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ABSTRACT 
Let G be a graph of order n, and let a and b be integers, such that 1 ≤ a < b. Let H be a subgraph of G with m(≤b) 
edges, and δ(G) be the minimum degree. We prove that G has a [a,b]-factor containing all edges of H if 

( )δ G a m≥ + , ( ) n 2a mNC G
a b
+

≥
+

, and when a ≤ 2, ( )( )
( )

2 1 2
1

a b a b a b mn
b b a b

+ + − +
≥ − +

−
. 
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1. Introduction 
We consider the finite undirected graph without loops and multiple edges. Let G be a graph with vertex set 
( )V G  and edge set ( ).E G  Given ( )x V G∈ , the set of vertices adjacent to x  is said to be the neighbor-  

hood of x , denoted by ( )GN x . ( ) ( )G Gd x N x=  is called the degree of x  and we write [ ]GN x  for  

( ) { }GN x x . Furthermore we define ( ) ( ) ( ){ }min GG d x x V Gδ = ∈ , ( )
( )

( ) ( ){ }min G Gxy E G
NC G N x N y

∉
=  .  

For a subset ( )S V G⊂ , let G S−  denote the subgraph obtained from G  by deleting all the vertices of S  
together with the edges incident with the vertices of S . 

Let a  and b  be integers such that 1 a b≤ < . A [ ], -a b factor of G  is defined as a spanning subgraph F  
of G  such that ( )Fa d x b≤ ≤  for all ( )x V G∈ . Other notations and terminology are the same as those in 
[1] 

The existence of a factor for a graph G is closely related to the degree of vertices. Concerning the minimum 
degree and the existence of k-factor Egawa, Enomoto [2] and Katerinis [3] proved that there exists k factor when  

4 5n k≥ −  and ( )
2
nGδ ≥  for a graph G . Iida and Nishimura [4] proved that if 4 5n k≥ −  and ( )2 G nσ ≥   

there exists k-factor for a graph G . 

H. Y. Pan [5] generalized the result of Iida and Nishimura to [a, b] -factor: if ( ) ( ) ( )2

,
a b a b

G a n
b

δ
+ − +

≥ ≥  

and ( )2
2anG
a b

σ ≥
+

, G  has an [ ],a b -factor. 

Concerning adjacent set union and [ ],a b -factor, in 2000 H. Matsuda gave the following result: 
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Theorem 1 [5]: Let a, b be integer such that 1 a b≤ < , and G be a graph of order n  with 
( )( )2 1a b a b

n
b

+ + −
≥  and ( )G aδ ≥ . 

If ( ) ( )G G
anN x N y

a b
≥

+
  for any two non-adjacent vertices x  and y  of G , then G  has a [ ], -a b   

factor We prove the following theorem for a graph to have a [ ], -a b factor with given properties, which is an 
extension of theorem 1. 

Theorem 2: Let a  and b  be integers such that 1 a b≤ < , G  be a graph of order n , and H  be a sub-  

graph of G with ( )m b≤  edges. If ( )G a mδ ≥ + , and ( ) ( ) 2
G G

an mN x N y
a b
+

≥
+

  for any two non-adjacent 

vertices x  and y  of G , when 2a ≥ , we suppose 

( )( )
( )

2 1 2 .
1

a b a b a b mn
b b a b

+ + − +
≥ − +

−
 

Then G  has a [ ], -a b factor containing all edges of H . 

2. Proof of Theorem 2 
Let S and T be two disjoint subset of V(G), E1 and E2 be two disjoint subset of E(G). Let ( ) ( )\W V G S T=  ,  
( ) ( ){ }: ,E S xy E G x y S= ∈ ∈ , ( ) ( ){ }, , ,E S T xy xy E G x S y T= ∈ ∈ ∈ , ( ) ( ){ }: ,E T xy E G x y T= ∈ ∈ . 

{ }1 1; ,E xy E x y S′ = ∈ ∈ , ( ) ( ){ }1 1; , \E xy E x S y V G S T′′= ∈ ∈ ∈   

{ }2 2 : ,E xy E x y T′ = ∈ ∈ , ( ) ( ){ }2 2 : , \E xy E x T y V G S T′′ = ∈ ∈ ∈   

( )1 2 1 1, ; , 2G S T E E E Eα ′ ′= + , ( )1 2 2 2, ; , 2 .G S T E E E Eβ ′ ′′= +  

Lemma 1 [6]: Let G  be a graph, and let g  and f  be two integer-valued functions defined on ( )V G  
such that ( ) ( ) ( )0 Gg x f x d x≤ < ≤  for all ( )x V G∈ . Let 1E  and 2E  be two disjoint subsets of ( )E G .  
Then G  has a ( ),g f -factor F  such that ( )1E E F⊆  and ( )2E E F = Φ  if and only if for any two dis- 
joint subsets S  and T  of ( )V G . 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2, ; , , ; , , ; , .G G S G GS T g f d T g T f S S T E E S T E Eδ α β−= − + ≥ +  

Lemma 2: Let a  and b  be integers such that 1 a b≤ < , and G  be a graph, and H  be a subgraph of  
G . Then G  has a [ ], -a b factor F  such that ( ) ( )E H E F⊆  if and only if  

( ) ( ) ( ), .G S H H
x s

b S a T d T d x e S T−
∈

− + ≥ −∑  

Let ( )1E E H=  and 2E = Φ , and we note that 

( ) ( ) ( )1 2 1 1, ; , 2 ,H H
x S

S T E E E E d x E S Tα
∈

′ ′′= + = −  

where ( ) ( ){ }, : ,HE S T xy E H x H y T= ∈ ∈ ∈  and ( )1 2 2 2, ; , 2 0S T E E E Eβ ′ ′′= + = . 

