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Abstract 
The computational capabilities of off-the-shelf wireless sensors networks 
presents a limitation when more complex forms of localization algorithms are 
employed for location estimation purposes, particularly in an indoor envi-
ronment. Range-free algorithms rely on Received Signal Strength (RSS) from 
sensors that are location aware (anchor nodes) as the major means of distance 
estimation. This paper presents a non-site specific algorithm for better esti-
mating RSS relationship with distance. By employing a unique form of ra-
tionalization of raw RSS with respect to distance using the proposed algo-
rithm, it is possible to enhance the reliability of RSS when employed in in-
door Localization Algorithms. Consequently, this paper presents an innovative 
RSS-Distance rationalization algorithm for localization of objects in an indoor 
environment. The paper compared the proposed algorithm with Simple 
Moving Average (SMA) algorithm due to the wide applicability and ease of 
manipulation of SMA. The analysis of the proposed algorithm and SMA 
shows that the proposed algorithm better modifies RSS for more accurate po-
sition estimation in an indoor environment. 
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1. Introduction 

Localization using wireless sensors relies on inter-nodal distance measurements 
between anchors using the coordinate system or the knowledge of the enclosed 
geographical environment. The measurements, using a typical WSN localization 
system can be related to the coordinates of sensors using the following generic 
formula:  

How to cite this paper: Ademuwagun, A. 
(2019) RSS-Distance Rationalization Pro-
cedure for Localization in an Indoor Envi-
ronment. Wireless Sensor Network, 11, 
13-33. 
https://doi.org/10.4236/wsn.2019.112002 
 
Received: January 18, 2019 
Accepted: February 25, 2019 
Published: February 28, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/wsn
https://doi.org/10.4236/wsn.2019.112002
http://www.scirp.org
http://www.scirp.org
https://doi.org/10.4236/wsn.2019.112002
http://creativecommons.org/licenses/by/4.0/


A. Ademuwagun 
 

 

DOI: 10.4236/wsn.2019.112002 14 Wireless Sensor Network 
 

( )= +S h U e                         (1) 

where S is the vector of all the measurements, U contains the true coordinate 
vectors of sensors whose locations are to be estimated and e is the vector due to 
measurement errors [1]. For most applications, it is pointless to sense data 
without the awareness of the nodes position or location. It is only when sensor 
nodes are rightly sited, that the events of interest can be appropriately monitored 
[2] [3] [4]. 

RSS is a free resource that is exploited by both range-based and range-free al-
gorithms, however, range-based algorithms are more accurate but they do re-
quire a higher computational cost and complexity than range free algorithm. 
WSN for range-based algorithms would require modification and consequently be 
more expensive than WSN devices for range-free algorithms [5] [6]. Off-the-shelf 
sensor nodes can be used to implement range-free algorithms, hence our interest 
in RSS as a free resource for localization algorithms. 

The simplest form of measurement in WSN is connectivity measurements [7]. 
In this type of measurement, sensors receive signals from other sensors within 
its transmission range. These signals can be translated into binary distance 
measurements, which implies that it is either a sensor which is within range or 
not. Most range-free localization algorithms such as Centroid and DV-Hop loca-
lization algorithms, which are proximity based algorithms, depend largely on re-
liable RSS quality and not its direct relationship with distance for accurate posi-
tion estimation. Nevertheless, it becomes essential to develop a procedure for 
establishing a reliable RSS-distance relationship, for more accurate positioning 
localization algorithms. In this paper, we propose a unique procedure for modify-
ing the RSS data from sensor nodes for reliable distance estimation. 

The objective of this paper is to establish a relationship between RSS and dis-
tance. The paper will be developed in two phases. The first phase will present a 
justification through experimentation that RSS is a reliable indicator or factor 
for localization. The second phase will present the RSS-distance normalization 
algorithm. Thus, the goal is to present an algorithm for processing RSS values 
towards a 2D node localization scheme in an indoor environment. Since RSS 
values are used for approximating the spatial position of the sensor nodes, 
hence, our interest in this method. This is because sensor nodes are freely 
equipped with RF modules for wireless communication, thus, no extra hardware 
will be required. The paper is organized as follows; a synopsis of related litera-
ture and related theory, a description of the experimental test-bed, RSS as a reli-
able connectivity index; RSS-distance normalization algorithm, making a com-
parative analysis with Simple Moving Average (SMA); discussion and findings, 
and lastly, concluding the paper. 

