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ABSTRACT 

The main goal of this paper is to design nanorobotic agent communication mechanisms which would yield coordinated 
swarm behavior. Precisely we propose a bee-inspired swarm control algorithm that allows nanorobotic agents commu- 
nication in order to converge at a specific target. In this paper, we present experiment to test convergence speed and 
quality in a simulated multi-agent deployment in an environment with a single target. This is done to measure whether 
the use of our algorithm or random guess improves efficiency in terms of convergence and quality. The results attained 
from the experiments indicated that the use of our algorithm enhance the coordinated movement of agents towards the 
target compared to random guess. 
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1. Introduction 

The problem of controlling large groups of agents to- 
wards a specific target is not new. Genetic algorithms 
(GA) and other evolutionary programming techniques 
have been dominantly proposed for tackling this problem 
in the past [1]. In this manuscript, the main goal of this 
paper is to design nanorobotic agent communication me- 
chanisms which would yield coordinated swarm behavior. 
This target is perceived to represent a foreign body in the 
human body like environment which the swarm is aimed 
at locating and destroying. We precisely investigate com- 
munication control issues in swarms of bee-like nanoro- 
botic agents. Medical nanotechnology has promised a 
great future including improved medical sensors for di- 
agnostics, augmentation of the immune system with me- 
dical nano-machines, rebuilding tissues from the bottom 
up and tackling the aging problem [2]. Proponents claim 
that the application of nanotechnology to nano-medicine, 
will offer ultimate benefit for human life and the society 
eliminating all common diseases and all medical suffer- 
ing [3]. This work is primarily motivated by the need to 
contribute to this common goal. Most of the researches 
that have been completed so far focus mostly on the con- 
trol of a single agent [4]. Increased efforts have begun to- 
wards addressing systems that are composed of multiple 
autonomous mobile robots [5]. In some cases, local in- 

teraction rules maybe sensor based, as in the case of 
flocking birds [6]. In other cases these local interactions 
may be stigmergic [7]. In this work, the bee agents we 
propose have no leader to influence other bees in the 
swarm to fulfill their low level agenda. Each bee agent 
responds to some form of local information which is 
made available through the local environment and direct 
message passing. 

2. Related Works 

Communication is a necessity in multi agent emergent 
systems as it increases agent’s performance. Many agent 
communication techniques assume an external commu- 
nication method by which agents may share information 
with one another. Direct agent communication includes 
waggle dancing, a technique used by bees when they are 
communicating the source of food and signaling [8]. In 
our context a swarm can be defined as a collection of 
interacting nanorobotics agents. The agents will be de- 
ployed in an environment which is a substrate that facili- 
tates the functionalities of an agent through both observ- 
able and unobservable properties. Given the above view 
swarm intelligence is the self organizing behavior of cel- 
lular robotic systems [9]. Swarm does not have a central- 
ized control system and individual responds to simple 
and local information that allows the whole system to  
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function [10]. Bee agents in this research will be repre- 
sented by nanorobotic agents, defined as artificial or 
biological nanoscale devices that can perform simple 
computations, sensing or actuation [11]. In this research, 
we will interchangeably use the terms nanorobots, na- 
nites and nano-robotic agents to refer to tiny and auto- 
nomous devices that are built to work together towards 
achieving a collaborated solution, the same way natural 
bee swarms. 

Foraging is a task of locating and acquiring resources 
and has to be performed in unknown and possibly dy- 
namic environments [12]. When the foraging bee dis- 
covers the nectar source, they commit to memory infor- 
mation on direction in which the nectar is found, the dis- 
tance from the hive and its quality rating [13]. On return 
to the hive they perform waggle dance on the dance flow 
[14]. The dance expresses the information of the direc- 
tion, distance and quality of the nectar source. Onlooker 
bees assess the information delivered and make a deci- 
sion to follow, remain in the hive or randomly wonder. 
The recruitment among bees is associated with the qual- 
ity of the nectar source [15]. A nectar source with a lot of 
nectar and near the hive is recognized as more promising 
and would attract more followers [16]. In the event that 
the bees want to relocate due to some reasons, the queen 
bee and some of the bee in a colony leave their hive and 
form a cluster on a nearby branch [17]. Upon returning to 
the cluster the searching bees perform a waggle dance 
[18]. In a dance commonly known as waggle dance, 
agents can communicate the distance and direction of the 
target to observing novice agents [14]. The dance com- 
munication techniques in bee agents have been extended 
to applications in database querying, particularly evalu- 
ating the similarities between the recommender systems 
to the user query [19]. In [15], the travelling salesman 
problem was proposed. In their version a number of 
nodes dotted in the network and the hive was located at 
one of the nodes. To collect as much nectar, the artificial 
bee agents had to fly along a certain link and need to 
locate the shortest path to the source. The Bee Colony 
Optimization (BCO) was proposed to solve combinato- 
rial optimization problems [20]. Two main elements of 
BCO is forwards pass and backwards pass. A partial so- 
lution was generated when the bees preformed a for- 
wards pass which was accomplished by the combination 
of individual exploration and collective experience for 
the past. A backward pass was performed when they re- 
turned to the hive. The step was followed by decision 
making process. It was inspired by a swarm of virtual 
bees where it began with bees wandering randomly in the 
search environment [14]. Virtual Bee Algorithm (VBA) 
initially created a population of virtual bees, where each 
bee was associated with a memory bank. Then, the func- 
tions of the optimization were converted into virtual 

