producing bacteria hydrolyse beta-lactam drugs and render 
them inactive before it gets to the PBP (Penicillin binding proteins) target. The 
structural similarities with PBP makes the lactamases bind acylate and hydrolyse 
using water molecules and inactivate the Beta lactam drugs. These enzymes con-
tain either serine residue (Ambler classes A, C, D) or metal ion Zn2+ (Ambler 
class B) in their active site, that attack beta-lactam ring and break the amide 
bond in the ring Figure 1 [24] [25] [26].  
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Figure 1. Interaction between antibiotic and beta-lactamases. 

3. Structure of Beta Lactamases 
3.1. Primary Structure/Molecular Structure 

Largest group of class A-lactamases was characterized on the basis of 26 strictly 
conserved residues and molecular comparisons helped standard numbering scheme 
as indicated by the label “ABL” (for class A-lactamase) [27]. Further updated list 
was reported for the residues that are involved in the catalytic mechanism and/ 
or in substrate binding by Matange et al. [28] [29].  

It has been reported that, 268 sequences aligned for representative of class 
A-lactamases from subclasses A1 and A2, 100% was confirmed and highly con-
served (between 90% and 99%) residues, such as Gly45, Ser70, Lys73, Leu81, 
Pro107, Ser130, Asp131, Asn132, Ala134, Gly144, Gly156, Glu166, Lys/ Arg234, 
Thr/Ser235, and Gly236, differentiated between subclasses. The two subclasses 
were distinguished as A1 [28] [29] [30] and A2 (discovered more recently) as 
subgroups due to their different conserved residues. PER-1 and PER-2, an 
alignment of subclass A2-lactamase sequences revealed the presence of several 
insertions [31] [32]. An examination of the overall amino acid composition of 
lactamases revealed that representative enzymes from subclass A2 had small 
numbers of arginine residues (8.2 3.9 residues on average) and large numbers of 
lysine residues (29.0 5.5 residues).  

3.2. Structure-Function Relationships of Class A Enzymes 

A great diversity of amino acid sequences has been noted between the different 
clusters of class A β-lactamases and further, X-ray crystallography has been able 
to determine the tertiary structure of these protein molecules and helped to ex-
plore the two subclasses of A1 and A2.  
(http://www.rcsb.org/pdb/home/home.do). Structures of Beta lactamases such 
as, TEM types, SHV types, CTX-M types, KPC-2, L2, NMC-A, OXY-1, PenA, 
PenI, PSE-4, SED-1, SME-1, Toho-1, and Francisella tularensis that are produced 
by Gram negative organisms have been determined with the exception of PER-1 
and PER-2, belong to subclass A1 [31] [32]. 

Overall structures of these are found to be same with the structural features 
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surrounding the active sites with two subdomains generating a cleft as in Figure 
2 [28] [33] [34]. Of the two sub domains, the alpha subdomain is largely 
α-helical in contrast, to the alpha/beta subdomain that consists of a five-stranded 
β-sheet flanked by α-helices. Active sites are present on the cleft of the two sub-
domains and contain catalytic Ser70 residue and Glu166, Asn170, and Ser70 that 
is deacylated with water primed by interactions. 

 

 
Figure 2. Secondary structures of the class A β-lactamase of Mycobacterium tu-
berculosis, with the spatial arrangements of the three catalytic center defining 
amino acid groupings, the α domain (left), and an α/β domain (right) [35]. The 
helices are represented as H1 to h11, and the strands are represented as S1 to S5. 
The figure was created with PyMOL (Delano Scientific). 

4. Extended-Spectrum Beta-Lactamase (ESβL) 

The term was used initially to refer to TEM and SHV enzymes that have the 
ability to hydrolyze oxyimino-cephalosporins. Later on, this term has been wid-
ened to include:  
 Enzymes derived from other sources and have resistance spectra similar to 

that of TEM and SHV mutants e.g. CTX-M and VEB types.  
 Enzymes exhibit wider resistance than their parents but do not belong to 2be 

group e.g. OXA and Amp C mutants with increased activity against cefepime 
[36].  

