

Strong Consistency of the Spline-Estimation of Probabilities Density in Uniform Metric

Mukhammadjon S. Muminov¹, Khaliq S. Soatov²

¹Institute of Mathematics, National University of Uzbekistan, Tashkent, Uzbekistan ²Tashkent University of Information Technologies, Tashkent, Uzbekistan Email: m.muhammad@rambler.ru, kh.soatov@mail.ru

Received 5 December 2015; accepted 24 April 2016; published 27 April 2016

Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

Abstract

In the present paper as estimation of an unknown probability density of the spline-estimation is constructed, necessity and sufficiency conditions of strong consistency of the spline-estimation are given.

Keywords

Strong Consistency, Spline-Estimation, Probability Density in Uniform Metric, Uniform Metric, Soatov, Muminov, Tashkent University, Institute of Mathematics

1. Introduction

We assume that on the interval
$$[a,b]$$
, $a, b \in (-\infty, +\infty)$, $a < b$. The following mesh
 $\Delta_N : a = x_0 < x_1 < \dots < x_N = b$, (1)

is given, where N is a natural number. Let P_k be the set of polynomials of degree $\leq k$ and $C_k[a, b]$ be the set of continuous on the [a, b] functions having continuous derivative of order k, $k = 1, 2, \cdots$. In the book of Stechkin and Subbotin [1] the following is given.

Definition. The function $S_N(x) = S_N(x, F)$ is called by interpolation cubic spline with respect to the mesh (1) for the function F(x), if:

- a) $S_N(x) \in P_3, x \in [x_{i-1}, x_i], i = \overline{1, N}$,
- b) $S_N(x) \in C_2[a,b],$
- c) $S_N(x_i) = t_i = \overline{0, N}, N \ge 2.$
- Here $t_i = F(x_i) \cdot i = \overline{0, N}$.

The points $\{x_i\}$ are called by the nodes of the spline.

How to cite this paper: Muminov, M.S. and Soatov, K.S. (2016) Strong Consistency of the Spline-Estimation of Probabilities Density in Uniform Metric. *Open Journal of Statistics*, **6**, 373-379. <u>http://dx.doi.org/10.4236/ojs.2016.62032</u>

Later on for convenience we let [a,b] = [0,1] and the obtained results will remain valid for any finite interval [a, b].

Let X_1, X_2, \dots, X_N be independent identical distributed random variables with unknown density distribution f(x) concentrated and continuous on the interval [0, 1], and $S_N(x)$ be cubic spline interpolating the values $y_k = F_n(x_k)$ in the points $x_k = kh$, $k = \overline{0, N}$, $N = N_{(n)}$ with "boundary conditions"

$$S_N'(a) = a_N, \ S_N'(b) = b_N$$

Here $F_n(x)$ is the empirical function of the distribution of the sample X_1, X_2, \dots, X_N , $h = \frac{1}{N}$ and $nh \to \infty$,

 $h \to 0$ as $n \to \infty$, a_N and b_N are given real numbers. Concrete choice of these numbers depends on the considered problem.

As estimation of an unknown probability density we take the statistics $S'_{N}(x)$.

In the present work as estimation of the unknown density f(x) we take the statistics $S'_n(x)$ defined as in Theorem 1 and in Theorem 2 as well.

It is clear that, in Theorems 1 and 2 spline estimations are constructed with different boundary conditions.

Theorem 3 is devoted to asymptotic unbiasedness of the spline estimation. Also for completeness of the results the dispersion and the covariance of the spline-estimation are given.

In the main Theorem 4 necessity and sufficiency conditions for strong consistency of the spline-estimation are given.

Similar result for the Persen-Rozenblatt estimation is obtained in the book of Nadaraya (1983) [2].

More detailed review on spline estimation is given in works of Wegman, Wright [3], Muminov [4].

2. Auxiliary Results

Using the results of the work Lii [5] the following theorems are easily proved.

2.1. Theorem 1

Let $F_n(x)$ be empirical function of the distribution constructed by simple sample X_1, X_2, \dots, X_N and $S_N(x)$ be cubic spline interpolating the values $F_n(x_k)$ in the nodes of the mesh (1). If we choose the boundary conditions for $S_N(x)$ in the form

$$a_N = \frac{y_1 - y_0}{h}, \ b_N = \frac{y_N - y_{N-1}}{h}$$

then the derivative $S'_{N}(x)$ of the spline function is defined by the equality

$$S'_{N}(x) = \frac{1}{h} \int_{0}^{1} W_{N}(x, y) dF_{N}(y).$$

Here $W_N(x, y) = W_{N,i,j}(x, y) = E_{i,j}(x)$, for $x \in [x_{i-1}, x_i]$, $y \in [x_j, x_{j+1}]$, $i = \overline{0, N-1}$, 0

