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ABSTRACT 

The theory of the matter movement in a black hole in the frame of non-local quantum hydrodynamics (NLQHD) is con- 
sidered. The theory corresponds to the limit case when the matter density tends to infinity. From calculations follow that 
NLQHD equations for the black hole space have the traveling wave solutions. The domain of the solution existence is 
limited by the event horizon where gravity tends to infinity. The simple analytical particular cases and numerical calcu- 
lations are delivered. 
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1. Introduction 

The first ideas about the existence of cosmic objects 
which gravitation is so big that the escape velocity  
would be faster than the speed of light, were formulated 
in 1783 by English geologist named John Mitchell. In 
1796, Pierre-Simon Laplace promoted the same idea in 
his book Exposition du système du Monde. In 1916 Al-
bert Einstein introduced an explanation of gravity called 
general relativity. According to the general theory of 
relativity, a black hole is a region of space from which 
nothing, including light, can escape. It is the result of the 
denting of spacetime caused by a very compact mass. 
Around a black hole there is an undetectable surface 
which marks the point of no return, called an event hori-
zon. It is called “black” because it absorbs all the light 
that hits it, reflecting nothing, just like a perfect black 
body in thermodynamics. Black holes possess a tem-
perature (and therefore the internal energy) and emit 
Hawking radiation through slow dissipation by anti- 
protons. 

In 1930, Subrahmanyan Chandrasekhar predicted that 
stars heavier than the sun could collapse when they ran 
out of hydrogen or other nuclear fuels to burn and die. In 
1967, John Wheeler gave black holes the name “black 
hole” for the first time. Astronomers have identified nu-
merous stellar black hole candidates, and have also found 
evidence of supermassive black holes at the center of  

every galaxy. In 1970, Stephen Hawking and Roger Pen-
rose proved that black holes must exist. 

Let us investigate the possibilities delivered by the 
unified generalized quantum hydrodynamics [1-4] for 
investigation of these problems. From position of non- 
local quantum hydrodynamics (NLQHD) the mentioned 
theory has two limit cases connected with the density   
evolution: 

1) The density 0  . From the physical point of 
view this case corresponds to the motion in the Big Bang 
regime. This regime is considered in my previous paper 
published in this issue [5]; 

2) The density   . From the physical point of 
view this case corresponds to the matter motion in the 
Black Hole regime. 

Here we intend to consider the second limit case on the 
basement of non-local physics which particular interpreta-
tion is the generalized Boltzmann physical kinetics. We 
need not to deliver here main ideas and deductions of the 
generalized Boltzmann physical kinetics and non-local 
physics. The fundamental methodic aspects of the men-
tioned theory are considered in [5]. A rigorous descrip-
tion can be found, for example, in the monographs [3,4, 
6], see also [7-11]. 

Strict consideration leads to the following system of 
the generalized hydrodynamic equations (GHE) [3,4,10] 
written in the generalized Euler form: 

  continuity equation for species 
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and continuity equation for mixture 

       1
0 0 0 0 0

p q

t t t r
  

      
  


       

                                 
 v v v v v F

r r r


0I 0.

m 
 

 
v B  

(1.2) 

Momentum equation for species 
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Generalized moment equation for mixture 
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Energy equation for component 
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and after summation the generalized energy equation for 
mixture (please see Equation (1.6) below).  

Here  1
F

B I
 are the forces of the non-magnetic origin, 

—magnetic induction, 


—unit tensor, qα—charge of 
the α—component particle, qα—static pressure for α— 
component,  —internal energy for the particles of α— 
component, 0 —hydrodynamic velocity for mixture. For 
calculations in the self-consistent electro-magnetic field the 
system of non-local Maxwell equations should be added. 

v

2. Propagation of Plane Traveling Waves in 
Black Hole 

Newtonian gravity propagates with the infinite speed. 
This conclusion is connected only with the description in 
the frame of local physics. Usual affirmation-general rela-
tivity (GR) reduces to Newtonian gravity in the weak- 
field, low-velocity limit. In literature you can find criti-
cism of this affirmation because the conservation of an-
gular momentum is implicit in the assumptions on which 
GR rests. Finite propagation speeds and conservation of 
angular momentum are incompatible in GR. Therefore, 
GR was forced to claim that gravity is not a force that 
propagates in any classical sense, and that aberration 
does not apply. But here I do not intend to join to this 
widely discussed topic using only unified non-local model. 