It is easy to see Lemma 2 is an immediately result of Lemma 1. 
Now we prove Theorem 2: Suppose that G  satisfies the assumptions of Theorem 2, but it has no [ ], -a b

factor as described in Theorem 2. Then by Lemma 2 there exist two disjoint subsets S  and T  of ( )V G  
such that 

( ) ( ) ( ), 1 0.G S H H
x s

b S a T d T d x e S T−
∈

− + − + + ≤∑                          (1) 

We choose such S and T  so that T  is minimum. If T = Φ , then by (1) we get ( ) 1 0H
x s

b S d x
∈

− + ≤∑ ,  
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which is a contradiction. Since ( )Hd x m b≤ ≤  for all x H∈ , hence we have T ≠ Φ  
Suppose that there exists a vertex Tω∈  such that ( ) ( ),G S Hd e S aω ω− + ≥ , then S  and { }T ω−  satisfy  

(1), which contradicts the choice of T , therefore ( ) ( ), 1G S Hd x e S x a− + ≤ −  for all .x T∈  
Now we define 

( ) ( ){ }1 min , :G S Hh d x e S x x T−= + ∈ , 

and let 1x T∈  be a vertex such that 

( ) ( )1 1 1,G S Hh d x e S x−= + . 

Note that 1 1h a≤ −  holds, we consider two cases. 
Cases 1: [ ]1TT N x=  

Note that ( ) ( )1 1GS h d x G a mδ+ ≥ ≥ ≥ + , ( ) 2H
x S

d x m
∈

≤∑ , 1a h> , and [ ]1 11 Tb a h N x T> ≥ + ≥ = . 

By (1), we obtain 

( ) ( )( ) ( )

( ) ( ) ( )( )1 1 1

0 , 1

2 1 2 1 1.

G S H H
x T x S

b S d x e S x a T d x

b a m h h a T m a h b T mb m

−
∈ ∈

≥ + + − − +

≥ + − + − − + ≥ − − + − + ≥

∑ ∑
 

This is a contradiction. 
Cases 2: [ ]1TT N x≠  
It is clear that [ ]1\ TT N x ≠ Φ , then we defined ( ) ( ) [ ]{ }2 1min , : \G S H Th d x e S x x T N x−= + ∈  and let  

2x T∈  be a vertex such that ( ) ( )2 2 2,G S Hh d x e S x−= +  by the condition of Theorem 2, the following inequa-
lity holds: 

( ) ( )1 2 1 2
2

G G
an m N x N x S h h

a b
+

≤ ≤ + +
+

  

which implies 

( )1 2
2 .an mS h h

a b
+

≥ − +
+

                                     (2) 

Note that the number of vertices in T  which satisfies the equality ( ) ( ) 1,G S Hd x e S x h− + =  is at most 

1 1h + , and the rest of vertices in T  satisfy ( ) ( ) 2,G S Hd x e S x h− + ≥ . 
So we obtain 

( ) ( )( ) ( ) ( )1 1 2 1, 1 1 .G S H
x T

d x e S x h h h T h−
∈

+ ≥ + + − −∑  

And further by (1) 

( ) ( ) ( )1 1 2 11 1 1 0H
x S

b S h h h T h a T d x
∈

+ + + − − − − + ≤∑ . 

Note that S n T W= − −  and ( ) 2H
x S

d x m
∈

≤∑ , so we have 

( ) ( ) ( )1 1 2 11 1 2 1 0b n T W h h h T h a T m− − + + + − − − − + ≤  

and hence 

( )( ) ( )( )1 2 1 1 2 1

2 2 2

1 2 1 1 2 1
.

b Wbn h h h m bn h h h m
T W

a b h b a h a b h
+ − + − + + − + − +

≥ − ≥ −
+ − + − + −

         (3) 

By (2) (3) we have 
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( )( )

( )( )

1 2 1
1 2

2

1 2 1
1 2

2

1 2 12

1 2 12 .

bn h h h man mn S T W h h W W
a b a b h

bn h h h man m h h
a b a b h

+ − + − ++
= + + ≥ − − + − +

+ + −

+ − + − ++
= − − +

+ + −


            (4) 

Let ( ) ( )( )1 2 1
1 1 2

2

1 2 12 .
bn h h h man mf h h h

a b a b h
+ − + − ++

= − − +
+ + −

 

Let 
1

d 0
d

f
h
= , we have 1

1
2

a bh a+ −
= ≥ , Note that 1 2 1h h a≤ ≤ − , it is easy to see that ( )1f h  is the mini-

mum when 1 2h h= . 
So we have 

2
2

2 2 12 .an m bn mn h
a b a b h
+ − +

≥ − +
+ + −

                                 (5) 

If 2 0h = , by (5) we have 
2 2 1 1 .an m bn mn n

a b a b a b
+ − +

≥ + = +
+ + +

 

This is a contradiction. 
So we suppose 2 1h ≥ , and hence 2a ≥ . By (5) we have 

( )( ) ( )( )
( )

2

2

2 2 12 2 .
1

a b a b h a b a ba b m a b mn
b bh b b b a b

+ + − + + −+ +
≤ − + ≤ − +

−
 

This is a final contradiction. Therefore theorem 2 is proved. 
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