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Abstract 
Bacillus thuringiensis (Bt) produces two families of insecticidal crystal pro-
teins, i.e., crystalline (Cry) and cytolytic (Cyt) toxins. Cyt3Aa1, the newest 
Cyt family member, is produced by Bt TD516. Bioassay results have shown 
that Cyt3Aa1 has weak hemolytic activity against human red blood cells and 
is not toxic to A. aegypti larvae, but causing a teratogenic effect. The 
three-dimensional structure of Cyt3Aa1 has a typical cytolysin fold contain-
ing a β-sheet held by two surrounding α-helical layers, resembling the previ-
ously reported Cyt1Aa and Cyt2Aa structures, which indicated that Cyt3Aa1 
might be a membrane-perforation toxin and could induce synergism with 
Cry protein. This study provides a new source of insecticidal crystal proteins, 
and presents a foundation for understanding the biological characterization 
of it, which will aid in the development of strategies to cope with the potential 
problem of insect resistance. 
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1. Introduction 

During sporulation, Bt produces two families of insecticidal crystal proteins, Cry 
and Cyt. To date, 78 families of Cry toxins had been obtained, although only two 
families of Cyt toxins (Cyt1 and Cyt2) had been obtained  
(http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/). 
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The Cry and Cyt toxins have different modes of action of against insects [1] 
[2], the Cry toxins bind to specific protein receptors of insects, and Cyt toxins 
act non-specifically by direct interaction with membrane lipids of insects [3] [4]. 
The Cyt proteins mainly have activity against larvae of Diptera, Hemiptera, and 
Aphidinae [5] [6] [7]. Additionally, the Cyt1Aa and Cyt2Aa can synergize Cry 
and Vip toxicity against mosquitoes, respectively [7] [8] [9], and Cyt toxin may 
ease the threat of insect resistance [10]. The crystal structures of Cyt1Aa and 
Cyt2Aa have been determined by X-ray crystallography, and both have a single 
α/β domain composed of two outer layers of α-helix hairpins wrapped around a 
β-sheet [2] [3]. The analysis of the structural characterization of Cyt protein 
could bridge the structure-knowledge gap. 

2. Materials and Methods 
2.1. Sequence Analysis of Cyt3Aa1 

The sequence homology of Cyt3Aa1 was determined using the NCBI pro-
tein-protein BLAST program (http://www.ncbi.nlm.nih.gov/BLAST). The alignment 
of the Cyt3Aa1, Cyt1Aa1 and Cyt2Aa1 sequences was performed using Clustal W 
software (European Bioinformatics Institute, http://www.ebi.ac.uk/clustalw/). 
Phylogenetic analysis of the Cyt proteins was performed using MEGA 6.0 soft-
ware [11]. 

2.2. Insecticidal and Hemolytic Activity Assays of Cyt3Aa1 

The cyt3Aa1 gene was ligated into the cloning vector pGEM-T (Promega), which 
was digested with Kpn I and Sal I and inserted into the same sites in the pET32a 
expression vector (Novagen) to obtain a recombinant plasmid (pET-Cyt3A). Sub-
sequently, pET-Cyt3A was transformed into E. coli Arctic Express cells (Zoon 
Bio). The expression of the cyt gene was assessed as described by Cohen et al. 
[2]. The protein preparation was analyzed by SDS-PAGE as described by Green 
et al. [12]. 

The activity of Cyt3Aa1 was tested against larvae of A. aegypti (Diptera) as 
previously described [13]. The hemolytic activity of the Cyt3Aa1 protein was 
determined using human red blood cells as described by Ragni et al. and 
Juárez-Pérez et al. [14] [15]. Protein was added at six different concentrations 
(0.1 to 50 μg/ml), and the hemolytic rate (%) was examined after 4 h. Each bio-
assay was repeated at least five times, the 50% lethal concentrations were deter-
mined by Probit analysis, and the hemolytic rate of Cyt3Aa1 was estimated as 
follows: hemolytic rate (%) = (supernatant Hb * [1 − Hct%])/total Hb * 100. 

