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Abstract 
In the present paper as estimation of an unknown probability density of the spline-estimation is 
constructed, necessity and sufficiency conditions of strong consistency of the spline-estimation 
are given. 
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1. Introduction 
We assume that on the interval [ ],a b , ( ), ,a b∈ −∞ +∞ , a < b. The following mesh 

0 1: ,N Na x x x b= < < < =∆                                        (1) 
is given, where N is a natural number. Let Pk be the set of polynomials of degree ≤ k and Сk[a, b] be the set of 
continuous on the [a, b] functions having continuous derivative of order k, 1, 2,k =  . In the book of Stechkin 
and Subbotin [1] the following is given. 

Definition. The function ( ) ( ),N NS x S x F=  is called by interpolation cubic spline with respect to the mesh 
(1) for the function F(x), if: 

a) ( ) [ ]3 1, , , ,1N i iS x P x x x i N−∈ ∈ = , 
b) ( ) [ ]2 , ,NS x C a b∈  
c) ( ) 0, , 2.N i iS x t N N= = ≥  
Here ( ) .0,i it F x i N= ⋅ =  
The points { }ix  are called by the nodes of the spline. 
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Later on for convenience we let [ ] [ ], 0,1a b =  and the obtained results will remain valid for any finite interval 
[a, b]. 

Let 1 2, , , NX X X  be independent identical distributed random variables with unknown density distribution 
f(x) concentrated and continuous on the interval [0, 1], and SN(x) be cubic spline interpolating the values yk = Fn(xk) 
in the points xk = kh, 0,k N= , N=N(n) with “boundary conditions” 

( ) ( ), .N N N NS a a S b b′ ′= =  

Here Fn(x) is the empirical function of the distribution of the sample 1 2, , , NX X X , 1h
N

=  and nh →∞ ,  

0h →  as n →∞ , Na  and Nb  are given real numbers. Concrete choice of these numbers depends on the 
considered problem. 

As estimation of an unknown probability density we take the statistics ( )NS x′ . 
In the present work as estimation of the unknown density f(x) we take the statistics ( )nS x′  defined as in 

Theorem 1 and in Theorem 2 as well. 
It is clear that, in Theorems 1 and 2 spline estimations are constructed with different boundary conditions. 
Theorem 3 is devoted to asymptotic unbiasedness of the spline estimation. Also for completeness of the results 

the dispersion and the covariance of the spline-estimation are given. 
In the main Theorem 4 necessity and sufficiency conditions for strong consistency of the spline-estimation are 

given. 
Similar result for the Persen-Rozenblatt estimation is obtained in the book of Nadaraya (1983) [2]. 
More detailed review on spline estimation is given in works of Wegman, Wright [3], Muminov [4].  

2. Auxiliary Results 
Using the results of the work Lii [5] the following theorems are easily proved. 

2.1. Theorem 1 
Let Fn(x) be empirical function of the distribution constructed by simple sample 1 2, , , NX X X  and SN(x) be 
cubic spline interpolating the values Fn(xk) in the nodes of the mesh (1). If we choose the boundary conditions for 
SN(x) in the form 

1 0 1, N N
N N

y y y ya b
h h

−− −
= =  

then the derivative ( )NS x′  of the spline function is defined by the equality 

( ) ( ) ( )
1

0

1 , d .N N NS x W x y F y
h

′ = ∫  

Here ( ) ( ) ( ), , ,, ,N N i j i jW x y W x y E x= = , for [ ]1 1, , , , 0, 1i i j jx x x y x x i N− + ∈ ∈ = −  , 0 

( ) ( )
( )

,
,

,

, 1
1, 1

i j
i j

i j

D x j i
E x

D x j i
≠ −=  + = −

 

and 

( )

( )

( ) ( )

( )

,1

, , , 1

, 1

3 0,
2

3 , 1, 2, , 2,
2
3 1.
2

i

i j i j i j

i N

C x j

D x C x C x j N

C x j N

+

−

− =

  = − = −  

 = −

  