$$E_{i,j}(x) = \begin{cases} D_{i,j}(x), & j \neq i-1 \\ D_{i,j}(x) + 1, & j = i-1 \end{cases}$$

and

$$D_{i,j}(x) = \begin{cases} -\frac{3}{2}C_{i,1}(x) & j = 0, \\ \frac{3}{2}\left[C_{i,j}(x) - C_{i,j+1}(x)\right], & j = 1, 2, \cdots, N-2, \\ \frac{3}{2}C_{i,N-1}(x) & j = N-1. \end{cases}$$

 $C_{i,j}(x)$ are defined by the following relations:

$$C_{i,j}(x) = A_{i-1,j}^{-1} \left[\frac{1}{3} - (1-r)^2 \right] + A_{i-1,j}^{-1} \left(r^2 - \frac{1}{3} \right),$$
(2)
$$r = \frac{x - x_{i-1}}{h}, \quad i = \overline{1, N}, \quad j = \overline{0, N - 1},$$

where

$$\begin{split} A_{i,j}^{-1} &= \frac{\sigma^{j-1} \left(1 + \sigma^{2i}\right) \left(1 + \sigma^{2N-2j}\right)}{\left(2 + \sigma\right) \left(1 - \sigma^{2N}\right)}, \ 0 < i \le j < N, \\ A_{i,N}^{-1} &= \frac{\sigma^{N-i} \left(1 + \sigma^{2i}\right)}{\left(2 + \sigma\right) \left(1 - \sigma^{2N}\right)}, \ 0 < i \le N, \\ A_{0,j}^{-1} &= \frac{2\sigma^{j} \left(1 + \sigma^{2N-2j}\right)}{\left(2 + \sigma\right) \left(1 - \sigma^{2N}\right)}, \ 0 < j < N, \\ A_{0,N}^{-1} &= \frac{2\sigma^{N}}{\left(2 + \sigma\right) \left(1 - \sigma^{2N}\right)}, \ A_{0,0}^{-1} &= \frac{2 - \sigma^{N-1} (1 + \sigma)^{2}}{2 \left(2 + \sigma\right) \left(1 - \sigma^{2N}\right)}, \\ \sigma &= \sqrt{3} - 2, \ A_{i,j}^{-1} = A_{N-1,N-j}^{-1} \ for \ the \ other \ i \ and \ j. \end{split}$$

2.2. Theorem 2

Let $F_n(x)$ be empirical function of the distribution constructed by simple sample X_1, X_2, \dots, X_n and $S_N(x)$ be cubic spline interpolating the values $F_n(x_k)$. in the mesh (1). If we choose the boundary conditions for $S_N(x)$ in the form

$$\alpha_N = \frac{1}{h} \left(\frac{1}{3} y_3 - \frac{3}{2} y_2 + 3y_1 - \frac{11}{6} y_0 \right),$$

$$b_N = \frac{1}{h} \left(\frac{11}{6} y_N - 3y_{N-1} + \frac{3}{2} y_{N-2} - \frac{1}{3} y_{N-3} \right).$$

Then the derivative $S'_{N}(x)$ of the spline function is defined by the equality

$$S'_{N}(x) = \frac{1}{h} \int_{0}^{1} W_{N}(x, y) dF_{n}(y),$$
where $W_{N}(x, y) = W_{N/i,j}(x, y) = \widehat{E_{i,j}}(x)$, for $x \in [x_{i-1}, x_{i}], y \in [x_{j}, x_{j+1}],$
 $i = \overline{0, N - 1},$

$$\hat{E}_{i,j}(x) = \begin{cases} \hat{D}_{i,j}(x) & j \neq i - 1\\ \hat{D}_{i,j}(x) + 1 & j = i - 1 \end{cases}$$

$$\hat{D}_{i,0} = -\frac{3}{2}C_{i,1} - \frac{5}{2}C_{i,0}, \quad \hat{D}_{i,1} = \frac{3}{2}(C_{i,1} - C_{i,2}) + \frac{7}{2}C_{i,0},$$

$$\hat{D}_{i,2} = \frac{3}{2}(C_{i,2} - C_{i,3}) - C_{i,0}, \quad \hat{D}_{i,j} = \frac{3}{2}(C_{i,j} - C_{i,j+1}), \quad j = 3, 4, \dots, N - 4$$

$$\hat{D}_{i,N-3} = \frac{3}{2}(C_{i,N-3} - C_{i,N-2}) + C_{i,N}, \quad \hat{D}_{i,N-2} = \frac{3}{2}(C_{i,N-2} - C_{i,N-1}) - \frac{7}{2}C_{i,N}$$

$$\hat{D}_{i,N-1} = \frac{3}{2}C_{i,N-1} + \frac{5}{2}C_{i,N},$$

and $C_{i,j}$ are defined by formula (2).