2.3. Construction of a Three-Dimensional Structure Model of 
Cyt3Aa1 by Homologous Modeling 

An alignment of Cyt3Aa1 and Cyt2Aa1 was produced using the Clustal W program, 
and the alignment was submitted to Swiss-Model (http://www.expasy.ch/spdbv/). 
The preliminary model of Cyt3Aa1 was predicted using the server SWISS-MODEL 
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(http://swissmodel.expasy.org/) [16]. 
The minimized model structure of Cyt3Aa1 was then determined to perform 

energy minimization using the PMEMD module of the AMBER 14.0 software to 
eliminate unreasonable contacts. Additionally, the minimized model was as-
sessed and validated using the PROCHECK validation server for molecular dy-
namics simulations [17]. Using the structure of Cyt3Aa1 lacking unfavorable 
contacts, the entire system was gradually heated to 310 K using Langevin dynam-
ics. A 10-Å cutoff was used for the non-bonded interactions. The Particle Mesh 
Ewald (PME) method was used to treat long-range electrostatic interactions. In 
addition, the ProSA program (https://prosa.services.came.sbg.ac.at/prosa.php) 
was used to evaluate the computational model. 

3. Results and Discussion 
3.1. Sequence Analysis and Biological Activity of Cyt3Aa1 

The gene cyt3Aa1 (GenBank accession: HM596591) cloned from BtTD516 en-
coded a 259-amino acid protein with a molecular mass of 29.5 kDa. The cur-
rently known subfamily members of Cyt2-type and Cyt3Aa1 share a high level of 
sequence identity (Figure 1), the figure of which was created using ESPript [18], 
and Cyt3Aa1 has a maximum 39.04% amino acid sequence homology with 
Cyt2Aa. 

Phylogenetic analysis of Cyt proteins was conducted using MEGA 6.0 [11]. 
Most of the known Cyt proteins are specific against the larvae of Diptera insects,  

 

 
Figure 1. Sequence alignment of Cyt family. α-Helices and η-helices are depicted using spirals, and β-strands are indicated by 
arrows. The residues conserved in all 6 proteins are shown in red blocks, and the residues shown in red text are identical in at least 
4 of the 6 proteins. 
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such as Cyt1A, Cyt2B, and Cyt2Aa [2] [7] [8]. The phylogenetic analysis of the 
three families of Cyt proteins showed that they may have evolved from a common 
ancestor (Figure 2), suggesting that Cyt3Aa1 may have potential mosquitocidal 
activity. 

The SDS-PAGE results showed that cry3Aa1 was highly expressed in E. coli as 
inclusion bodies (47-kDa protein as well as the approximately 19-kDa Trx-tagin 
pET32a) (Figure 3). The approximately 30-kDa protein purified (Cyt3Aa1) was 
used to assay the biological activity against A. aegypti and human red blood 
cells. The bioassay results showed that Cyt3Aa1 was not toxic to A. aegypti, but 
causing a teratogenic effect, which appears to be a new way for A. aegypti con-
trol. In contrast to Cyt1Aa and Cyt2Ba, the hemolytic activity of Cyt3Aa1 was 
very weak (0.0024% - 0.034%) when it was solubilized, a finding that was similar  

 

 
Figure 2. Phylogenetic analysis of Cyt. The numbers at the nodes represent the percent-
ages of bootstrap resamplings based on 500 replicates. 

 

 
Figure 3. SDS-PAGE analysis of the expression forms of Cyt3Aa1. Lane M: Protein 
Marker; Lane 1: un-induced; Lane 2: induced; Lane 3: supernatant of induction; Lane 4: 
precipitate of induction. 
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to the hemolytic activity of Cyt2Bc2 [15]. 

3.2. The Three-Dimensional of Cyt3Aa1 by Homology Modeling 

In the absence of an experimentally determined structure, computational ho-
mology modeling has an added advantage due to the use of template infor-
mation from known biological samples [19]. In this study, 1CBY (PDB Code of 
Cyt2Aa1) was employed to be the most suitable template for homology model-
ing of Cyt3Aa1, which has 43.13% similarity to Cyt3Aa1 [20], and the structural 
models of the Cyt3Aa1 toxic core were obtained comprising 223 of the 259 ami-
no acid primary structure. 