Currently used definition for ESβL is β-lactamase that is able to render the 
bacterium resistant to the penicillin, first, second, and third-generation cepha-
losporins and aztreonam, but not cephamycins or carbapenems, by hydrolysis 
that could be inhibited by β-lactamase inhibitors of these antibiotics [11] [37] 
[38].  

4.1. Classification of Beta-Lactamases 

According to Ambler molecular classification scheme, which is based on the 
protein sequence similarity these are classified into four classes A, B, C and D. 
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This classification also is based on conserved and variable amino acid motifs of 
the proteins. Class A, C, and D include the enzymes that hydrolyze their sub-
strates by forming acyl enzymes via the active site serine, while class B (metal-
loenzymes) utilizes active site zinc to facilitate β-lactam hydrolysis [9] [39].  

Bush-Jacoby-Medeiros functional classification scheme classify these enzymes 
according to the similarity in their functional (substrates and inhibitors profile) 
characteristics. Although the molecular classification is the easiest scheme to 
group these diverse enzymes, the functional classification enables the clinicians 
and laboratory microbiologists to correlate these enzymes with their clinical 
roles [9]. Table 1 reveals the detailed classification of the β-lactamases. 

 
Table 1. Classification schemes and representatives of extended spectrum beta-lactamase enzymes. 

Ambler  
(molecular) 

Class 

Bush & Jacoby  
group (2009) 

Substrate/target 
Inhibition profile 

Member examples 
Clavulanic acid azobactam 

A 

2a Penicillins Yes No PC-1 

2b 
Penicillins, some of the 1st-generation 

cephalosporin 
Yes No TEM-1, TEM-2, SHV-1 

2be 
Extended spectrum cephalosporin, 

monobactam 
Yes No TEM-3, SHV-2, CTX-M-15, PET-1, VEB-1 

2br Penicillins No No TEM-30, SHV-10 

2ber 
Extended spectrum cephalosporin, 

monobactam 
No No TEM-50 

2c Carbenicillin Yes No PSE-1, CARB-3 

2ce Carbenicillin, cefepime Yes No RTG-4 

2e 
Extended spectrum  

beta-lactams 
Yes No CepA 

B 
2f  Changing No KPC-2, 1M1-1, SME-1 

3a Carbapenems No Yes IMP-1, VIM-1, CcrA, IND-1, NDM-1 

C 

3b Carbapenems No Yes CphA, Sfh-1 

1 Cephalosporins No No AmpC, P99, ACT 1, CMY-2, FOX-1, MIR-1 

1e Cephalosporins No Yes GC1, CMY-37 

D 

2d Cloxacillin Changeable No OXA-1, OXA-10 

2de 
Extended spectrum 

cephalosporin 
Changeable No OXA-11, OXA-15 

2df Carbapenems Variable No OXA-23, OXA-48 

 
TYPES OF ESβL: 

4.1.1. TEM 
TEM type ESβLs are derivatives of TEM-1 and TEM-2.  

TEM-1 was detected for the first time in 1965 at Greece among an E. coli iso-
late recovered from a patient named Temoneira, and hence the designation TEM 
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[40]. TEM-1 hydrolyses ampicillin at a rate higher than that of carbenicillin, ox-
acillin, and cephalothin but fail to hydrolyse the extended-spectrum cepha-
losporins. TEM-2 has the same hydrolytic activity of TEM-1 but has more active 
native promotor and a different isoelectric point (5.6 instead 5.4). The plasmid 
mediated β-lactamase TEM-3 (an ESβL member) was detected in 1987 in K. 
pneumoniae which was isolated in France. It was originally named CTX-1 due to 
its higher activity against cefotaxime [41]. There is steep rise in the TEM novel 
variants that has been reported (Figure 3) from different parts of the world that 
can be accessed at http://www.lahey.org/Studies/temtable.asp.  

 

 
Figure 3. Shows the amino acid substitutions in the different TEM variants in compari-
son with TEM-1 adapted from Bradford (2001). 