Let us apply generalized quantum hydrodynamic Equa-
tions (1.1)-(1.6) for investigation of the traveling wave 
propagation inside the black hole using non-stationary 
1D Cartesian description. It means that consideration 
corresponds so to speak to “the black channel”. 

Call attention to the fact that Equations (1.1)-(1.6) 
contain two forces of gravitational origin, —the force 
acting on the unit volume of the space and —the force 
acting on the unit mass. As result we have from Equa-
tions (1.1)-(1.6): 
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(energy equation) 
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
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                
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r

  

2
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t
        
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p
t

  





                        
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r r



 

(2.5) 

(energy equation, 1D case) 

       
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      

   
 

                                
                                          

4 2
0 0 08v pv

x
 


 

(2.6) 

 
Nonlinear evolution Equations (2.1)-(2.6) contain forces 

F, g acting on space and masses including cross-term 
(see for example the last line in Equation (2.6)). The re- 
lation F g  comes into being only after the mass 
appearance as result of the Big Bang. 

Let us introduce now the main mentioned before as- 
sumption leading to the theory of motion inside the black 
holes: the density   . Derivating the basic system 
of equation we should take into account two facts: 

1) The density can tend to infinity by the arbitrary law; 
2) The ratio of pressure to density defines the internal 

energy of the mass unit E p   and should be consid- 

ered as a dependent variable by   . 
As result we have the following system of equations: 

2 0,
u u u u E

u g
t x x x t x x
                               

(2.7) 

  2 2 3

2 1

3 2

0.

u u E u
u u g g

t t x x x

u E u E u Eu gu
x t x

 



                          
                 



  

(2.8) 
 

       2 2 3 3 3 4 2 23 3 5 2 5 5 8 3

2 2 0,

u E u E u Eu gu u Eu u Eu u Eu gu
t t x x t x

E u u E
g u g

t x x

                                          
           

5 2 2E g gu
x x
            

 

(2.9) 

 
xwhere  is the velocity component along the u  direc- 

tion. Let us introduce the coordinate system moving 
along the positive direction of x -axis in 1D space with 
velocity  equal to phase velocity of considering 
object 

0C u

x Ct   .                (2.10) 

Taking into account the De Broglie relation we should 
wait that the group velocity gu 2u

 , t

 is equal 0 . In mov-
ing coordinate system all dependent hydrodynamic val-
ues are function of  . We investigate the possibility 
of the traveling wave formation. For this solution there is 
no explicit dependence on time for coordinate system 

moving with the phase velocity 0 . Write down the sys-
tem of Equations (2.7)-(2.9) in the moving coordinate 
system using the relation 

u

x ut  : 
(continuity equation, 1D case) 

2

0,
u u E

g 
   

       
              

   (2.11) 

(momentum equation, 1D case) 

3 5 3 0
E u u E u

g g E  
     

        
,              
(2.12) 

(energy equation, 1D case) 
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g g
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 

6
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uE

u
Eg gu

 
 

 
   




    
        

      
          

 
    



  
 

  






, ,u E g

 

(2.13) 

Non-local equations are closed system of three differ-
ential equations with three dependent variables . 
In this case no needs to use the additional Poisson equa-
tion leading to the Newton gravitational description. 

If the non-locality parameter   is equal to zero the 
mentioned system becomes unclosed. 