Ci,j(x) are defined by the following relations: 
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( ) ( )21 1 2
, 1, 1 ,

1 11
3 3j i ji ijC r Ax A r− −

− −
 = 

 − − + − 
 

,                            (2) 

1 , 1, 0,, ,1ix xr i N j N
h

−−
= = = −  

where 

( ) ( )
( ) ( )

1 2 2 2
1

, 2

1 1
, 0 ,

2 1

j i N j

i j N
A i j N

σ σ σ

σ σ

− −
−

+ +
= < ≤ <

+ −
 

( )
( ) ( )

2
1

, 2

1
, 0 ,

2 1

N i i

i N N
A i N

σ σ

σ σ

−
−

+
= < ≤

+ −
 

( )
( ) ( )

2 2
1

0, 2

2 1
, 0 ,

2 1

j N j

j N
A j N

σ σ

σ σ

−
−

+
= < <

+ −
 

( ) ( ) ( ) ( )
1 2

1 1
0, 0,02 2

2 2 (1 ), ,
2 1 2 2 1

N N

N N N
A Aσ σ σ

σ σ σ σ

−
− − − +

= =
+ − + −

 

3 2σ = − , 1 1
, 1,i j N N jA A− −

− −=  for the other i and j. 

2.2. Theorem 2 
Let Fn(x) be empirical function of the distribution constructed by simple sample 1 2, , , nX X X  and SN(x) be 
cubic spline interpolating the values Fn(xk). in the mesh (1). If we choose the boundary conditions for SN(x) in the 
form 

3 2 1 0
1 1 3 113 ,

3 2 6N y y y y
h

α  = − + − 
 

 

1 2 3
1 11 3 13 .

6 2 3N N N N Nb y y y y
h − − −
 = − + − 
 

 

Then the derivative ( )NS x′  of the spline function is defined by the equality 

( ) ( ) ( )
1

0

1 , d ,N N nS x W x y F y
h

′ = ∫  

where ( ) ( )  ( )/ , ,, ,N N i j i jW x y W x y E x= = , for [ ]1,i ix x x−∈ , 1,j jy x x + ∈   , 

0, 1i N= − , 

( )
( )
( )

,
,

,

ˆ 1ˆ
ˆ 1 1

i j
i j

i j

D x j i
E x

D x j i

 ≠ −= 
+ = −

 

,0 ,1 ,0
3 5ˆ
2 2i i iD C C= − − , ( ),1 ,1 ,2 ,0

3 7ˆ
2 2i i i iD C C C= − + , 

( ),2 ,2 ,3 ,0
3ˆ
2i i i iD C C C= − − , ( ), , , 1

3ˆ 3, 4, ,, 4
2i j i j i jD C C j N+= − = − , 

( ), 3 , 3 , 2 ,
3ˆ
2i N i N i N i ND C C C− − −= − + , ( ), 2 , 2 , 1 ,

3 7ˆ
2 2i N i N i N i ND C C C− − −= − − , 

, 1 , 1 ,
3 5ˆ
2 2i N i N i ND C C− −= + , 
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and Ci,j are defined by formula (2). 
We introduce the following denotations: 

1 2, , , nX X X  is the simple sample from the general population  

( ) ( )d
t

F t f x x
−∞

= ∫ ; 

( ) ( )( )* 1
n nF t F F t−=  is empirical function of distribution of the sample ( ) ( ) ( )1 2, , , nXF X F F X ; 

( ) ( ) [ ]* , 0,1n nY t n F t t t = − ∈   is the empirical process; 

( ) [ ]{ }, 0,1n t tω ∈  is the sequence of wiener processes; 

( ) ( ) ( ) [ ]1 , 0,1n n nB t t t tω ω= − ∈  is the brownian bridge. 
We give the auxiliary lemmas. 