We introduce the following denotations:

 X_1, X_2, \dots, X_n is the simple sample from the general population

$$F(t) = \int_{-\infty}^{t} f(x) \mathrm{d}x;$$

 $F_n^*(t) = F_n(F^{-1}(t)) \text{ is empirical function of distribution of the sample } F(X_1), F(X_2), \dots, F(X_n);$ $Y_n(t) = \sqrt{n} \Big[F_n^*(t) - t \Big], t \in [0,1] \text{ is the empirical process};$ $\{\omega_n(t), t \in [0,1]\} \text{ is the sequence of wiener processes};$

 $B_n(t) = \omega_n(t) - t\omega_n(1), t \in [0,1]$ is the brownian bridge.

We give the auxiliary lemmas.

2.3. Lemma 1 [6]

There exists a probability space (Ω, F, P) . On which it can be defined version $F_n^*(t)$ and the sequence of Brownian bridges $B_n(t)$ such that for all x > 0

$$P\left(\sup_{0\leq t\leq 1}\left|n\left(F_{n}^{*}\left(t\right)-t\right)-\sqrt{n}B_{n}\left(t\right)\right|>ax+b\log n+c\log 2\right)\leq e^{-x},$$

where a = 3.26, b = 4.86, c = 2.70.

2.4. Lemma 2 [7]

Let ω be modulus of continuity of the brownian bridge $B_n(t)$,

$$p(u) = \begin{cases} \sqrt{u(1-u)}, & \text{if } 0 \le u \le 1/2, \\ 1/2, & \text{if } u > 1/2 \end{cases}$$

and $q(u) = \int_0^u \sqrt{\ln(1/v)} dp(v)$. Then with probability 1 ω does not exceed the quantity $16\left(p\sqrt{\ln v_{\varepsilon}} + q\sqrt{2}\right)$. Here v_{ε} is the random variable which is not less than 1 almost everywhere and $Mv_{\varepsilon} < 4\sqrt{2}$.

3. Main Results and Proofs

The following theorem characterizes the asymptotic behavior of the bias, the covariance and the dispersion of the spline estimation.

3.1. Theorem 3

Let $S'_{N}(x)$ be the spline estimation. 1) If $f \in C_{k}[0,1], k = 0,1,2$ and $S'_{N}(x)$ are defined as in Theorem 2, then for $n \to \infty$

$$MS'_{N}(x) = f(x) + o(h^{k})$$

2) If $f \in C[0,1]$ and $S'_N(x)$ are defined as in Theorem 1, then

$$\sup_{0 \le x \le 1} \left| MS'_N(x) - f(x) \right| \to 0, \ n \to \infty,$$
$$DS'_N(x) = \frac{f(x)}{nh} A(r) + O(h/n), \ n \to \infty.$$

where 0 < x < 1*,*

$$\begin{split} A(r) &= -\frac{3(1-\sigma)}{2+\sigma} \left(2r^2 - 2r + \frac{1}{3} \right) + \frac{9}{4} \left(\frac{1-\sigma}{2+\sigma} \right)^2 \\ &\times \left\{ \left(2r^2 - 2r + \frac{1}{3} \right)^2 + \left[\left(r^2 - \frac{1}{3} \right) + \sigma \left(\frac{1}{3} - (1-r)^2 \right) \right]^2 \frac{1}{1-\sigma^2} \right. \\ &\left. + \left[\left(r^2 - \frac{1}{3} \right) + \frac{1}{\sigma} \left(\frac{1}{3} - (1-r)^2 \right) \right]^2 \frac{\sigma^2}{1-\sigma^2} \right\}, \\ &\sigma = \sqrt{3} - 2, \ r = \frac{x - x_{i-1}}{h}, \ x_{i-1} = \frac{\left[N_x \right]}{N}, \end{split}$$

[y] is the integer part of the number y.

