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Abstract 
Magnetotactic bacteria optimization algorithm (MBOA) is a new optimization algorithm inspired 
by the characteristics of magnetotactic bacteria, which is a kind of polyphyletic group of proka-
ryotes with the characteristics of magnetotaxis that make them orient and swim along geomag-
netic field lines. The original Magnetotactic Bacteria Optimization Algorithm (MBOA) and several 
new variants of MBOA mimics the interaction energy between magnetosomes chains to obtain 
moments for solving problems. In this paper, Magnetotactic Bacteria Optimization Algorithm with 
the Best Individual-guided Differential Interaction Energy (MBOA-BIDE) is proposed. We im-
proved interaction energy calculation by using the best individual-guided differential interaction 
energy formation. We focus on analyzing the performance of different parameters settings. The 
experiment results show that the proposed algorithm is sensitive to parameters settings on some 
functions. 

 
Keywords 
Magnetotactic Bacteria, Nature Inspired Computing, Differential Interaction Energy, Parameters 
Settings 

 
 

1. Introduction 
The research of algorithms have been conducted many years, the field of algorithm is very mature now. Evolu-
tionary algorithm (EA) is a very popular research field. The common evolutionary algorithms are genetic algo-
rithm (GA), Differential Evolution (DE) [1], Particle Swarm Optimization (PSO) [2] and Bacterial Foraging Op-
timization algorithm (BFOA) [3] and so on. 

Magnetotactic Bacteria Optimization Algorithm (MBOA) [4] [5] which is introduced by Mo is one of the 
modern heuristic algorithms and inspired by the magnetotactic bacteria. In nature, magnetotactic bacteria (MTBs) 
is a special kind of bacteria which have many micro magnetic particles named magnetosome in their bodies. 

http://www.scirp.org/journal/jcc
http://dx.doi.org/10.4236/jcc.2015.35016
http://dx.doi.org/10.4236/jcc.2015.35016
http://www.scirp.org
mailto:honwei2004@126.com
mailto:liulilikaoyan@163.com
mailto:zhaojiaoyouxiang@163.com


H. W. Mo et al. 
 

 
128 

These magnetic particles can generate moments to guide the bacteria to swim along geomagnetic field lines of 
the earth [6] [7]. In recent years, several improved MBOA, such as BMMBOA [8], MBOA-BR [9], MBOA-BT 
[10], PSMBA [11], MBMMA [12], have been proposed to modify the performance of MBOA. In the Moments 
of the Best Individual-based Magnetotactic Bacteria Optimization Algorithm (BMMBOA), similar to DE/best/1, 
the problem solutions are generated by moments mechanisms based on interaction energy among solutions [8]. 
In the Magnetotactic Bacteria Optimization Algorithm Based On Best-R and Scheme (MBOA-BR), similar to 
DE/best/r and scheme, it regulates the moments based on the information exchange between best individual's 
moments and some randomly one [9]. In the Magnetotactic Bacteria Optimization Algorithm based on 
Best-Target (MBOA-BT), similar to DE/best/target scheme, some cells will receive MTS information from the 
interaction between the local best one and the target one to balance the local search and global search [10]. In 
the Power Spectrum-Based Magnetotactic Bacteria Algorithm (PSMBA), it is based on the models of power 
spectra of the magnetic field noise produced by Brownian rotation of nonmotile bacteria in zero magnetic field 
[11]. In the Magnetotactic Bacteria Moment Migration Algorithm (MBMMA), the moments of relative good 
solutions can migrate each other to enhance the diversity of the MBMMA [12]. 

In this paper, we proposed a Magnetotactic Bacteria Optimization Algorithm with the Best Individual-guided 
Differential Interaction Energy (MBOA-BIDE) in order to overcome the shortcomings of complicated interac-
tion energy calculation of the original MBOA and several new variants of MBOA and focus on the study of the 
effect of different parameters settings. 