Let us introduce the length scale 0 , the velocity 
scale 0 , time scale u 0 0 0x u  , and scales for the 
gravitation acceleration 2

00 0 0 0g u u x 
2

0 0E u
 and for the 

internal energy of the mass unit . Using these 
scales one obtains 

2
u u 
  

   
     

     0,
E

g


         


     (2.14) 

3 5 3
E u u E

g g E 
   

    
    

    

          0,
u

 
  

 
  

    

(2.15) 
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 
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u
Eg gu


 

 
   




    
    

    

     
          

 
   

 

        

     


  



  
 

  






   

      

 (2.16) 

We need also an approximation for the non-local pa-
rameter  . Take this approximation in the form  

2H u   ,              (2.17) 

where H is dimensionless value. In the dimension form  

0 0 2

H
u x

u
  .              (2.18) 

It means that the nonlocal parameter is proportional to 
the kinematic velocity and inversely with square of the 
velocity. Relation (2.18) resembles the Heisenberg rela-
tion “time-energy”. Remark now that (as follow from the 
numerical calculations) the choice of the non-local pa-
rameter in this case has the small influence on the results 
of modeling. 

3. Results of Mathematical Modeling 

Now we are ready to display the results of the mathe-
matical modeling realized with the help of Maple (the 
versions Maple 9 or higher can be used).  

The system of Equations (2.14)-(2.16) has the great 
possibilities of mathematical modeling as result of chang-
ing the parameter H  and five Cauchy conditions de-
scribing the character features of initial perturbations 
which lead to the traveling wave formation. Maple pro-
gram contains Maple’s notations—for example the ex-
pression   0 0D u   means in the usual notations 
  0 0u    t, independent variable  responds to  .  

We begin with investigation of the problem of principle 
significance—is it possible after a perturbation (defined 
by Cauchy conditions) to obtain the traveling wave as 
result of the self-organization? With this aim let us con-
sider the initial perturbations: 

        
  
0 1,  0 1,  0 1,  0 0,

0 1.

u E g D u

D E

   



u E

  (3.1) 

The following Maple notations in figures are used: 
u—velocity , E—energy , and g—acceleration g . 
Explanations are placed under all following figures. The 
mentioned calculations are displayed in Figures 1-4. 

All calculations are realized using the conditions (3.1) 
but by the different value of the H  parameter, namely 

0.001;1;1000H  . Figure 1 reflects the evolution of the 
dependent values in the area of the event horizon in de-
tails. 

 

 

Figure 1. u—velocity  (dotted line), H = 1, E—energy u

E  (solid line), and g—acceleration g  (dashed line), area 
of event horizon. 
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Figure 2. u—velocity  (dotted line), H = 1, E—energy u
E  (solid line), and g—acceleration g  (dashed line). 

 

 

Figure 3. u—velocity  (dotted line), H = 1000, E—energy u
E  (solid line), and g—acceleration g

0.5  

 (dashed line). 

 
In all calculations the boundary of the transition area 

of events is limited by the condition (obtained as the 
self-consistent result of calculations) . lim

As follow from calculations (see Figures 1-4) the 
variation of H -parameter has the weak influence on the 
numerical results. Let us show also the results obtained 
for  (see Figure 5) and the corresponding 
numerical results near singularity ; namely: 

0.0001H 
0.5  

lim

 

Figure 4. u—velocity  (dotted line), H = 0.001, E—energy u
E  (solid line), and g—acceleration g  (dashed line). 

 

 

Figure 5. u—velocity  (dotted line), H = 0.0001, E—en- 

ergy 

u
E  (solid line), and g—acceleration g

0.4999999  
30.382 10E   2615.014g 

1u

 (dashed line). 

 
H = 0.0001; . We have the following 
results of calculations ; ; 


1.u

. 
As we see the self-consistent solutions lead with the 

high accuracy to the relation 

                 (3.2)  

Let us use this condition for analytical transformations 
of the Equations (2.14)-(2.16). We have correspondingly 
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0,
E

g
 
    

   
   


   

         (3.3) 

0,
E

g



 



                (3.4) 

 2 0Eg



 


 
E

E
 
  
 

  

  .      (3.5) 

From (3.4), (3.5) follow 

0
E

E
 
  

 
  

  ,            (3.6) 

const
E

E







              (3.7) 

and for chosen   approximation 
2

2
1

E
C C

  
 ,C E
 

,          (3.8) 

 
2

2 2

0

0
E

E


 




  E


   
.         (3.9) 

It means that for large   

 
0

E



2 0E E 
 

 
   

 
            (3.10) 

or in the dimensional form 

 
0

E



2 0E E 
 

 
  