The minimized model structure of Cyt3Aa1 constructed by the PMEMD 
module of AMBER 14.0 was assessed and validated using the PROCHECK [17]. 
The result showed that all the residues were found in the allowed region (Figure 4),  

 

 
Figure 4. Ramachandran plot of Cyt3Aa1. 
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which indicated that the Cyt3Aa1 model was of good quality and considered fit 
for molecular dynamics simulations. Subsequently, the model was optimized by 
the force field FF99SB module of AMBER 14.0. Then the final frame structure of 
Cyt3Aa1 was simulated and generated by PyMOL (http://www.pymol.org/) 
(Figure 5). The most covalent/non-covalent bonds, bond angles, and torsion 
angles of the structure have the expected values for a naturally folded protein 
assessed by Protein Structure Evaluation Suite and Server  
(http://www.prosess.ca/index.php). Additionally, the z-score (−2.82) of the 
model was within the range of similar protein model derived by NMR and X-ray 
crystallography evaluated using ProSA program  
(https://prosa.services.came.sbg.ac.at/prosa.php) [21], indicating that the model 
was in the native conformation (Figure 6). All these results indicated that the 
generated model was valid with good stereochemical quality. 

3.3. Characterization of the Three-Dimensional of Cyt3Aa1 

The structure of Cyt3Aa1 resembles the crystal structure of Cyt2Aa1 [3], which 
also has a single α/β domain (Figure 5). The β-sheet of Cyt3Aa1 consists of four 
main β-strands arranged in space as β2↓, β6↑, β5↓, and β4↑ and was 
flanked by two α-helical layers (α2 - α3 on one side, and α1 - α4 on the other). 
The mechanism of action of Cyt1Aa1, Cyt2Ba1, Cyt2Aa1, and VVA2 (PDB code:  

 

 
Figure 5. Ribbon representations of Cyt3Aa1. α-Helices are shown in red, β-sheets are 
shown in yellow. 
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Figure 6. Evaluation of the Cyt3Aa1 model. The z-scores of all the protein chains in PDB 
were determined by X-ray crystallography (light blue) and NMR spectroscopy (dark blue) 
with respect to their length. The z-scores are indicated as large black dots. The plot shows 
only chains with <1000 residues and a z-score ≤ 10. 

 
1VCY) is thought to be that the two surrounding α-helical layers swing away 
from the β-sheet upon membrane contact to expose the hydrophobic β-sheet, 
which can insert into the membrane to form a β-barrel pore, resulting in colloid 
osmotic lysis [22] [23]. The Cyt3Aa1 also has two α-helical layers with consid-
erable variation that surround the β-sheets, and all β-sheets adopt a cytolysin 
fold, which revealed that Cyt3Aa1 toxin might be a membrane-perforation tox-
in. 

Cyt1Aa could synergize the activities of Cry11Aa to A.aegypti larvae [24]. The 
three single residues (K198, E204, and K225) of two binding epitopes 
(196EIKVSAVKE204 and 220NIQSLKFAQ228) of Cyt1Aa were shown to be mainly 
involved in the interaction between Cyt1Aa1 and Cry11Aa, Cry4Ba, respectively 
[25] [26]. Interestingly, the three single residues are charged in most of the Cyt 
family members, and the corresponding residues of Cyt3Aa1 (P198, L204, and 
A225) are also charged. Mapping of the three charged residues on the Cyt3Aa1 
structure revealed that the residues are exposed to the surface of the toxin 
(Figure 7), which might introduce binding sites and induce synergism with Cry 
protein. 
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Figure 7. Mapping of the three charged residues on the Cyt3Aa1 model. 

4. Conclusion 

In this study, we report the biological characterization and the structure of 
Cyt3Aa1, which not only provide foundation for understanding the mechanism 
underlying its toxicity, but will also help in the design of improved mem-
brane-active toxins with novel specificities. 
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