2. Related Literature 

From literature study of indoor localization, it is established that most ap-
proaches to localization rely on a form of RSS for offline training using a priori 
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fingerprinting information corresponding to the reference nodes. Some methods 
such as Maximum Likelihood Estimate (MLE) are also well documented [8] and 
have made significant contributions to localization research. 

In this particular work, the Cramer-Rao Lower bound and MLE were derived 
for algorithms based on TOA and RSS. This requires that all devices in the net-
work provide estimated range between themselves and their neighboring refer-
ence nodes. Localization accuracy is largely dependent on anchor or node densi-
ties. Hence, accuracy could become an issue in low density networks. On the 
other hand, large data overhead could negatively impact data transmission rate 
and life span of the network. 

The effects of antenna polarization on localization accuracy of objects in an 
indoor environment were examined. The research established that the accuracy 
of localization was significantly related to the position of range measurement 
[9]. Also, it was established that the accuracy of localization is significantly re-
lated to the precision of range measurement. The research attempted to show 
that polarization angle affect RSS values and consequently the final localization 
estimate. 

Various forms of weighted algorithms were also proposed. Basically, a rational 
attenuation exponent was developed, then the position of the targeted node is 
established through a form of centroid localization [1]-[8] [10]-[17]. Other con-
cepts divided anchors into different groups and each group with a Path Loss 
Exponent (PLE), or the PLE is iteratively estimated from the anchor node of in-
terest and based on the self-estimated PLE, calculate its own position [11] [12]. 

Some RSS-based location estimation algorithm for WSN combines Genera-
lized Regression Neural Network (GRNN) and weighted centroid localization 
(WCL). To mitigate the instability of RSS, they proposed real-time training 
scheme that was capable of adapting to the changes in channel characteristics of 
WSN. They opined that the scheme was flexible and could match the spatial and 
temporal changes in wireless channel environment. In the algorithm, reference 
sensor nodes were permanently installed in some known locations. RSS mea-
surements at all the access points (AP) from the reference sensors and their 
known locations (two dimensional coordinate data) were separately used to train 
two GRNN networks separately. After estimating the approximate location of 
the unknown node and its neighbors using GRNN, the final estimation is done 
by WCL [15]. 

Although existing literature review on the reliability of RSS is inexhaustible, 
nevertheless, there is a general agreement that raw RSS values in an indoor en-
vironment are unreliable with respect to distance. Also, what is clear from the 
foregoing is that most algorithms do rely on RSS in one form or another for fin-
ger printing or terrain mapping to estimate location. However, to the best of our 
knowledge there is no proposal to directly alter the reliability of RSS with respect 
to distance, prior to its direct application to localization. Consequently, our 
proposed algorithm seeks to fill this gap. 
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3. Related Theory 

Ranging methods focus on estimating the distance between a transmitter and a 
receiver, by exploiting known signal characteristics. For instance, nodes that are 
location unaware (free nodes) that are within the communication range (radii) 
of anchor nodes, can use the RSS from the anchors for distance estimation. If the 
anchors signal strength is known, along with the attenuation law for signal 
strength as a function of distance, then the receiver node can use RSS to estimate 
its distance from the sender [18]. However, in an indoor environment the recep-
tion of radio signals becomes more complicated. RSS/distance relationship can 
vary substantially in an indoor environment due to a host of factors, such as: 
- Reflection from smooth surfaces or metallic objects.  
- Superposition of electromagnetic fields.  
- Diffraction.  
- Refraction.  
- Diffusion.  
- Absorption.  
- Polarization of electromagnetic fields.  
- Receiver circuit.  

In free space, received signal strength is inversely proportional to the square of 
the distance between two sensors. The free space model provides a measure of 
path loss as a function of transmitter-receiver (T-R) separation when the trans-
mitter and receiver are within line-of-sight (LOS) range in a free space environ-
ment. The model is given by Equation (3) which represents the path loss as a 
positive quantity in dB.  