2. Magnetotactic Bacteria Optimization Algorithm with the Best Individual-Guided 
Differential Interaction Energy (MBOA-BIDE) 

In the following, we briefly describe the basic operators and the main steps of MBOA-BIDE. MBOA-BIDE 
mainly has three steps and three main operators including moment generation, moment regulation, moment re-
placement. 

2.1. Interaction Distance 
First, in the algorithm, each solution is looked as a cell containing a magnetosome chain. At first we define 

bestX  stands for the best cell of the population in the current generation t . The distance of the cell iX  and the  
best cell bestX , ( )1 2, , ,t t t t

i i i inD d d d= 

, is calculated as follows: . 

t t t
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. N  is the size of 

cell population, n  stands for dimension of every cell. 

2.2. Moments Generation 
Based on the distances among cells, the interaction energy 1 2( , ,..., ,..., )t t t t t

i i i ij inE e e e e=  is defined as 

1 2* *t t t
ij ij pqe c d c d= +                                  (2) 

where the settings of 1c  and 2c  will be discussed in the next section. t
pqd  stands for randomly selected va-

riables from tD . [1, ]p N∈ , [1, ]q n∈ . 
After obtaining interaction energy, the moments t

iM  are generated as follows:  
t

t i
i

E
M

B
=                                      (3) 

where the settings of B  will be discussed in the next section. 
Suppose 1 2( , ,..., ,..., )t t t t t

i i i ij inM m m m m= , we can obtain a moment vector matrix 1 2( , ,... ,..., )t t t t t
i NM M M M M ′=
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Then the total moments of a cell is regulated as follows:  
t t t
ij ij lsv x m rand= + ×                               (4) 

where t
lsm  stands for the moment of a randomly selected MTS from tM . [1, ]l N∈ , [1, ]s n∈ . 

2.3. Moments Regulation 
After moments generation, the moments regulation is realized as follows:  

If rand  > 0.5, the moments in the cell are regulated as follows:  

( )t t t t
ij cbestj cbestj iju v v v rand= + − ×                              (5) 

Otherwise, they are regulated as follows:  

( )t t t t
ij ij cbestj iju v v v rand= + − ×                                   (6) 

where t
cbestjv  stands for the j th dimension of current best cell t

cbestV  in the current generation. 

2.4. Moments Replacement 
After the moments regulation, we set a replacement probability 0.5, some cells with worse fitness are replaced 
as follows:  
if rand  > 0.5,  

1t t
ij l jx m rand+

′= ×                               (7) 

where l′  is a random number between 1 and N . t
l jm ′  stands for the moment of a randomly selected MTS 

from t
lM ′  

3. Parameters Settings 
To evaluate the performance of MBOA-BIDE, the experiments are carried out on 10 benchmark functions. In 
this section, the benchmark functions are presented firstly. Secondly, the simulation results obtained from dif-
ferent parameter settings are analyzed and discussed. 

In all experiments, during each run, a maximum fitness evaluation of 200000 generations is used. To reduce 
statistical errors, each test is repeated 30 times independently and the mean results are used in the comparisons. 

3.1. Benchmark functions 
The ten basic benchmark problems summarised in Table 1, can be classified into two groups. The first five 
functions 1f  - 5f  are unimodal functions. The unimodal functions here are used to test if MBOA-BIDE can 
maintain the fast-converging feature compared with the other methods. The next five functions 6f  - 10f  are 
multimodal functions with many local optima. These functions can be used to test the global search ability of the 
algorithm in avoiding premature convergence. 

3.2. The effect of population size N 
We set MBOA-BIDE with different population size ( N  = 10, 40, 50, 100, 150 and 200). The results of differ-
ent population size are presented in Table 2. From Table 2, we can see that population size N  with 40 is pro-
viding the best results in eight of the ten selected functions. 

In this study, MBOA-BIDE with different population size N  are ranked based on their mean performances. 
They are ranked according to their performances using a standard competition ranking scheme. In competition 
ranking, algorithms receive the same rank if their performances are same. The next performing algorithm is  
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Table 1. Benchmark functions. 