4.1.2. SHV 
SHV-type ESβL was the most frequently detected in clinical isolates [42]. This is 
referred to sulfhydryl variable because it was thought that the inhibition of the 
enzyme activity by p-chloromercuribenzoate was substrate-dependent and vari-
able according to the substrate used in the assay [43]. In 1983, a new SHV-β- 
lactamase (designated SHV-2) efficiently hydrolyzes cefotaxime and to lesser ex-
tent ceftazidime had been detected in K. ozaenae in Germany [44]. SHV-2 dif-
fers from SHV-1 by only one amino acid at the 238th position (glycine replaced 
by serine). This substitution (Gly238Ser) that resulted from a point mutation 
accounts for the activity of this enzyme against extended-spectrum cephalosporin. 
SHV-2 spread globally due to the selection pressure exerted by third- generation 
cephalosporins being detected in a wide range of Enterobacteriaceae but mainly 
in Klebsiella sps. [11] [45] [46]. The amino acid sequence compositions for 193 
different variants have been reported (Figure 4) and the data can be accessed at 
http://www.lahey.org/Studies/.  
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Figure 4. Depicts the amino acid substitutions in the different SHV variants in compari-
son with SHV-1 adapted from Bradford (2001). 

4.1.3. CTX-M 
The designation CTX refers to the potent hydrolytic activity of these enzymes 
against cefotaxime. However, some CTX-M-types hydrolyze ceftazidime and 
also cefepime with high efficiency [11] [47] [48]. The hydrolytic activity of CTX-M 
is inhibited by β-lactamase inhibitors. Tazobactam exhibits 10-fold greater in-
hibitory activity than clavulanic acid [39]. CTX-M-type β-lactamases are related 
to the chromosomal β-lactamase of Kluyvera sps. [49].  

CTX-M β-lactamases are typical ESβLs that belong to Bush’s group 2be and 
Ambler’s class A. There are at least 128 CTX-M types that have been described 
so far. bla CTX-M is a 291 amino acid encoding enzyme and the change in any 
one of them result in a new CTX-M variant [50]. By using amino-acid sequence 
relatedness, phylogeny tree of CTX-M β-lactamases has been constructed. They 
are divided into five clusters, namely CTX-M-1, CTX-M-2, CTX-M-8, CTX-M-9 
and CTX-M-25 [41]. So far, the database availability for the 172 CTX-M variants 
shows distinct (http://www.lahey.org/Studies) with distinct amino acid sequence 
and functional characteristics.  

Few members are shown below: 
CTX-M-1 cluster: CTX-M-1, -3, -10, -12, -15, -22, -23 
CTX-M-2 cluster: CTX-M-2, -4, -5, -6, -7, -20, -76, -77 
CTX-M-8 cluster: CTX-M-8, -40, -63 
CTX-M-9 cluster: CTX-M-9, -14, -15, -16, -17, -18, -19 
CTX-M-25 cluster: CTX-M-25, -26, -39, -41, -91 

4.1.4. Oxa-Beta-Lactamase 
OXA name refers to the oxacillin-hydrolysing ability of these β-lactamases. They 
hydrolyze oxacillin and cloxacillin at a higher rate than 50% that of benzylpeni-
cillin [39]. OXA-β-lactamases are mainly found in P. aeruginosa [51]. The most 
common OXA-type β-lactamase is OXA-1. It has been detected in up to 10% of 
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E. coli isolates [52]. Most OXA-type β-lactamases do not hydrolyze the extended 
spectrum cephalosporin and hence are not regarded as ESβLs. OXA-ESβLs in-
cludes, OXA-10 (weak), -11, -14, -16, -17. -19, -15, -18, -28, -31, -32, -35 and -45 
[11] [41]. Altogether, OXA type β-lactamases is explosively increasing based on 
the amino acid sequence variations and so far 498 variants have been reported 
and arranged in the database (http://www.lahey.org/Studies/other).  