( )2

1RSS
distance

∝                        (2) 

( )
( )

2

10 2 2
10 log

4π
t rG G

PathLoss d
d
λ 

= −  
  

                (3) 

where tG  and rG  are the ratio gains of the transmitting and receiving anten-
nas respectively, λ  is the wavelength in meters, and d is the Tx-Rx separation 
in meters. However, the free space path loss equation provides valid results only 
if the receiving antenna is in the far-field. The far-field is defined as the distance 

fd  given by Equation (4).  
22

f
Dd
λ

=                            (4) 

where D is the largest linear dimension of the antenna. For a receiver to be con-
sidered in the far-field of the transmitter, it must satisfy fd D  and fd λ . 
Hence, Equation (3) is not applicable in our situation. Nonetheless, in reality, 
RSS is highly affected by changes in environmental conditions particularly in an 
indoor environment. Some of the factors that cause signal strength attenuation 
make RSS not to correlate with distance, and some of the factors change from 
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one enclosed medium to another. Hence, providing a generalized RSS model 
that could be applicable in all indoor conditions would be very difficult. 

RSS or received power, rP , is related to distance, d and is given by the 
log-distance path loss model, which assumes that path loss varies exponentially 
with distance. The path loss in dB is given by Equation (5)  

4π
r

t r
t

P G G
P d

λ = ⋅  
 

                       (5) 

where, rP  is received power, tP  is transmitted power, tG  and rG  are 
transmitter and receiver antenna gains respectively. λ  is the wavelength of the 
signal transmitted and d is distance between antennas. This equation is called 
the Friis equation. Thus, Equation (6) can be modified as a log-normal shadow 
model as follows, 

( )[ ] ( )[ ]0 10
0

dBm dBm 10 log dP d P d X
d σγ

 
= − + 

 
           (6) 

where ( )0P d  represents the transmitting power of an anchor node at a refer-
ence distance 0d  and d the distance between the anchor and the object to be 
localized, γ  is the path loss exponent and Xσ  is the shadow fading which 
follows zero mean Gaussian distribution with σ  as standard deviation. 

Shadowing is due to obstructions caused by hills and buildings, and will be of 
little effect in our case study, while multipath fading due to the constructive and 
destructive interference of transmitted signal will be of significance in an indoor 
environment. Hence, considering that we are interested in indoor localization, 
particularly in the context of this paper, where we expect the size of a room or 
hall way to be between 16 m2 and 25 m2, and a maximum distance of not more 
than 20 m between the transmitters and receivers, the effect of Xσ  can be neg-
lected. Thus, Equation (7) will be modified as the log-distance path loss model, 
which assumes that path loss varies exponentially with distance.  

( )[ ] ( )[ ]0 10
0

dBm dBm 10 log dP d P d
d

γ
 

= −  
 

              (7) 

Consequently, the function of received signal, ( ),f RSS γ  could be esti-
mated. The value of the path loss exponent γ  varies depending upon the envi-
ronment. In free space, it is equal to 2 [14]. 

4. Experimental Set-Up 

In this section we outlined the methodology applied to obtain the RSS measure-
ments required for RSS-distance estimation. We also describe the location in 
which the measurements were carried out. One of the main purposes of this re-
search is to propose a reliable non site specific mechanism for estimating RSS 
relationship with distance. Consequently, the succeeding experiments were 
conducted to establish that there exists a relationship between RSS and distance 
that could be explored towards developing an algorithm for the manipulation of 
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RSS data in location estimation. 
A major problem in indoor localization is mapping RSS to distance, as each 

indoor environment presents its own unique challenges with regards to the ir-
regularities of RSS with respect to distance. Fashioning a procedure to manipu-
late RSS values from location aware nodes (anchors) will be of great significance 
to the effectiveness of the application of WSN in indoor localization. This sec-
tion describes the testbeds used in conducting the four experiments relevant to 
our RSS-Distance algorithm. Two of the experiments were carried out using Xbee 
radios while the other experiment was carried out using Micaz sensor nodes. 

4.1. Experimental Testbed 

In our experiments, we used both Xbee radios and Micaz sensor nodes, both of 
which use the more advanced CC2420 radio chip and comply with IEEE 
802.15.4 WSN standards. CC2420 operates in 2.4 GHz Industrial, Scientific and 
Medical (ISM) band, with an effective data rate of 256 kbps, which is a much 
higher rate than older radios (see Table 1). 

In the 2.4 GHz band, the CC2420 has 16 channels, with each channel occupy-
ing a 3 MHz bandwidth with a centre frequency separation of 5 MHz for adja-
cent channels. The radio chip uses an encoding scheme that encodes 32 chips for 
a symbol of 4 bits. The encoded data is then OQPSK (offset quadrature phase 
shift keying) modulated. The CC2420 radio chip provides useful information on 
RSS. Using micaz and Xbee radio (both of which use CC2420 chip), the experi-
ment was conducted in Fraser Noble building at the University of Aberdeen with 
minimal human interference. Nevertheless, interference was generated by the 
persons taking readings of the radios from the sensor nodes. The received signal 
is analyzed with regards to the received signal power levels (RSS in dBm). The 
measurements were taken at various distances.  