2.3. Lemma 1 [6] 
There exists a probability space (Ω, F, P). 

On which it can be defined version ( )*
nF t  and the sequence of Brownian bridges Bn(t) such that for all x > 0 

( )( ) ( )*

0 1
sup log log 2 e ,x

n n
t

P n F t t nB t ax b n c −

≤ ≤

 − − > + + ≤ 
 

 

where a = 3.26, b = 4.86, с = 2.70. 

2.4. Lemma 2 [7] 
Let ω  be modulus of continuity of the brownian bridge Bn(t), 

( )
( )1 , if 0 1 2,

1 2, if 1 2

u u u
p u

u

 − ≤ ≤= 
 >

 

and ( ) ( ) ( )
0

ln 1 d
u

q u v p v= ∫ . Then with probability 1 ω  does not exceed the quantity ( )16 ln 2p v qε + .  

Here vε  is the random variable which is not less than 1 almost everywhere and 4 2Mvε < . 

3. Main Results and Proofs 
The following theorem characterizes the asymptotic behavior of the bias, the covariance and the dispersion of the 
spline estimation. 

3.1. Theorem 3 
Let ( )NS x′  be the spline estimation. 

1) If [ ]0,1 , 0,1, 2kf C k∈ =  and ( )NS x′  are defined as in Theorem 2, then for n →∞  

( ) ( ) ( )k
NMS x f x o h′ = + . 

2) If [ ]0,1f C∈  and ( )NS x′  are defined as in Theorem 1, then 

( ) ( )
0 1
sup 0, ,N

x
MS x f x n

≤ ≤
′ − → →∞  

( ) ( ) ( ) ( ) , ,N
f x

DS x A r O h n n
nh

′ = + → ∞  

where 0 < x < 1, 



M. S. Muminov, K. S. Soatov 
 

 
377 

( ) ( )

( )

( )

2
2

22
22 2

2

2 2
22

2

3 1 1 9 12 2
2 3 4 2

1 1 1 12 2 1
3 3 3 1

1 1 1 1 ,
3 3 1

A r r r

r r r r

r r

σ σ
σ σ

σ
σ

σ
σ σ

− −   = − − + +   + +   

       × − + + − + − −       −      

    + − + − −      −     

  

 1
13 2, , ,xi

i
Nx xr x

h N
σ −

−
−

= − = =  

[y] is the integer part of the number y. 

3) Suppose 0 , 1x y< < ,  

1i
xx

N
N− = , 1j

y

N
x

N
− =

 

 
  , d = i – j, 1ix xr

h
−−

=  and 1
2

jy x
r

h
−−

= , then for  

n →∞  

( ) ( )

( ) ( ) ( )

( )

( )

2 1
22 2

1 2 1 2 2

1 1
2 12

1 2 2

22
2 1

cov ,

1 3 1 1 1 1 121 1 6
4 3 3 3 3 1

1 1 121 6 1
3 3 1

1 1 1 6
3 3

N N

d
d

d
d

S x S y

f x r r r r d
nh

r r d

r r

σσ
σ

σσ
σ

+

+ +
+

′ ′  

         = ⋅ − − + − − − − −             −         

   + − − − + −    −   

  + − − −  
  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1
1

2

21 12
1 1

21 12
2 2 ,0

121
1

3 1 1 1
2 3 3

3 1 1 11 0 .
2 3 3

d
d

d d d d

d d d d
d

d

f y
r r

nh

f x f x
r r

nh nh n

σσ
σ

σ σ σ σ

σ σ σ σ δ

− +
−

+ −

− +

 − −  −  

    + ⋅ − − + − − × −        

      + ⋅ − − + − − − + +            

 

Proof. By virtue of ( ) ( )( )N NMS x MS x ′′ ′= , Theorems 9, 11, 12 from Stechkin and Subbotin [1] and Theo-
rems 1 from Lii [5] follows the first statement of Theorem 3. The second and the third statement of Theorem 3 
are proved in Lii [5]. 

3.2. Theorem 4 

Suppose ln 0n
nh

→  as n →∞ . Then in order with probability 1 

( ) ( )
0 1
sup 0 as ,N

x
S x g x n

≤ ≤
′ − → →∞  

it is necessary and sufficient that the function g(x) is the density of the distribution F(x) concentrated and conti-
nuous on the interval [0,1] with respect to Lebesgue measure. 