4.1.5. Other ESβL-Types 
It includes PER-1 (for Pseudomonas extended resistance), PER-2, VEB-1 (for 
Vietnamese extended spectrum), VEB-2, GES (Guiana-extended spectrum) and 
SFO (Serratia fonticola) which share only 25% and 27% homology with TEM 
and SHV types. It was observed that, PER-1 with 86% amino acid homology and 
PER-2 incidence was high in Turkey and South America respectively. VEB-1 and 
TLA-1 were discovered in E. coli clinical isolates from Vietnamese patient hos-
pitalized in France and Mexico respectively [53]. PER-1, PER-2, VEB-1 and 
TLA-1 are related to Bacteroides sps. with reference to their homology to the 
chromosomal β-lactamase [53]. These novel enzymes are found infrequently and 
the details of these enzymes are reviewed elsewhere [42] [54]. 

4.2. Inhibitors for ESβL 

The agent that inhibits β-lactamase enzymes by irreversible binding to its active 
site leads to permanent inactivation. The first clinically used β-lactamase inhibi-
tor was clavulanic acid isolated from S. clavuligerus which exhibited weak an-
timicrobial activity. But, if combined with amoxicillin, it significantly increases 
the antimicrobial activity of the later. β-lactamase inhibitors are most effective 
against class-A β-lactamase including CTX-M, TEM and SHV-ESβLs [55]. 

4.3. Epidemiology of ESβLs 

ESβLs are currently a universal problem in hospitalized patients as well as com-
munity settings. Prevalence of ESβLs among clinical isolates is variable with re-
spect to different institutions, countries and continents [56]. Recent studies have 
shown a significant global increase in the ESβL rate. In North America the ESβL 
rate in Klebsiella sps., E. coli and P. mirabilis ranges from 4.2% - 44%, 3.3% - 
4.7% and 3.1% - 9.5%, respectively. In Latin America, the ESβL rate of Klebsiella 
sps., E. coli and P. mirabilis lie in the ranges 40% - 47.3%, 6.7% - 25.4% and 9.5% 
- 35.5%, respectively. In the Far East-Western Pacific area, the ESβL rate in 
Klebsiella sps., E. coli, Salmonella sps. and P. mirabilis ranges between 11.3% - 
51%, 7.9% - 23.6%, 3.4% and 1.4% - 1.8%, respectively [57].  

The highest rate was detected in Egypt and Greece (38.5% and 27.4%, respec-
tively) and the lowest rate was in Netherlands and Germany (2% and 2.6%, re-
spectively) according to the Pan European Antimicrobial Resistance Local Sur-
veillance (PEARLS) study done between the years 2001-2002 [58]. However, in 
comparison to other countries in United States (US) the prevalence of ESβL- 
encoding Enterobacteriaceae was around 3%. A study reflects that lower ESβL 
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prevalence in Northern European countries compared to South-Eastern Euro-
pean countries [53] [59]. Whereas in Spain, only 1.5% among 1962 invasive E. 
coli isolates in 2001 were found to produce ESβL [60]. In contrary, France had 
11.4% K. pneumoniae and 47.7% E. aerogenes isolates were seen which pro-
duced ESβL in a surveillance covering many medical centres during 1996 to 2000 
[61]. Northern European countries still have the lowest prevalence of ESβL- 
producing Enterobacteriaceae ranging from <1% in the Netherlands to 3% in 
Sweden.  

It has been observed that ESβL allele may be restricted to certain country or a 
certain geographical region, like blaTEM-10 that has been detected in the United 
States in several outbreaks for many years before the detection of this allele was 
found in Europe [62]. Another example demonstrated by blaTEM-3 which has 
not been detected in the United States but is been frequently observed in France 
[63]. In contrast, there are ESβL alleles which are commonly encountered worldwide 
like SHV-5 and CTX-M-15 [53].  

Travel plays an important role in the dissemination of antibiotic resistance 
[50]. The global dissemination of CTX-M-14 and CTX-M-15 producing/ST131 
E. coli is attributed to the colonization or infection of travellers returning from 
high risk area like Indian subcontinent and the Middle East Asia confirming that 
returning travellers are most likely to acquire the predominant ESβL-determi- 
nant in the visited country. Such acquisition can be achieved even without hos-
pitalization or contact with the health care system in the visited country [64].  