Function Range D Formulation 

1f : Sphere [−100, 100] 30 
 

2f : Schwefel 2.22 [−10, 10] 30 
 

3f : Schwefel 1.2 [−100, 100] 30 
 

4f : Quartic Noise [−1.28, 1.28] 30 
 

5f : Rosenbrock [−30, 30] 30 
 

6f : Rastrigin [−5.12, 5,12] 30 
 

7f  Generalized Schwefel [−500, 500] 30 
 

8f : Foxholes [−65.536, 65.536] 2 
 

9f : Sixhump [−5, 5] 2 
 

10f : Goldstein price [−2, 2] 2 

 

 
assigned a rank with a gap (gap is determined based on the number of equally performing algorithms). Table 3 
provides the ranks of the different population size and the average rank for all the functions based on mean per-
formances. Based on the average ranking, the order of performance obtained is N  = 40 followed by N  = 50, 
N  = 10, N  = 100, N  = 150 and N  = 200 respectively. 

Figure 1 presents the histograms that indicate the number of times each population size N  have achieved 
the ranks in the range of 1 to 6. It can be seen that N  = 40 achieves the top rank as compared to the other dif-
ferent population size. 

3.3. The effect of magnetic field B  
To study the effects of B  in MBOA-BIDE, we use 5f , 7f  and 8f  for testing the performance of MBOA- 
BIDE. Firstly we suppose B  is constant ( B  = 1, 3, 5, 7, 10), and study the effect of B  on test functions. 
Secondly, we also study the effect of B  varying with generation increases as follows:  
• B  is linearly increases from 1 to10 ( B  = 1 - 10 LINER). 
• B  is exponentially increases from 1 to 10 ( B  = 1 - 10 EXP ) 
• B  is linearly increases from 1 to 100 ( B  = 1 - 100 LINER) 
• B  is exponentially increases from 1 to 100 ( B  = 1 - 100 EXP). 

The results are shown in Table 4. From Table 4, for 5f , we can see that when B  is constant, B  = 10, the 
method can achieve better performance, when B  = 1 - 100 LINER can achieve better performance on 5f . For 

7f , when B  = 3 and B  = 1 - 100 EXP, the method can achieve better performance. For 8f , we can see that 
when B  = 1 and B  = 1 - 10 LINER can achieve better performance. 

Figure 2 Presents the line chart and histograms that indicate the mean, best and median values each B  have 
achieved for 7f , respectively. From Figure 2, we can see when B  = 1 - 100 EXP, MBOA-BIDE achieve the  
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Figure 1. Histogram of individual mean ranks. 

 
Table 2. Statistical results obtained by MBOA-BIDE with different population size N. 