Proof. Sufficiency. It is clear that 

( ) ( )
0 1
sup ,

x
N N NS x f x ε δ

≤ ≤
′ − ≤ +                                  (3) 

where 
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( ) ( ) ( ) ( )
0 1 0 1
sup , sup .

x
N N N N

x
NS x MS x MS x f xε δ

≤ ≤ ≤ ≤
′ ′ ′= − = −  

First we estimate the term Nε  in the right hand part of (3). We have 

( ) ( ) ( )( ) ( )( )
0 1

11

32 1sup max .
2N n n n i n ii Nx

Y t B t B F x B F x
nh

ε −≤ ≤≤ ≤

 ≤ − + −  
                (4) 

From Lemma 1 it follows that with probability 1 for n →∞  

( ) ( )
0 1

lnsup 0 .n n
x

nY t B t
n≤ ≤

 
− =  

 
                                   (5) 

If we denote the modulus of continuity ( )nB t  by ( )hθ  then from 
Lemma 2 

( )( ) ( )( ) ( ) ( )1 1n i n iB F x B F x B hθ−− ≤ +                               (6) 

where 

( )
0 1

 sup
t

B f t
≤ ≤

=  

( ) ( )16 ln 2 ln 2π ln 2 ,nh h v Nθ  ≤ + +   

with probability 1 1nv ≥  and 4 2.nMv <  
This, combining (3)-(6) and using Theorem 3 we get the sufficiency condition of Theorem 4. 
Necessity. Let with probability 1 

( ) ( )
0 1
sup 0 as .

x
NS x g x n

≤ ≤
′ − → →∞  

Hence, from continuity of ( )NS x′  it follows continuity of g(x) on the interval [0, 1]. 
Therefore, the sequence random variables 

( ) ( )
0 1
sup , 1,2,n N

x
S x g x nτ

≤ ≤
′ − == 

 

are uniformly integrable. Therefore according to Theorem 5 from Shiryaev [8] and the inequalities 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )
0 1 0 1

0 1 0 1

sup sup

sup sup

x x

x x

N N

N N

MS x g x M S x g x

M S x g x M S x g x

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

′ ′− = −

′ ′≤ − ≤ −
 

it follows that for n →∞  
( ) ( )

0 1
sup 0.N

x
MS x g x

≤ ≤
′ − →                                  (7) 

By virtue of (7) it is easy to see that the sequence of functions 

( ) ( ) ( )
1

0

1 , dn Ng x W x y F y
h

= ∫  

uniformly converges to some continuous function g0(x), i.e. for n →∞  

( ) ( )
0 1

0sup 0.n
x

g x g x
≤ ≤

− →                                    (8) 

We show now continuity of F(x) on the interval [0, 1]. 
We assume the inverse that there exists a point x0, [ ]0 0,1x ∈  such that ( )1 0 0 0P X x p= = > . Then by virtue 

of (8) and 

( ) ( ) ( )
1

0

0
0

0 1 0 1

1sup , sup sup ,n n
x x

n
x

p W x x g x W x y
h h≤ ≤ ≤ ≤ ≤ ≤

≤ ≤  
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it follows continuity of F(x) on the interval [0, 1]. 
By (8) for all 0 , 1x y≤ ≤  

( ) ( )lim d d
x x

n Ny y
MS t t g t t→∞ ′ =∫ ∫                                (9) 

( ) ( )( ) ( ) ( )d d .
x x

NNy N Ny
MS t t MS t MS x MS y′ = = −∫ ∫                      (10) 

From another side, according to Theorem 11 from Stechkin and Subbotin (1976) 

( ) ( )lim .Nn
MS x F x

→∞
=                                   (11) 

By virtue of (9)-(11) 

( ) ( ) ( )d .
x

y
F x F y g t t− = ∫  

Theorem 4 is proved. 
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