( )
( ) [ ]010 log dBm

P d
RSS RSS

P d
= =                 (8) 

4.2. Phase 1 of the Experiment 

As earlier stated, the experiments were conducted in two phases. The first phase 
was to simply establish that RSS could provide a level of reliability as an indica-
tor for localization. The second phase was conducted to generate a reasonable 
level of data to enable the modeling of RSS-distance normalization algorithm. 
 
Table 1. Comparison of the CC2420 with RFM TR1000 and CC1000 radios. 

Radio Platforms Data Rate Keying Encoding 

TR1000 Mica 13.3 kbps ASK SEC DED 

CC1000 Mica2 19.2 kbps BFSK Manchester 

CC2420 
Micaz, Telos,  
Intel Mote2 

256 kbps OQPSK Spread Spectrum 
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4.2.1. Xbee Radio 
This experiment was conducted for the purpose of establishing the level of con-
nectivity and reliability of RSS values between transmitter and receiver. Two 
Xbee radios and two laptops were used in the experiment; one radio was confi-
gured using a laptop as the Coordinator and the second was configured as the 
Router. The X-CTU software tool, which is used for running range test was used 
to configure the radios. ZigBee protocol standard was used as the protocol for 
communication between the radios. RSS readings were taken at various dis-
tances from the Coordinator to the Router and vice-versa, also, the theoretical 
received power was calculated for each corresponding distance. Table 2 is the 
readings taken during the experiment, while Figure 1 is the schematic layout of 
the setup.  

4.2.2. First Experiment Using Micaz 
The first experiment using Micaz was set-up to analyze variation in connectivity 
of free sensor node from a single anchor. The anchors and base station (free 
sensor node) used in the experiment are made by CrossBow. The sensors were 
MicaZ MTS 420, while the base station was MIB520. The software, MoteView, a 
graphical user interface (GUI) based on TinyOS, was used to configure the 3 
MicaZ sensor nodes used in the experiment. The MIB520, acting as a base sta-
tion (BS) was connected to a laptop through a USB port, to be able to measure 
desired data using the MoteView. This set-up forms an XMesh network. The 
XMesh network requires that a node be programmed with the BS to form a sin-
gle unit in order to be able to receive data from the three MicaZ nodes. Table 3 
indicates the RSS value of each sensor node at particular distances, while Figure 
2 is the schematic representation of the experimental setup.  
 
Table 2. RSS values at varied distance. 

Distance (m) Theoretical Rx Coordinator Rx Router Rx 

1 −30.9 −49 −50 

3.1 −40.8 −50 −50 

6.2 −46 −53 −55 

9.89 −50 −56 −56 

12.99 −53.3 −58 −58 

16.09 −55.2 −53 −53 

 
Table 3. RSS values at varied distance using Micaz. 

Distance (m) Node 1 (dBm) Node 2 (dBm) Node 3 (dBm) 

1.35 −69 −62 −75 

2.50 −69 −66 −69 

3.14 −76 −69 −76 

3.25 −70 −70 −78 

5.25 −86 −79 −82 
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Figure 1. RSS observed from different locations using Xbee radios. 
 

 
Figure 2. RSS observed from different locations using Micaz sensors. 

4.2.3. Second Experiment Using Micaz 
The second experiment was conducted to analyze the variation in connectivity 
between a cluster of anchors and a free sensor node. Using 9 MicaZ sensors; one 
as a base station and the other 8 as two separate clusters, with each cluster com-
prising four sensor nodes. Each cluster covers a geographical space of about 
16m2 and the cluster about 7 m apart from each other. The base station was sta-
tioned about 2 m away from one cluster at Location 1 and about 5 m from the 
other cluster at Location 2. Fifteen RSS data samples were recorded for each 
cluster. Using Matlab, the 15 RSS sample readings concurrently taken from 2 
different cluster was modeled as a 200 data sample for each cluster. Each data 
sample was the average reading of the 3 highest RSS values from each cluster. 
Figure 3 is a schematic layout of the experimental setup.  