Several outbreaks have been reported, majority of which occurred in tertiary 
hospitals where the transfer of a colonized patient provide a chance for dissemi-
nation of the ESβL-producing organism [65]. In a French Hospital, SHV-5 ex-
pressing K. pneumoniae were isolated from six peripartum women and two 
neonates. PFGE profiles of these strains indicated that all of the strains have 
PFGE-patterns identical to that of a strain isolated from contaminated ultra-
sonography coupling gel [66]. ESβL-producing E. coli and K. pneumoniae hav-
ing different PFGE-types, but carrying identical plasmid encoding TEM-10 have 
been isolated from many patients in different hospitals in Chicago. The occur-
rence of the same plasmid in the strains of different PFGE-genotypes is a clue for 
plasmid transfer [62] [67].  

More interestingly, blaTEM-24 encoding, 180 kb, conjugative plasmid was 
detected in four different enterobacterial species E. coli, K. pneumoniae, E. aero-
genes and P. rettigeri isolated from the same patient suggesting horizontal trans-
fer between the normal flora of the gut [68]. The findings of blaTEM were re-
ported to be 75 percent among ESβL-producing K. pneumoniae isolates [69] 
[16]. 

In India, reports have shown high rates of ESβLs since 1990s [70]. ESβL pro-
ducing Enterobacteriaceae are well established in the community were a study 
conducted showed 24% of ESβL producers and 74% and 76% had a history of 
prior use, at some time of a cephalosporin and quinolone, respectively [71].  
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Relatively very few genotyping studies have been carried out, SHV-12 in K. 
pneumoniae has been reported from Southern India to be linked to the qnrB 
plasmid-mediated quinolone resistance determinant, the first report being from 
S. marcescens [72] [73]. There is a report of SHV-5 produced by Salmonella 
Senftenberg causing an outbreak on a burns ward in Delhi [74]. The only geno-
type of a TEM ESβL is TEM-104, reported in ten isolates of K. pneumoniae from 
New Delhi in 2001-2002 [75]. 

CTX-M-15 β-lactamase is now widely distributed across the world, but was 
first described in a small number of isolates from Delhi in 2000 [76]. A very re-
cent survey from three widely dispersed centers in India showed that 95/130 
cefpodoxime-resistant E. coli and K. pneumoniae isolates obtained between 2003 
and 2005 carried a bla CTX-M gene, and when genotyped confirmed as blaCTX- 
M-15 in all the cases [77]. The study by Ensor et al. (2006) prompted a letter re-
porting on isolates of Klebsiella spp. and E. coli collected in the late 1990s from 
six widely dispersed centers; 47 isolates were examined using PCR and DNA se-
quencing, and 37 were found to carry blaCTX-M-15, which was the only CTX-M 
genotype found [78]. CTX-M-15 was also identified from two of the K. pneu-
moniae isolates collected during 2002-2003 in Coimbatore, South India [72]. In-
dia, therefore, not only appears to have very high rates of ESβL production 
across the country, but is entirely dominated by blaCTX-M-15 gene. 

Currently, the emergence and rapid dissemination of CTX-M positive ESβL 
producing bacteria have caused a change in ESβL epidemiology [11] [79]. Fur-
thermore, the recent identification of ESβL producing isolates that have acquired 
carbapenemases has further limited the therapeutic options available for treat-
ment of these multidrug resistant microorganisms [16] [63].  

The recognition of the importance of ESβL’s as a major mechanism of 
β-lactam resistance throughout the region came with presentation of data from 
the 1998-1999 SENTRY antimicrobial surveillance programme [80]. The inci-
dence of ESβL production (no genotyping was undertaken) among E. coli iso-
lates in the four Chinese sites varied from 13% to 35%. In India, the rate of ESβL 
producers from pregnant women in E. coli isolates was 36.8% [81]. Rates >20% 
for the ESβL phenotype in K. pneumoniae in all participating mainland Chinese 
centers (one reaching 60%), in one each of three Japanese and Taiwanese cen-
ters, and in the single Singapore center and Philippines center, were confirmed. 
Such high rates had previously been reported only from South America, in a fol-
low-up study (1998-2002) lower rates were found in K. pneumoniae isolates 
from Australia and Japan (<10%), but that in China was 30% and comparatively, 
low incidence rate in India have also been reported [81] [82]. The other area of 
Asia that is the Indian subcontinent high rates of ESβL production has been re-
ported.  