Func.  N = 10 N = 40 N = 50 N = 100 N = 150 N = 200 

1f  

Mean 0 0 0 0 2.5201e−254 4.5896e−181 

Dev 0 0 0 0 0 0 

Rank 1 1 1 1 5 6 

2f  

Mean 0 0 0 4.3137e−209 3.3968e−129 5.5820e−91 

Dev 0 0 0 0 6.3405e−129 1.2236e−90 

Rank 1 1 1 4 5 6 

3f  

Mean 0 0 0 3.0876e−312 5.5975e−182 1.0773e−124 

Dev 0 0 0 0 0 3.8100e−124 

Rank 1 1 1 4 5 6 

4f  

Mean 1.4263e−05 2.2258e−05 1.1082e−05 2.7951e−05 2.2837e−05 2.7755e−05 

Dev 1.0928e−05 1.7502e−05 1.1717e−05 2.8866e−05 1.5794e−05 3. 4894e−05 

Rank 2 3 1 6 4 5 

5f  

Mean 21.4943 21.3003 22.1453 23.6719 24.2513 24.6209 

Dev 0.7394 0.4264 0.3933 0.2229 0.2143 0.1610 

Rank 2 1 3 4 5 6 

6f  

Mean 0 0 0 0 0 0 

Dev 0 0 0 0 0 0 

Rank 1 1 1 1 1 1 

7f  

Mean −1.1199e+04 −1.1808e+04 −1.1535e+04 −1.0843e+04 −1.0664e+04 −1.0807e+04 

Dev 1.0496e+03 1.0526e+03 1.5453e+03 1.9108e+03 1.7327e+03 1.5578e+03 

Rank 3 1 2 4 6 5 

8f  
 

Mean 7.8914 2.5827 2.4521 1.1949 0.9980 0.9980 

Dev 4.0483 3.3070 3.6346 1.0783 4.1884e−12 5.8272e−12 

Rank 6 5 4 3 1 1 

9f  

Mean −1.03162842 −1.03162845 −1.03162845 −1.03162845 −1.03162845 −1.03162845 

Dev 3.2639e−08 6.5144e−10 9.0922e−10 3.3173e−10 4.8852e−10 7.3936e−10 

Rank 6 1 1 1 1 1 

10f  

Mean 3.0000 3.00000 3.0000 3.00000 3.00000 3.00000 

Dev 3.7073e−07 5.7118e−08 3.7689e−08 5.3505e−08 2.3598e−08 3.1246e−08 

Rank 1 1 1 1 1 1 

0
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Figure 2. Histogram of statistical results of MBOA-BIDE with different B values 

 
Table 3. Rank table for the mean values. 

Fun N = 10 N = 40 N = 50 N = 100 N = 150 N = 200 

1f  1 1 1 1 5 6 

2f  1 1 1 4 5 6 

3f  1 1 1 4 5 6 

4f  2 3 1 6 4 5 

5f  2 1 3 4 5 6 

6f  1 1 1 1 1 1 

7f  3 1 2 4 6 5 

8f  6 5 4 3 1 1 

9f  6 1 1 1 1 1 

10f  1 1 1 1 1 1 

Avg. rank 2.4 1.6 1.6 2.9 3.4 3.8 

 
Table 4. Statistical results obtained by MBOA-BIDE with different B values. 