            (3.11) 

where x ut  

   const 0 0Eg E g   

 

. Taking into account (3.4), (3.6) one 
obtains 

           (3.12) 

 
 

 
2 2

2

0 0

0 0

ln
0 1

E g

E E
E

 

0g g

 
  


    

         


  
 




   

(3.13) 

and for large 

 

 

 

0

0 1E

E



0

2

g g


 

 
   


 


0.5

  .       (3.14) 

After the penetration through the frontier barrier the 
external matter is moving in the black channel in the 
form of the traveling wave. In this 1D Cartesian model 
the gravitational acceleration decreases as    with 
the rise of the 

0.5

-distance and, on the contrary, the in-

ternal energy of the mass unit increases as  . 
The influence of the tidal force on the object in the 

black channel can be calculated using (3.13), (3.14). 
From (3.13) follows 

   

 

2

3/2
20

2

0

0
d 0 d

0

EE
g g

E
E















 
        

     





     


.(3.15) 

gRelation (3.15) reflects the change 
t

 in the tidal 
force acting at the time moment  across the body ele-
ment x . This change tends to infinity if the point of 
singularity 

12

0

ln
s

E










 
     




0.5s  

           (3.16) 

which corresponds to the frontier barrier. For example 
for Cauchy conditions (3.1) , 

3 2

1

2 1
g 


  

  




.          (3.17) 

gIn this case the change   in the tidal force acting at 
the time moment  across the body element t x  turns 
into infinity by 0.5   . In the following if 

 
2

2

0

0 0
E

E



 

 
    

  
          (3.18) 

gthe   change of the tidal force acting at the time mo-
ment  across the body element xt   has not the catas-
trophic character.  

4. Discussion and Conclusion 

As one can see during all investigation we needn’t to use 
the theory Newtonian gravitation for solution of nonlin-
ear non-local evolution equations (EE). In contrast with 
the local physics this approach in the frame of quantum 
non-local hydrodynamics leads to the closed mathemati-
cal description for the physical system under considera-
tion.  

If the density tends to infinity the matter evolution in-
side of “the black channel” (1D Cartesian model) is or-
ganizing in the form of the traveling waves.  

Numerical modeling leads to appearance of the singu-
larity on the left side of domain where the gravitational 
acceleration turns into infinity. This singularity corre-
sponds to event horizon and the whole neighboring area 
of the strong gravitational variation can be named as the 
transition area of events, (see Figure 1). 

x utAll calculations are realized for the case   , 
corresponding to the wave traveling along the positive 
direction of the x -axis. Obviously after the initial per-
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 

C s.    

turbations the analogical wave propagates in the opposite 
direction    after the sign change x x u u

180

E

, . 
In the theory of Black Hole (BH) with the spherical 
symmetry it leads near the event horizon to the appear-
ance of black body radiation which was predicted by 
Stephen Hawking. Hawking radiation reduces the mass 
and the energy of the black hole and is therefore also 
known as black hole evaporation. The structure of this 
radiation significantly depends on the topological features 
of BH.  

Usually the appearance of the analogical picture in the 
left hand half-plane does not lead to information of the 
principal significance, but not for the case under consid-
eration. 

Really, after rotation the right half-plane picture by 
 two domains (see Figures 1 and 2) create the joined 

domain with the width  and minimums for  
and 

1 
g

r
t

 in the centre of the infinite square well. On the 
whole the configuration reminds the known quantum 
mechanical problem of the particle evolution in a box 
with the infinite potential barriers of the gravitational 
origin. It is well known that the solution of the analogical 
problem in the Schrödinger quantum mechanics leads to 
the discrete energetic levels. Quantum calculations of 
oscillators in the arbitrary potential fields can be found in 
[4]. 

Finally some words concern the following investiga- 
tions. Numerical calculations, realized in the spherical 
coordinate system for the dependent variables ( —ra- 
dius, —time) cannot change principal results of the 
shown calculations in the Cartesian coordinate system. 

But some other effects (where the real form of the black 
hole is significant) obviously need in a 3D non-stationary 
calculation. 
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