A number of other studies in India reported the incidence of ESβL producers 
to be 6.6% to 68%. In south India, Subha et al. (2002) [83] reported 6.6% ESβL 
producers whereas Babypadmini et al. (2004) [84] reported 40.3%. The ESβL 
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production which was reported among Gram negative bacteria by Mathur et al. 
(2002) [85] was 68% and Singhal, et al. (2005) [86] detected ESβL in 64% isolates 
and Rodrigues, et al. (2004) [87] reported 53% ESβL production. Other studies 
in India have also reported a very high prevalence of ESβL producing Entero-
bacteriaceae. Accordingly, in North India about 46% of uropathogens belonging 
to Enterobacteriaceae were found to be ESβL producers [88].  

Some reports have also described the molecular epidemiology of the ESβL 
producers [78]. One of the reasons contributing to the high prevalence of ESβL 
producers in India may be the crowded hospital conditions, including imple-
mentation of optimal hygienic practices, likely fueled by unrestricted use of an-
timicrobials without doctor’s prescription [89]. A study reported that ESβL pro-
ducing Enterobacteriaceae families were responsible for the onset of community 
infections in India [71]. CTX-M-15 is known to be having a peculiar association 
with the community onset of E. coli and K. pneumoniae [16] [90] [91]. 

5. Metallo Beta Lactamases (MβL) 

Metallo β-lactamase was first identified in 1966 as β-lactamase II (BcII) in Bacil-
lus cereus, when the cephalosporinase activity was shown to be inhibited by 
metal chelators like EDTA [92]. The early reported MβL determinants were lo-
cated on the chromosome and were produced by organisms of minor clinical 
relevance, e.g. Flavobacterium odoratum, B. cereus, and Legionella gormanii, 
that were regarded as rare curiosities [93]. 

The first report of transferable MβL was recorded in P. aeruginosa from Japan 
in 1991 [94] and then on MβLs were discovered with more clinically relevant gen-
era such as Serratia, Bacteroides, and Pseudomonas [93]. The class B β-lactamases 
exhibit resistance to commercially available β lactamase inhibitors, but are in-
hibited by metal ion chelators, such as EDTA. This class of enzymes is of par-
ticular interest and concern owing to the ability to hydrolyze and thus provide 
resistance to virtually all classes of β-lactams, including the carbapenems. A 
number of clinical Burkholderia cepacia isolates producing an inducible metal-
loenzymes (PCM-I) that also shows preferential hydrolysis of carbapenems/ 
imipenem have also been described [95]. A limited number of B. fragilis isolates 
have been shown to produce a chromosomal metalloenzyme, CfiA/CcrA that 
provides resistance to imipenem [96].  

5.1. Classification of MβLs 

MβLs are a group of clinically important hydrolytic enzymes belonging to the mo-
lecular class B β-lactamases or group 3 according to the Bush-Jacoby-Medeiros 
functional classification [39]. These enzymes are about 250 amino acid residues 
in length [97] and require divalent cation(s), usually Zinc, for their hydrolys-
ing activities [93] [95]. MβLs act on carbon nitrogen bond of β-lactam ring 
[97], but they are mechanically different from other β-lactamases, which have 
serine at the active site [93]. Some of these require only one Zinc ion per mole-
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cule, while others require two Zinc ions per molecule (a binuclear active site) 
[97]. The metal ion(s) at the active site enables them to hydrolyze broad spec-
trum β-lactam agents including carbapenems, but their ability can be inhibited 
by metal ion chelators, such as EDTA, 1,10-o-phenanthroline, and mercapto com-
pounds [95].  