Fun  Mean Median Dev Best Worst 

5f  

B = 1 26.9030 26.9095 0.1675 26.5374 27.2250 

B = 3 21.6974 21.8007 0.4795 20.6532 22.7105 

B = 5 21.2422 21.2866 0.4115 19.8061 21.8931 

B = 7 21.1473 21.2003 0.4291 19.7336 22.0915 

B = 10 20.9895 21.0589 0.3426 19.8434 21.5301 

B = 1 - 10 LINER 21.2495 21.3203 0.4827 20.4088 22.3778 

B = 1 - 10 EXP 20.3502 20.3270 0.9573 18.1462 21.9417 

B = 1 - 100 LINER 19.3093 19.3314 0.1863 18.7989 19.6055 

B = 1 - 100 EXP 21.0213 21.0466 0.3493 20.1838 21.4598 

-1.40E+04
-1.20E+04
-1.00E+04
-8.00E+03
-6.00E+03
-4.00E+03
-2.00E+03
0.00E+00

Mean Best Median

B=1

B=3

B=5

B=7

B=10

B=1-10LINER

B=1-10EXP

B=1-100LINER

B=1-100EXP
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Continued  

7f  

B = 1 −1.0623e+04 −1.0600e+04 247.5844 −1.1137e+04 −1.0214e+04 

B = 3 −1.0880e+04 −1.1211e+04 1.0098e+03 −1.1755e+04 −8.3927e+03 

B = 5 −8.4505e+03 −8.3105e+03 1.2271e+03 −1.1428e+04 −6.8399e+03 

B = 7 −7.2628e+03 −7.1560e+03 548.8644 −8.4595e+03 −6.3355e+03 

B = 10 −7.4822e+03 −7.5949e+03 647.8553 −8.8086e+03 −6.0637e+03 

B = 1 - 10 LINER −1.1722e+04 −1.2147e+04 1.3761e+03 −1.2320e+04 −6.9487e+03 

B = 1 - 10 EXP −1.1799e+04 −1.1768e+04 134.5198 −1.2219e+04 −1.1609e+04 

B = 1 - 100 LINER −9.1931e+03 −9.1373e+03 1.3684e+03 −1.2563e+04 −6.5952e+03 

B = 1 – 100 EXP −1.2099e+04 −1.2530e+04 1.3411e+03 −1.2553e+04 −7.2080e+03 

8f  

B = 1 3.3981 0.9980 4.1130 0.9980 12.6705 

B = 3 5.6198 4.5408 3.8717 0.9980 12.6705 

B = 5 7.1337 8.2029 4.7696 0.9980 12.6705 

B = 7 5.8563 3.9683 4.4765 0.9980 12.6705 

B = 10 6.3849 6.1614 3.6604 0.9980 12.6705 

B = 1 - 10 LINER 1.8220 0.9980 2.4891 0.9980 12.6705 

B = 1 - 10 EXP 2.8240 0.9980 3.8456 0.9980 12.6705 

B = 1 - 100 LINER 2.7863 0.9980 3.8309 0.9980 12.6705 

B = 1 - 100 EXP 2.2053 0.9980 3.0987 0.9980 12.6705 

 
performance on 7f . 

3.4. The Effect of c1 and c2 
Firstly we suppose that 1c  and 2c  is constant, and study the effect of 1c  and 2c  on three test functions. We 
set 1c  + 2c  = 1, and 1c  with different values (0.1, 0.3, 0.5, 0.7, 0.9). Secondly, we also study the effect of 1c   
and 2c  varying with generation increases. The parameter settings are as follows:  
• 1c  = 0 - 1 L: 1c  is linearly increases from 0 to1, 2c  = 1 - 1c ; 
• 2c  = 0 - 1 L: 2c  is linearly increases from0 to1. 1c  = 1 - 2c ; 
• 1c  = 0.1 - 1 E: 1c  is exponentially increases from 0.1 to1, 2c  = 1 - 1c ; 
• 2c  = 0.1 - 1 E: 2c  is exponentially increases from 0.1 to 1, 1c  = 1 - 2c ; 
• 1c  = 0 - 2 L: 1c  is linearly increases from 0 to2, 2c  = 2 - 1c ; 
• 2c  = 0 - 2 L: 2c  is linearly increases from0 to2, 1c  = 2 - 2c ; 

The statistical results are shown in Table 5. 
From Table 5 and Table 6, we can see that for 5f , 2c  = 0.1 - 1 E obtain the best performance. For 7f  and 

8f , 1c  = 0 - 2 L obtain the best performance. and based on the average ranking, the order of performance ob-
tained is 2c  = 0 - 1 L followed by 1c  = 0 - 2 L, 1c  = 0 - 1 L, 2c  = 0 - 2 L, 1c  = 0.3, 1c  = 0.1, 1c  = 0.1 - 
1 E, 1c  = 0.9, 1c  = 0.7, 2c  = 0.1-1E and 1c  = 0.5, respectively. 

4. Conclusion 
In this paper, by analyzing the performance of different parameters settings of MBOA-BIDE, we can see that 
when N  = 40 - 50, B  is exponentially increases from 1 to 100, 2c  is linearly increases from 0 to 1. 1c  = 1 
- 2c , MBOA-BIDE obtain the better performance. The experiment results show that the proposed algorithm is  
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Table 5. Statistical results obtained by MBOA-BIDE with different C1 and C2 values. 

