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Abstract

In the present paper as estimation of an unknown probability density of the spline-estimation is
constructed, necessity and sufficiency conditions of strong consistency of the spline-estimation
are given.
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1. Introduction

We assume that on the interval [a,b] , a,be (—oo,+oo) , a <b. The following mesh

Ayia=X, <X <--<Xy=b, (1)
is given, where N is a natural number. Let Py be the set of polynomials of degree < k and Cy[a, b] be the set of
continuous on the [a, b] functions having continuous derivative of order k, k =1,2,---. In the book of Stechkin

and Subbotin [1] the following is given.
Definition. The function S, (x)=S, (x,F) is called by interpolation cubic spline with respect to the mesh

(2) for the function F(x), if:
a) SN(X)EP3,X€[XH,Xi],i=l,_
b) Sy (x)<C,[ab],
c) Sy(%)=t =0, >2.

Here t =F(X; )I—ON
The points {x } are called by the nodes of the spline.
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Later on for convenience we let [a,b]=[0,1] and the obtained results will remain valid for any finite interval
[a, b].

Let X, X,,---, X, be independent identical distributed random variables with unknown density distribution
f(x) concentrated and continuous on the interval [0, 1], and Sy(x) be cubic spline interpolating the values y, = Fn(xy)
in the points x, = kh, k = O,N,N= =N with “boundary conditions”

Sy (a)=ay, S\ (b)=hy.

Here Fi(x) is the empirical function of the distribution of the sample X, X,,---, X, h :% and nh — o,

h—0 a n—>o, a, and b, are given real numbers. Concrete choice of these numbers depends on the
considered problem.

As estimation of an unknown probability density we take the statistics S| (x) .

In the present work as estimation of the unknown density f(x) we take the statistics S, (x) defined as in
Theorem 1 and in Theorem 2 as well.

It is clear that, in Theorems 1 and 2 spline estimations are constructed with different boundary conditions.

Theorem 3 is devoted to asymptotic unbiasedness of the spline estimation. Also for completeness of the results
the dispersion and the covariance of the spline-estimation are given.

In the main Theorem 4 necessity and sufficiency conditions for strong consistency of the spline-estimation are
given.

Similar result for the Persen-Rozenblatt estimation is obtained in the book of Nadaraya (1983) [2].

More detailed review on spline estimation is given in works of Wegman, Wright [3], Muminov [4].

2. Auxiliary Results

Using the results of the work Lii [5] the following theorems are easily proved.

2.1. Theorem 1

Let Fn(x) be empirical function of the distribution constructed by simple sample X,, X,,---, X, and Sy(x) be
cubic spline interpolating the values F,(xy) in the nodes of the mesh (1). If we choose the boundary conditions for
Sn(x) in the form

Y1 — Yo b, = Yn ~ Yna
’ N —
h h
then the derivative Sj (x) of the spline function is defined by the equality

ay =

1

S ()= 1 W (x,Y) 0 (¥).

0

Here W, (X, y)=Wy;; (% y¥)=E;;(x),for xe[x,x].ye[x, 1+1] i=0,N-1,0

ST K n

+1, j=i-1
and
—gc,l(x) i-0,
D, (x)= g[ci,j(x)—ci,m(x)], j=12,-,N-2,
2 s () j=N-1,

Cij(x) are defined by the following relations:
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(0= A 5--ry e, (-2 @)

r:X_hXH, i=LN, j=0,N-1,
where
71_12O'j'l(1+0'2i)(1+o-2N-21'), bcicion,
’ (2+0')(1—02N)
p{;:m, 0<i<N,

(2+0)(1-0"")

L 200 (140™) N
ooy

2-c"*(1+0)*

Pon = 022(2+0)(1—02N)]

20" _
(2+0')(l—02N )’ &

c=v3-2, AT=Al,,. fortheotheriandj.

2.2. Theorem 2

Let Fn(x) be empirical function of the distribution constructed by simple sample X, X,,---, X, and Sy(x) be
cubic spline interpolating the values F(xy). in the mesh (1). If we choose the boundary conditions for Sy(x) in the
form

1

ay =2y, -2y, 43y, -2
= SN Y |

1/11 3 1
by :H EyN _SyN—l+EyN—2_§yN—3 .

Then the derivative Sy (x) of the spline function is defined by the equality
' 1;
S (x) :HIWN (x,y)dF, (y),
0

where W, (X, y)=WN,iyj(x,y)=I§i'\j(x),for xe[%. %] ye[xj,xm],

D,0=-gcm—gciyo, D,l_g(cil—c,2)+—c,o,

D, g(C,Z—C,B)—Cw, D,J—g(c”—ci,m), j=34, N-4,
Dins =g(cw_3 ~Cin2)+Cin:+ Dins —g(cm_2 —ci,N_l)—%c, .
Dyt %CLM +gci,N :

)
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and C;; are defined by formula (2).
We introduce the following denotations:
Xy, X,,--+, X, is the simple sample from the general population

F(t):j;f x)dx

n

n

( (1) ) is empirical function of distribution of the sample F(X,),F(X,),--,F(X,);
n[ (t)- ] te[0,1] is the empirical process;

{a)n( ).tel0

B, (t) =, (t)—tw, (1), t€[0,1] is the brownian bridge.