MβLs are generally encoded by genes carried on mobile genetic elements, 
such as plasmids, transposons, and integrons [94] [98]. General characteristics of 
IMP type MβLs were capable to hydrolyze carbapenems, but not monobactam. 
In fact, the blaIMP genes were often mediated by integrons, where aminoglyco-
side acetyl transferase and dihydropteroate synthetase genes also co-exist [99] 
[100]. 

5.1.1. Types of MβL 
Currently, 21 variants of IMP type MβLs have been reported in the clinical iso-
lates of Enterobacteriaceae, Pseudomonadaceae, and other non-fastidious Gram- 
negative non-fermenters. These MβL includes, IMP-1 from Japan, Singapore, 
and the United Kingdom [101] [102] [103]; IMP-2, IMP-12, and IMP-13 from 
Italy [100] [104] [105]; IMP-3, IMP-6, and IMP-10 from Japan [106] [107] [108]; 
IMP-4 from Hong Kong and China [109] [110]; IMP-5 from Portugal [111]; 
IMP-7 from Canada and Malaysia [112] [113]; IMP-8 from Taiwan [92]; IMP-9 
from China (accession no: AY033653), IMP-11 from Japan (accession no: 
AB074437); IMP-14 and IMP-15 from Thailand (accession no: AY553332 and 
AY553333, respectively); IMP-16 from Brazil (accession no: AJ584652); IMP-18 
from United States of America (accession no: AY780674); IMP-19, IMP-20, and 
IMP-21 from Japan (accession no: AB184977, AB196988, and AB204557, respec-
tively). 

5.2. Inhibitors for MβL 

Currently there are no clinically validated inhibitors of MβLs are available. In-
hibitors that covalently modify MβLs include small thiol modifying reagents, 
such as mercuric (II) salts, p-chloromercuribenzoate [114], iodoacetic acid and 
mercaptoacetic acid thiol esters [115]. Inhibitors that chelate the active site of 
Zinc include EDTA, 1, 10-o-phenanthroline, dipicolinic acid, two phenazines 
from Streptomyces sps. [116], bis (1-N-tetrazol-5-yl) amine [117] and EDTA. 
More promising compounds are those which reversibly block the active site by 
competitive inhibition, since these offers the potential for modification of the 
structure to improve the specificity of the inhibitor for MβLs alone. Such com-
pounds include biphenyl tetrazoles [117], mercaptophenyl acetic acid deriva-
tives, which do not covalently modify the enzyme (probably because the phenyl 
ring sterically hinders the hydrolysis of the carbonyl thiol bond) [115], trifluoro 
methyl alcohols and ketones [118], N-(2'-mercaptoethyl)-2-phenylacetamide [119], 
thiomandelic acid [120], D- and L-captopril inhibitors [121], 6-(mercaptomethyl) 
and penicillinases [122]. 
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5.3. Epidemiology of MβL 

During the past decade, both the global dimension of this problem and an unan-
ticipated diversity of enzymes have been revealed, as acquired MβLs have been 
detected in clinical isolates from Asia as well as from Europe, North and South 
America [92] [100] [109] [112] [123]. Currently, the most prevalent and wide-
spread acquired MβLs are the IMP-type and VIM type enzymes, of which several 
variants are known. Other types of acquired MβLs SPM-1, GIM-1, and SIM-1 
have also been identified [98] [124].  

Peleg and his colleagues (2005) for the first time reported the emergence and 
rapid dissemination of an acquired MβL determinant in a hospital setting in 
Australia, a continental resistance [125]. The MβL gene involved in the outbreak 
was blaIMP-4, an allelic variant of blaIMP-1 gene previously identified in clinical 
isolates of Acinetobacter sps. and Citrobacter youngae from Hong Kong and the 
People’s Republic of China [109] [110]. It was likely imported to Australia from 
those areas via international travelers and following the first detection in P. ae-
ruginosa, the MβL gene was found in hospital acquired isolates of Gram-negative 
pathogens of 5 different species, including P. aeruginosa, K. pneumoniae, Serra-
tia marcescens, Enterobacter cloacae, and E. coli. This is the first report for a 
rapid emergence in a single hospital of the same acquired MβL determinant in 
several different species, as well as in different strains of the same species (clonal 
diversity was observed among the MβL positive isolates of K. pneumoniae and S. 
marcescens) [125]. In fact, MβL producers usually exhibit complex MDR phe-
notypes because of their nosocomial origin and because of the frequent links 
between MβL genes and other resistance genes on the mobile DNA elements 
that are involved in their dissemination [126].  