4.3. Discussion and Findings for Phase-1 Experiments 

We conducted experiments to investigate the reliability of RSS in localization. 
Consequently, we set out to measure the RSS values of Xbee radios and MicaZ 
sensor nodes with respect to distance. The experiments and all measurements 
were performed in Fraser Noble Building, University of Aberdeen. The Xbee ra-
dios and micaz nodes were placed 1.45 m above the laboratory floor level and 
the radios were in line of sight. For the two Xbee radios, we transmitted packets 
at various distances (between 0 and 17 m), and collected RSS values of the two 
radios at various distances using the X-CTU software. Least-square regression 
analysis was carried out on the data and the regression equation is as given be-
low:  
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Figure 3. Layout of the sensor nodes. 

 

1 2 313.3 0.626 0.53 0.66Y X X X= − − − −                 (9) 

From the least-square regression analysis conducted on the collated data, the 
adjusted R-square values for the two graphs were reasonably high. The adjusted 
R-square is an indication of observed variation. Variability in actual radio 
transmission patterns can have a substantial impact on localization accuracy de-
pending on the localization technique. Unlike the theoretical perfect circles, 
measured reception distance of radios can vary substantially with environmental 
conditions and antenna irregularity. However it is documented that proximity 
based algorithms are substantially unaffected by variation [13]. By implication, 
from Figure 4, it is safe to conclude that 76.5% of our observations fit well with 
the expected linear model, while 23.5% are because of errors due to multipath 
fading and the degree of irregularity (DOI) of radio wave pattern. Hence, this 
degree of accuracy will be sufficient for position estimation using proximity 
based algorithms.  

Also, when the average value of the RSS for the two Xbee radios in the first 
experiment were used as shown in Figure 5, the adjusted R-squared value rose 
to 83.45%, which further underscores the reliability of RSS in localization.  

Our second experiment was conduct strictly for the purpose of validating our 
findings from the first experiment with Xbee radios. All the sensors were confi-
gured with the MoteView. RSS values as shown in Table 3 were taken at differ-
ent locations from different distances. Least-square regression analysis was car-
ried out on the data and the regression equation is as given below:  

1 2 311.3 0.0309 0.210 0.0319Y X X X= − − − −            (10) 

Figure 6 is the least-square regression plot of the recorded RSS data from the 
second experiment using Micaz. From the graph it can be seen that the variation 
is very low (2.9%). 97.1% of our observations fits well with the expected linear 
model. Lastly, Figure 7 shows the plot of RSS measured from the Xbee Coordi-
nator radio to the Router radio and vice-versa, it is near symmetrical, an indica-
tion of reliability between transmitted and received signals. 
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Figure 4. Plot of the Relationship between RSS and distance using Xbee Radio. 

 

 
Figure 5. Plot of the Relationship between Average RSS and distance using Xbee Radio. 

 

 
Figure 6. Plot of the Relationship between RSSI and distance using MicaZ. 
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Figure 7. RSSI plot from Coordinator radio to Router radio and vice-versa. 

 
However, it should be noted that there were no physical obstructions between 

the radios. Nonetheless, the findings in this experiment shows that proximity 
based algorithms can use RSS as an indicator for localization. The small varia-
tions in RSS measured could be attributed to channel variations. This finding is 
significant, as it shows the positive trend in the level of hardware calibration in 
the radios employed in WSN. It further buttress the fact that with better calibra-
tion, RSS can be used as a key location estimator in localization. 

In the second experiment using Micaz, an analysis of the plot shows that the 
deviation of the cluster of anchors closer to the reference sensor was lower than 
the deviation of the cluster of anchors farther from the reference sensor (2.317 
and 4.795 for the closer and farther clusters respectively). Figure 8 is the plot of 
the RSS values at the different locations, Figure 9 is a scatter plot indicating the 
density of RSS reading at each location.  

In addition, the range between the maximum and minimum RSS values be-
tween the clusters closer to the reference sensor was 7 dBm as compared with 16 
dBm for the clusters farther away from reference sensor. These values should be 
expected because range estimation error, when it can be quantified, is typically 
proportional to range such that short range measurements are more accurate 
within a few meters than longer range measurements. RSS measurement for 
ranging is a near versus far technique that can provide fairly accurate informa-
tion about proximity but less accurate with regards to true range. This connec-
tivity variation forms the basis of our algorithm. A knowledge of precise distance 
is not essential using connectivity, what is important is that the algorithm pro-
vides information about the relative positions of objects of interest within a 
known enclosed geographical space. 