3) Suppose 0 < x, y < 1, $x_{i-1} = \frac{\left[\!\left[N_x\right]\!\right]}{N}$, $x_{j-1} = \frac{\left[\!\left[N_y\right]\!\right]}{N}$, d = i - j, $r = \frac{x - x_{i-1}}{h}$ and $r_2 = \frac{y - x_{j-1}}{h}$, then for $n \to \infty$

$$\begin{aligned} &\operatorname{cov}\left[S'_{N}\left(x\right), S'_{N}\left(y\right)\right] \\ &= \frac{1}{nh} \cdot \frac{3}{4} f\left(x\right) \left\{ \left[\left(r_{1}^{2} - \frac{1}{3}\right) \left(r_{2}^{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - (1 - r_{1})^{2} \left(\frac{1}{3} - (1 - r_{2})\right)^{2}\right) \right] \left[6|d|\sigma^{|d|} - \frac{12\sigma^{|d+1|}}{1 - \sigma^{2}} \right) \right. \\ &+ \left(r_{1}^{2} - \frac{1}{3}\right) \left(\frac{1}{3} - (1 - r_{2})^{2}\right) \left[6|d + 1|\sigma^{|d+1|} - \frac{12\sigma^{|d+1|+1}}{1 - \sigma^{2}} \right] \\ &+ \left(r_{2}^{2} - \frac{1}{3}\right) \left(\frac{1}{3} - (1 - r_{1})^{2}\right) \left[6|d - 1|\sigma^{|d-1|} - \frac{12\sigma^{|d-1|+1}}{1 - \sigma^{2}} \right] \right\} \\ &+ \frac{f\left(y\right)}{nh} \cdot \frac{\sqrt{3}}{2} \left[\left(r_{1}^{2} - \frac{1}{3}\right) \left(\sigma^{|d+1|} - \sigma^{|d|}\right) + \left(\frac{1}{3} - (1 - r_{1})^{2}\right) \left(\sigma^{|d|} - \sigma^{|d-1|}\right) \right] \\ &+ \frac{f\left(x\right)}{nh} \cdot \frac{\sqrt{3}}{2} \left[\left(r_{2}^{2} - \frac{1}{3}\right) \left(\sigma^{|d-1|} - \sigma^{|d|}\right) + \left(\frac{1}{3} - (1 - r_{2})^{2}\right) \left(\sigma^{|d|} - \sigma^{|d-1|}\right) \right] + \frac{f\left(x\right)}{nh} \delta_{d,0} + 0\left(\frac{1}{n}\right). \end{aligned}$$

Proof. By virtue of $MS'_N(x) = (MS'_N(x))'$, Theorems 9, 11, 12 from Stechkin and Subbotin [1] and Theorems 1 from Lii [5] follows the first statement of Theorem 3. The second and the third statement of Theorem 3 are proved in Lii [5].

3.2. Theorem 4

Suppose $\frac{\ln n}{nh} \to 0$ as $n \to \infty$. Then in order with probability 1

$$\sup_{0 \le x \le 1} \left| S'_N(x) - g(x) \right| \to 0 \text{ as } n \to \infty,$$

it is necessary and sufficient that the function g(x) is the density of the distribution F(x) concentrated and continuous on the interval [0,1] with respect to Lebesgue measure.

Proof. Sufficiency. It is clear that

$$\sup_{0 \le x \le 1} \left| S'_{N} \left(x \right) - f \left(x \right) \right| \le \varepsilon_{N} + \delta_{N}, \tag{3}$$

where

$$\varepsilon_{N} = \sup_{0 \le x \le 1} \left| S_{N}'(x) - MS_{N}'(x) \right|, \quad \delta_{N} = \sup_{0 \le x \le 1} \left| MS_{N}'(x) - f(x) \right|.$$

First we estimate the term ε_N in the right hand part of (3). We have

$$\varepsilon_{N} \leq \frac{32}{\sqrt{nh}} \left[\sup_{0 \leq x \leq 1} \left| Y_{n}\left(t\right) - B_{n}\left(t\right) \right| + \frac{1}{2} \max_{1 \leq i \leq N} \left| B_{n}\left(F\left(x_{i}\right)\right) - B_{n}\left(F\left(x_{i-1}\right)\right) \right| \right].$$

$$\tag{4}$$

From Lemma 1 it follows that with probability 1 for $n \rightarrow \infty$

ł

$$\sup_{0 \le x \le 1} \left| Y_n\left(t\right) - B_n\left(t\right) \right| = 0 \left(\frac{\ln n}{\sqrt{n}} \right).$$
(5)

If we denote the modulus of continuity $B_n(t)$ by $\theta(h)$ then from Lemma 2

$$\left|B_{n}\left(F\left(x_{i}\right)\right)-B_{n}\left(F\left(x_{i-1}\right)\right)\right|\leq\left(1+B\right)\theta\left(h\right)$$
(6)

where

$$B = \sup_{0 \le t \le 1} f(t)$$
$$\theta(h) \le 16\sqrt{h} \left[\sqrt{\ln v_n} + \sqrt{2} \left(\sqrt{\ln N} + \sqrt{2\pi/\ln 2} \right) \right].$$

with probability $1v_n \ge 1$ and $Mv_n < 4\sqrt{2}$.