Only a low number of MβL producing isolates appeared to be carbapenem re-
sistant [125] [127]. It is known that, unlike P. aeruginosa and Acinetobacter spe-
cies, members of Enterobacteriaceae with acquired MβL genes tend to exhibit 
carbapenem MICs that remain lower than the breakpoint for resistance, unless 
permeability is also impaired [126]. This phenomenon has major implications 
for the detection of similar isolates (and consequently for surveillance) and also 
for the selection of antimicrobial chemotherapy. 

6. Classification Based on Sequence Similarities by Hidden  
Markov Models (HMM) for β-Lactamase Annotation 

Most widely used classification scheme for BLs is the Ambler structural classifi-
cation, which is based on sequence similarity and it’s still the best currently used. 
It classifies the BLs into 4 classes: the classes A, C, and D of serine-β-lactamases 
(SBLs) and the Class B of metallo-β-lactamases (MβLs), where Class B is further 
divided into subclasses B1, B2, and B3, using sequence conservation data [27] 
[128] [129]. Even though SBLs and MBLs are able to break amide and ester 
bonds they do not belong to a common ancestor due to 2 distinct protein super-
families [130]. SBL’s tertiary structures are similar enough among themselves to 
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be homologous [131] while, the differences lie between their primary structures 
and catalytic mechanisms that divide them into classes A, C, and D [132]. 

The 3 subclasses of MBL, B1 and B2 have detectable sequence similarity and a 
common ancestor between them but not with B3 [133] [134]. The scheme pro-
posed by Hall and Barlow (2005), based on structural information the former 
subclasses B1 and B2 were merged and renamed as class MB, whereas subclass 
B3 was renamed as class ME. Thus, the 5 BL classes which are considered as 
third classification level namely, SA, SC, SD, MB, and ME with subclasses MB1 
and MB2 represent the fourth and last hierarchical level [132]. 

In few studies, phylogenetic and amino acid-based sequence similarities 
showed further division of classes SA and SD into 2 different new BL subclasses  
[35] [135]. Molecular classification of BLs does not represent currently to its ac-
tual sequence diversity and no precise definition for various classes and sub-
classes have been precised. Silveria et al. (2018) proposed new BL class with 
fused domains and extended action spectrum. This classification is based on a 
previous hierarchical scheme, profiles of Hidden Markov Models (HMM) and 
sequence clustering using similarity was proposed [136] that provides genomes 
in BL annotation and know the BLs distribution among bacteria phyla suggest-
ing new BL subclasses.  

7. Conclusion 

Beta-lactamases producing bacteria causing nosocomial infections have resulted 
in a steep rise in their incidence in recent years. The scientific community re-
ported extensively about the high morbidity-mortality rates due to these 
β-lactamases resistant MDR strains. Henceforth, detection of community and 
hospital transmission by β-lactamase pathogens becomes a paramount impor-
tance. Rapid identification of ESβL pathogens and their antibiotic resistance 
patterns will help the clinicians to select appropriate drug regimens like combi-
nation therapy and reduce their further spread. Since the epidemiology of ESβL 
and MβL producing bacteria is becoming more complex in both hospitals and 
community, it is important to regulate and monitor MDR among clinical iso-
lates. “Super bug”, bacteria might evolve in the near coming future for relatively 
all the antibiotics if we are not cautious in handling them. This alarms the de-
velopment and spreading of the disease globally and incapability to cure the in-
fection, and ultimately leading to mortality or death. In this situation, a constant 
monitoring, dispense of antibiotics for non-emergency cases only on the clinical 
reports and careful worldwide surveillance is urgently warranted. 
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