5. RSS-Distance Algorithm Development 

The objective of the algorithm is to establish a best fit relationship between RSS 
and distance. The aim of our proposed method is to smooth out the irregularities,  
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Figure 8. RSS observed from 2 different locations. 
 

 
Figure 9. Scattered plot indicating RSS density at each location. 

 
due to multipath effect in the link quality as indicated by the RSS. The idea is to 
determine a best fit RSS-distance value over a pre-determined window size. In 
our case study, each sampled average is over a window size of three consecutive 
RSS values that are between 0.5 m and 1 m distance apart. 

There is a direct correlation between the error margins in localization and the 
distance intervals selected for RSS sampling [16]. For higher granularity, the 
sampled distance interval will have to be smaller, hence, the sample rate over an 
area will increase. Consequently, the reliability and accuracy of the processed 
RSS data will increase. However, this will lead to higher demands on the WSN 
processors and power systems. 
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5.1. Phase 2-Experiment Using Xbee Radios 

This experiment was conducted to collate RSS data over given distances in an 
enclosed environment, given that it was established from the two preceding ex-
periments that RSS was a good connectivity indicator. Two Xbee radios were 
configured for this experiment. Using the X-CTU software, one radio was con-
figured as the Coordinator while the other was the Router. The Coordinator 
served as the anchor radio while the Router was employed as the radio of the 
free node to be localized. The radios were operated at 2.4 GHz and at full power. 
The transmission power of the radio was 1 mW (0 dBm), with a receiver sensi-
tivity of −92 dBm. 

The radios were placed on a flat surface 1.2 m above ground level. The hall 
way used for the experiment was unevenly shaped with different objects and 
equipment placed along the hall way. The sides walls were made of a combina-
tion of materials such as, bricks, wooden surfaces and metals. RSS readings were 
taken at 0.5 m intervals over a distance of 12 m. Table 4 is the collated RSS val-
ues.  

Xbee radios have an estimated indoor transmission range of 30 m with a re-
ceiver sensitivity of −92 dBm. Signal readings were taken between 0.5 m and 12 
m at intervals of 0.5 m, which are certainly within the transmission range of the 
radios. The choice of distance limitation for the experiment was to ensure that 
RSS readings were consistent and repeatable within the same experimental 
set-up. Hence, the RSS values in Table 4 are the average sample readings taken 
over a period of 2 weeks during different periods of the day. The choice of 0.5 m 
interval for RSS data collection is indicative of the required level of accuracy for 
localization. A higher level of accuracy would require a smaller distance sample 
interval. From Equation (7), we can now model the relationship between dis-
tance and RSS as:  

1020 log 39Y X= −                       (11) 

where 2γ =  in free space and 
0

d X
d

= . Based on the data collected, we can 

express distance as X(m) and the measured RSS as Y(dBm) for the test bed area. 
We therefore, set our reference datum using Equation (12), which is the 
log-distance model for the propagation of the RSS data in free space. We com-
pared the log-distance model with the simple moving average model and our 
proposed model. 

The objective of this method was to check for consistency, which can be de-
duced by observing the standard deviation of each process from the idealized 
RSS model. Since the standard deviation in each distance estimate is directly 
proportional to the increment of the true distance to the transmitter, thus, the 
accuracy of the resulting location estimate depends directly on the standard 
deviation [16]. Therefore, we will compare the regression plots of the original 
data with the ideal log-distance data. The log-distance plots will then be com-
pared with SMA model and our proposed model. 
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Table 4. RSS readings at 0.5 m intervals. 

XY Coordinates (m) RSS (dBm) 

0.5, 0 −39 

1.0, 0 −48 

1.5, 0 −51 

2.0, 0 −49 

2.5, 0 −55 

3.0, 0 −56 

3.5, 0 −52 

4.0, 0 −53 

4.5, 0 −48 

5.0, 0 −54 

5.5, 0 −54 

6.0, 0 −50 

6.5, 0 −53 

7.0, 0 −60 

7.5, 0 −51 

8.0, 0 −51 

8.5, 0 −53 

9.0, 0 −53 

9.5, 0 −61 

10.0, 0 −62 

10.5, 0 −60 

11.0, 0 −58 

11.5, 0 −61 

12.0, 0 −62 

5.2. Ideal Log-Distance Model 

Equation (12) was used to generate the log-distance RSS values from the raw RSS 
values. Using Matlab, the regression model of the measured data (raw data) and 
the ideal log-distance path loss is as shown in Figure 10.  