Fun  Mean Median Dev Best Worst Rank 

5f  

c1 = 0.1 21. 3901 21.4491 0.2710 20.6426 21.8700 9 

c1 = 0.3 21.0181 21.0926 0.3837 20.1813 21.6728 6 

c1 = 0.5 21.0303 21.0385 0.3369 20.2972 21.7053 7 

c1 = 0.7 20.9564 20.9955 0.3636 20.0590 21.5185 5 

c1 = 0.9 21.3102 21.3443 0.2975 20.4737 21.8988 8 

c1 = 0-1 L 21.0213 21.0466 0.3493 20.1838 21.4598 3 

c2 = 0-1 L 21.0500 21.0776 0.4023 20.2052 21.7740 4 

c1 = 0.1-1E 20.8318 20.8450 0.3135 20.2436 21.6018 2 

c2 = 0.1-1E 20.7453 20.7975 0.3485 19.8905 21.3564 1 

c1 = 0-2L 21.8727 22.0773 0.6619 19.7414 22.8133 11 

c2 = 0-2L 21.7704 21.9754 0.5780 20.3235 22.8893 10 

7f  

c1 = 0.1 −1.2352e+04 −1.2532e+04 985.4425 −1.2549e+04 −7.1345e+03 4 

c1 = 0.3 −1.2406e+04 −1.2533e+04 690.3886 −1.2547e+04 −8.7509e+03 3 

c1 = 0.5 −1.2295e+04 −1.2536e+04 912.3674 −1.2548e+04 −8.8768e+03 6 

c1 = 0.7 −1.2170e+04 −1.2535e+04 1.1179e+03 −1.2556e+04 −8.6381e+03 7 

c1 = 0.9 −1.2105e+04 −1.2529e+04 1.3193e+03 −1.2548e+04 −7.3420e+03 8 

c1 = 0 - 1 L −1.2099e+04 −1.2530e+04 1.3411e+03 −1.2553e+04 −7.2080e+03 9 

c2 = 0 - 1 L −1.2417e+04 −1.2535e+04 646.0001 −1.2552e+04 −8.9972e+03 2 

c1 = 0.1 - 1 E −1.2091e+04 −1.2534e+04 1.3939e+03 −1.2548e+04 −6.6607e+03 10 

c2 = 0.1 - 1 E −1.1775e+04 −1.2533e+04 1.7649e+03 −1.2547e+04 −6.7527e+03 11 

c1 = 0 - 2 L −1.2430e+04 −1.2436e+04 34.6550 −1.2488e+04 −1.2349e+04 1 

c2 = 0 - 2 L −1.2297e+04 −1.2434e+04 763.0817 −1.2498e+04 −8.2595e+03 5 

8f  

c1 = 0.1 2.2362 0.9980 3.3244 0.9980 12.6705 4 

c1 = 0.3 2.7849 0.9980 3.7353 0.9980 12.6705 8 

c1 = 0.5 4.2983 0.9980 4.6656 0.9980 12.6705 11 

c1 = 0.7 2.9363 0.9980 3.7453 0.9980 12.6705 9 

c1 = 0.9 2.4267 0.9980 3.7530 0.9980 12.6705 6 

c1 = 0 - 1 L 2.2053 0.9980 3.0987 0.9980 12.6705 3 

c2 = 0 - 1 L 2.3454 0.9980 3.5817 0.9980 12.6705 5 

c1 = 0.1 - 1 E 2.7436 0.9980 3.6848 0.9980 12.6705 7 

c2 = 0.1 - 1 E 3.1675 0.9980 4.0601 0.9980 12.6705 10 

c1 = 0 - 2 L 1.0102 0.9980 0.0563 0.9980 1.2898 1 

c2 = 0 - 2 L 1.5118 0.9980 2.0119 0.9980 12.6705 2 
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Table 6. Rank table for the mean values. 

c1, c2 
Individual ranking of benchmark functions Avg. RANK (R) 

5f  7f  8f   

c1 = 0.1 9 4 4 5.67 

c1 = 0.3 6 3 8 5.67 

c1 = 0.5 7 6 11 8 

c1 = 0.7 5 7 9 7 

c1 = 0.9 8 8 6 6.67 

c1 = 0 - 1 L 3 9 3 5 

c2 = 0 - 1 L 4 2 5 3.67 

c1 = 0.1 - 1 E 2 10 7 6.33 

c2 = 0.1 - 1 E 1 11 10 7.33 

c1 = 0 - 2 L 11 1 1 4.33 

c2 = 0 - 2 L 10 5 2 5.67 

 
sensitive to parameters settings on some functions. 
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