We give the auxiliary lemmas.

l]} is the sequence of wiener processes;

2.3.Lemma 1 [6]

There exists a probability space (Q, F, P).
On which it can be defined version F, (t) and the sequence of Brownian bridges B,(t) such that for all x > 0

P (sup
0<t<1l

where a = 3.26, b = 4.86, ¢ = 2.70.

n(Fn*(t)—t)—\/ﬁBn (t)‘>ax+b|ogn+clogzjgex,

2.4.Lemma 2 [7]
Let ® be modulus of continuity of the brownian bridge By(t),
u(l-u), if0<u<1/2,
p(u)=
Y2, if u>1/2

and q(u I JIn(3/v)dp(v). Then with probability 1 » does not exceed the quantity 16( p./inv, +q\/§).
Here v, is the random varlable which is not less than 1 almost everywhere and Mv, < 4+/2 .

3. Main Results and Proofs

The following theorem characterizes the asymptotic behavior of the bias, the covariance and the dispersion of the
spline estimation.

3.1. Theorem 3

Let S\ (x) be the spline estimation.
1)If feC[01],k=0,12 and S} (x) are defined as in Theorem 2, then for n —

MS;, (x) = f (x)+o(hk).
2)If feC[0,1] and S{ (x) are defined as in Theorem 1, then

sup|Msy, (x) - f ()| >0, n—> e,
0<x<1

DSy, (x) = ( )A(r)+0(h/n), n— oo,

where 0 <x <1,
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0'=«/§—2, r=X

[y] is the integer part of the numbery.

[N ]

3) Suppose 0<x,y<1, xi_lzT, X, =——,d=1i-j, r=——=— and r2=y

I then for

n— oo

cov[S ), S

b ot o2
D fmeao 2]

(§—<1—n>2][6|d—1| . 12"0 J}

0 B Y|
0t o o o)

Proof. By virtue of MS (x)=(MSy, (x))’, Theorems 9, 11, 12 from Stechkin and Subbotin [1] and Theo-
rems 1 from Lii [5] follows the first statement of Theorem 3. The second and the third statement of Theorem 3
are proved in Lii [5].

3.2. Theorem 4

Suppose Is_hn — 0 as n— . Then in order with probability 1

sup

0<x<1

S (x)-9(x)| >0 asn— o,

it is necessary and sufficient that the function g(x) is the density of the distribution F(x) concentrated and conti-
nuous on the interval [0,1] with respect to Lebesgue measure.
Proof. Sufficiency. It is clear that

Sy (x)— f(X)|< ey +6y, ®)

0<x<1

where

)
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&y = Sup Sy, (X)—MS; (x)|, & =sup

0<x<1 0<x<1

MS;, (x)—f(x)|.

First we estimate the term ¢, in the right hand part of (3). We have

b < %&iﬂ Y, (1)~ 8, ]+ Smax(B, (F (x)) B, (F (xil))ﬂ. @
From Lemma 1 it follows that with probability 1 for n— oo
suplY, (t)-B, (1) = o('”T:] (5)
If we denote the modulus of continuity B, (t) by &(h) then from
Lemma 2
B, (F(x))~B,(F(x.)) <(1+B)o(h) (6)
where
B=sup f(t)

Oo<t<1

e(h)glﬁx/ﬁ[\/lnvn +\/§(\/In N +4/2n/In 2)}

with probability 1v, >1 and Mv, < 4+/2.
This, combining (3)-(6) and using Theorem 3 we get the sufficiency condition of Theorem 4.

Necessity. Let with probability 1
sup

0<x<1

Sy (x)-g(x)| >0 asn—co.
Hence, from continuity of S, (x) it follows continuity of g(x) on the interval [0, 1].
Therefore, the sequence random variables

7, = sup

0<x<1

Sk (X)-g(x),n=1,2,
are uniformly integrable. Therefore according to Theorem 5 from Shiryaev [8] and the inequalities

sup|MS;, (x)— g (x)|=sup |M (si(x)-g (x))|
0<x<1 0=<x<1

Sk (x) -9 ()

<sup M [Sy (x) = g(x)|< M sup

0<x<1 0<x<1

it follows that for n — oo
sup|Msy, (x)-g(x)| - 0. @)

0<x<1

By virtue of (7) it is easy to see that the sequence of functions
1 1
9 (%) :FIWN (xy)dF (y)
0

uniformly converges to some continuous function go(x), i.e. for n — oo

supg, (x) - do (X)| > 0. (8)

We show now continuity of F(x) on the interval [0, 1].
We assume the inverse that there exists a point xo, X, €[0,1] such that P (X, =X,)=p, >0. Then by virtue
of (8) and

g, (x)| S%sup [\Nn (x, y)|

0<x<1

%sup W, (x, %, )| < sup

0<x<1 0<x<1
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it follows continuity of F(x) on the interval [0, 1].
By (8) forall 0<x,y<1

lim, .., [ MS{, (t)dt=[ g (t)dt 9
[ M, (t)dt= [ d(MS, (1)) = MS, (x) - MS,, (). (10)

From another side, according to Theorem 11 from Stechkin and Subbotin (1976)
limMS, (x) = F(x). (11)

By virtue of (9)-(11)
F(x)-F(y)= jy* g(t)dt.
Theorem 4 is proved.
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