As seen from the graph, the combined influence of reflection, diffraction, and 
scattering causes multipath effects. At some points, the multipath signal com-
ponents combine at the receiver to form a distorted version of the transmitted 
waveform. The signals could combine constructively or destructively depending 
on phase variations of the component signals. The destructive combination of 
the multipath components results in attenuated received signal at points where 
RSS is less than the corresponding log-distance value and constructive where the 
RSS value is greater than the log-distance value. 
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Figure 10. A plot of the measured data and Ideal Log-Distance value. 

 
Two major factors of the plots where selected for analysis; the standard devia-

tion and the range between the minimum and maximum RSS values in each 
plot. This is as shown in Table 5.  

As expected, propagation of radio signal has a log-normal distribution in free 
space, hence an idealized RSS value will steadily decrease with distance loga-
rithmically. The log-distance value has a larger range of RSS values than the ex-
perimental values. Also, the log-distance plot has a larger standard deviation 
than the experimental values. There is very little information that could be in-
ferred from this comparison because the idealized log-normal plot pattern is ex-
pected to be consistent, while the actual signal plot would change based on en-
vironmental conditions. Nonetheless, in this particular plot, the effect of signal 
amplification of the experimental RSS data resulted in a smaller range between 
RSS values and this is significant as it influenced a better standard deviation than 
that of the idealized log-distance model. 

5.3. Simple Moving Average Algorithm 

Simple Moving Average (SMA) is an unweighted mean of a set of data, it is used 
to identify a trend or direction of a set of data. SMA ensures that variation in the 
mean are aligned with the variation in the data. The major appeal of the SMA is 
the ease with which it can be calculated. An advantage to the limited processing 
and energy power of off the shelf sensor nodes. In our situation, given the set of 
measured RSS values obtained at the receiver, over a maximum distance of 12 m 
from the transmitter at intervals of 0.5 m. This situation is depicted in Figure 
11.  

For a set of RSS values, the SMA for a group of equally weighted data with a 
window size of three is; 
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which can be represent by the Equation (12) below;  
1

1 1
1
3

n

k k k k
k

RSS a a a
−

− += + +∑                    (12) 

where n and k are positive integers and 1n k= + . 
A regression model of SMA along with the original model of the raw RSS val-

ues and the ideal log-distance value is as shown in Figure 12. 
Table 6 shows that the RSS range value of the measured data and the SMA are 

similar in range; 14 and 15 respectively. However, the application of SMA to the 
measured data improved the standard deviation of the data from 4.206 to 3.62.  
 

 
Figure 11. A pictorial representation of SMA estimation process. 
 

 
Figure 12. A regression plot of SMA, measured data and the ideal log-distance values. 

 
Table 5. Regression analysis of measured RSS values and idealized model. 

 Experimental RSS data Ideal log-distance data 

STD 4.206 5.862 

Range 14 20.83 
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Table 6. Regression analysis of measured RSS values and SMA. 

 Experimental RSS data SMA data 

STD 4.206 3.62 

Range 14 15 

5.4. Proposed Algorithm 

In our experiment, we took measurements at 0.5 m intervals, which ensured that 
we were able to compare three discrete signal measurements that were within a 
0.5 m radius. As earlier noted, the major problem with signal measurement in an 
indoor environment is the consistency in the RSS-distance relationship. Hence, 
the focus of our proposed algorithm was to enforce a level of consistency. Thus, 
three discrete and sequentially measured signals will be compared, and the 
maximum RSS value of the compared RSS data will be selected, this process will 
be repeated until all the observed data are considered. 

In our case, the RSS values at 1.0 m, 1.5 m and 2.0 m were compared and the 
maximum of these values selected for the 1.0 m position. These same steps will 
be repeated to get a new RSS value for the position 1.5 m, given a set of discretely 
measured RSS signals taken at a sample interval of 0.5 m; 

1 2 3, , , ,n nRSS a a a a=   

Hence, selecting the first three measured RSS data, the new RSS, 1X  will be; 

{ }1 1 2 3max , ,X a a a=  

likewise; 

{ }2 2 3 4max , ,X a a a=  

{ }1 2max , ,k k k kX a a a+ +=  

where n and k are positive integers; and 2k n+ ≤ . We applied our proposed 
algorithm to the measured RSS data and applied regression model to compare it 
with the original RSS data and the ideal log-distance data. This is displayed in 
Figure 13.  