This, combining (3)-(6) and using Theorem 3 we get the sufficiency condition of Theorem 4. *Necessity*. Let with probability 1

$$\sup_{0 \le x \le 1} \left| S'_N(x) - g(x) \right| \to 0 \text{ as } n \to \infty.$$

Hence, from continuity of $S'_N(x)$ it follows continuity of g(x) on the interval [0, 1].

Therefore, the sequence random variables

$$\tau_n = \sup_{0 \le x \le 1} |S'_N(x) - g(x)|, n = 1, 2, \cdots$$

are uniformly integrable. Therefore according to Theorem 5 from Shiryaev [8] and the inequalities

$$\sup_{0 \le x \le 1} \left| MS'_{N}(x) - g(x) \right| = \sup_{0 \le x \le 1} \left| M\left(S'_{N}(x) - g(x) \right) \right|$$
$$\leq \sup_{0 \le x \le 1} M \left| S'_{N}(x) - g(x) \right| \le M \sup_{0 \le x \le 1} \left| S'_{N}(x) - g(x) \right|$$

it follows that for $n \to \infty$

$$\sup_{0 \le x \le 1} \left| MS'_N(x) - g(x) \right| \to 0.$$
⁽⁷⁾

By virtue of (7) it is easy to see that the sequence of functions

$$g_n(x) = \frac{1}{h} \int_0^1 W_N(x, y) dF(y)$$

uniformly converges to some continuous function $g_0(x)$, *i.e.* for $n \to \infty$

$$\sup_{0 \le x \le 1} \left| g_n(x) - g_0(x) \right| \to 0.$$
(8)

We show now continuity of F(x) on the interval [0, 1].

We assume the inverse that there exists a point x_0 , $x_0 \in [0,1]$ such that $P(X_1 = x_0) = p_0 > 0$. Then by virtue of (8) and

$$\frac{p_0}{h}\sup_{0\leq x\leq 1}\left|W_n\left(x,x_0\right)\right|\leq \sup_{0\leq x\leq 1}\left|g_n\left(x\right)\right|\leq \frac{1}{h}\sup_{0\leq x\leq 1}\left|W_n\left(x,y\right)\right|$$

it follows continuity of F(x) on the interval [0, 1].

By (8) for all $0 \le x, y \le 1$

$$\lim_{n \to \infty} \int_{v}^{x} MS'_{N}(t) dt = \int_{v}^{x} g(t) dt$$
(9)

$$\int_{y}^{x} MS'_{N}(t) dt = \int_{y}^{x} d(MS_{N}(t)) = MS_{N}(x) - MS_{N}(y).$$
⁽¹⁰⁾

From another side, according to Theorem 11 from Stechkin and Subbotin (1976)

$$\lim_{n \to \infty} MS_N(x) = F(x).$$
⁽¹¹⁾

By virtue of (9)-(11)

$$F(x) - F(y) = \int_{y}^{x} g(t) dt.$$

Theorem 4 is proved.

References

- [1] Stechkin, S.B. and Subbotin, Y.N. (1976) Splines in Computational Mathematics. Moscow, Nauka, 272 p.
- [2] Nadaraya, E.A. (1983) Nonparametric Estimation of Probability Density and Regression Curve. Tbilisi University, Tbilisi, 195 p.
- Wegman, E.J. and Wright, I.W. (1983) Splinesin Statistics. Journal of the American Statistical Association, 78, 351-365. <u>http://dx.doi.org/10.1080/01621459.1983.10477977</u>
- [4] Muminov, M.S. (2010) On Appoximation of the Probability of the Lagre Outlier of Nonstationary Gauss Process. Siberian Mathematical Journal, 51, 175-195. http://dx.doi.org/10.1007/s11202-010-0015-6
- [5] Lii, K.S. (1978) A Global Measure of a Spline Density Estimate. Annals of Statistics, 6, 1138-1148. http://dx.doi.org/10.1214/aos/1176344316
- [6] Rio, E. (1994) Local Invariance Principles and Application to Density Estimation. Probability Theory and Related Fields, 98, 21-26. <u>http://dx.doi.org/10.1007/BF01311347</u>
- [7] Garsia, F. (1970) Continuity Properties of Gaussian Processer with Multidimensional Time Parameter. *Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability*, 369-374.
- [8] Shiryaev, A.N. (1982) Probability. Moscow, Nauka, 576 p.