Using our proposed algorithm, Table 7 shows that our proposed algorithm 
has a higher RSS data range of 21 than the measured RSS value, which is 14. 
Likewise, it also has a higher deviation than the measured RSS value. The pro-
posed algorithm has an approximate standard deviation of 4.4 compared with 
4.2 for the measured value.  

6. Discussion and Findings 

Indoor conditions make RSS-distance relationship fairly unreliable. The objec-
tive of most algorithms is to create a form of consistency between RSS and dis-
tance. A correlation between RSS and distance that is very similar in characteris-
tics with the idealize model or propagation of RSS in free space is desired. In this 
case, we have an idealized situation using the log-distance model. Consequently, 
the best algorithm as presented in this paper will be the algorithm that best rep-
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licates the characteristics of the log-distance model. Therefore, the key characte-
ristics that will be the focus of our discussion will be range and standard devia-
tion. Using Figure 14 and Table 8 we will examine each of these factors one af-
ter the other. 
 

 
Figure 13. A regression plot using the proposed algorithm, measured 
data and the ideal log-distance values. 

 

 
Figure 14. A regression plot of measured data, ideal log-distance 
values, SMA and the proposed algorithm. 

 
Table 7. Regression analysis of measured RSS values and proposed algorithm values. 

 Experimental RSS data Proposed Algorithm data 

STD 4.206 4.358 

Range 14 21 
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Table 8. Log-distance plot compared with Raw RSS, SMA and proposed algorithm. 

 STD Range STD Difference Range Difference 

Measured data 4.206 14 1.656 6.83 

Log-distance 5.862 20.83 - - 

SMA 3.62 15 2.242 5.83 

Proposed Algorithm 4.358 21 1.504 0.17 

 
In this paper, range is a measure of the log-normal decay of the RSS values 

with respect to distance. It will be misleading to use the experimental RSS data as 
the reference data, as the nature of this data will change based on environmental 
conditions. What is consistent and expected is a log-normal decay of RSS with 
increasing distance in free space. Therefore, a good algorithm will seek to modify 
experimental RSS data to reflect the ideal log-distance model. The algorithm 
should be close in value to the log-distance data. In our experiment, looking at 
Table 6, our proposed algorithm best fit this characteristic. Looking at the range 
values, the proposed algorithm returned the smallest differential (1.504) when 
compared with the ideal log-distance model.  

The second value is the standard deviation. The standard deviation indicated 
in Table 8 could be misleading, as it is only the deviation of the group of data 
within each algorithm. To establish a direct relationship between SMA and our 
proposed algorithm, we processed the standard deviation of the RSS values gen-
erated through each process, then subtract the RSS value of each algorithm from 
the corresponding log-distance value at certain intervals. Through this process, 
we observed that the proposed algorithm gave the lowest standard deviation dif-
ferential (0.17). This shows that our proposed algorithm is closer in form to an 
ideal log-distance model than that of SMA and much better than that of the 
measured data. Thus, there is a clear indication that our proposed algorithm best 
replicates the raw RSS values to a form that best fit an ideal log-distance signal 
model. 

7. Conclusions 

RSS is a free WSN resource for localization, however, with a high level of uncer-
tainty when used in its raw form for indoor distance estimation and conse-
quently, poor localization estimates. Experiments were conducted to establish 
that RSS was a reliable connectivity index that could be manipulated for location 
estimation. The main idea behind our algorithm was to select the best fit RSS 
value within a range of relatively small contiguous set of raw RSS values called a 
window size. This was to ensure consistency between RSS and distance and also 
to reduce outlier effects in RSS-distance values. We observed that this approach 
improved the trend of RSS-distance relationship when compared with an idealized 
radio wave propagation model. It is believed that the proposed RSS-Distance algo-
rithm when applied to raw RSS data prior to localization will reduce location es-
timation errors. 
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We believe that this novel procedure will improve localization of objects both 
indoors and outdoors. Nonetheless, we are aware that the proposed algorithm 
still needs to be subjected to experimental rigors, where RSS is a key determinant 
factor for location estimation. However, we believe this process will be of signif-
icant relevance to proximity based algorithms such as centroid localization algo-
rithm. Furthermore, it is also believed that this algorithm will have strong appli-
cation towards improving the accuracy of other range-based algorithms with 
respect to distance estimation, especially range-based algorithms that use Time 
of Arrival (TOA) for estimation. This possible field of application could form the 
basis for future research. 
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