food source. The direction and distance of the virtual 
food were defined. Population update is through waggle 
dance. 

This strategy combines recruitment and navigation 
[14]. Recruitment strategies were employed to commu- 
nicate the search experience to the novice bees in a col- 
ony. Strategies included such thing as dancing processes, 
communicating information of distance and direction of 
the nectar source. The other half of the algorithm, navi- 
gation is mainly worried about discovering undiscovered 
areas. In [14], the non pheromone algorithms proposed 
by Lammens in his recruitment and navigation model 
was presented. The algorithm has three (3) functions 
namely ManageBeesActivities, CalculateVector and Dae- 
monAction. 

The models use mathematical model adopted from [21] 
which is inspired by the way bees forage in search of 
food. In addition to already discussed algorithms, we 
reviewed Minimal communication [22], Knowledge- 
based-multi-agent communication [23], sensing commu- 
nication [24] and flocking [6]. As the agents move to- 
wards the target they communicate their proximity, di- 
rection and velocity. The kind of communication em- 
ployed in these kinds of scenarios is direct communica- 
tion and the agents will be communicating with the 
neighboring agents to maintain the same speed and dis- 
tance between agents. In [25] Packer describes experi- 
ments of a group of simulated robots which are required 
to keeping a side by side line formation whilst moving 
towards a goal. This algorithm provides a one on group 
communication. The idea proposed in aminimal commu- 
nication algorithm [22] has been improved in this algo- 
rithm and this will go a long way in solving our multi 
nanorobotic agents. This algorithm brings about the issue 
of proximity for communication to be more successful 
when they mention sense of sight.  

3. Methodology 

The agents must be able to assemble themselves to repair 
damaged vessels and it must be able to scan the envi- 
ronment in search of the target, In addition to what an 
agent can do us also need to consider the makeup of an 
agent that will enable it to execute the above mentioned 
tasks. 

The structure can be represented as a class with the at- 
tributes. 

3.1. Agent Class 

{int x; 
int y; 
intdy, dx; 
int state; // flagging, 1 , 2, ….. 
In this paper, the agents were deployed in an environ-  
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ment through a single entry point just like the way an 
injection is administered. The point of entry was defined 
and considered in terms of the y and the x axis. As soon 
as our nanorobotic agents are deployed into the environ- 
ment they start communicating among themselves and 
their environment. The goal for communicating disper- 
sion in nanorobotic agents is to achieve positional con- 
figurations that satisfy some user defined criteria. This 
behavior steers a nanorobotic agent to move to avoid 
crowding its local flocking mates. 

Algorithm 
If evaluate (pos) == unsatisfied then 
Move 
Else Do not move 
End if 
This algorithm can be diagrammatically represented as 

follows (See Figure 1). 
From Figure 1, unsatisfied situations can mean that 

nanites are too closed or too far apart from each other 
while satisfied situation should be the normal flocking 
position. 

The goal of each nanorobotic agent is to achieve and 
maintain a constant minimum and maximum distance 
from its neighboring nanorobotic agents. To enhance 
swarming, we provided an algorithm which makes all 
nanites to come closer to each other to maintain a swarm. 
We use the intuitive idea where each nanites move to- 
wards the centre of mass (COM) of all other nanorobotic 
agents where COM of n points p1 ……. pn is defined by 

1
1

n

i
p pi

n
                 (1) 

3.2. Algorithm 

If 1 2x   and 1 2y   then  
Do not move  
Else  
Choose dimension  d€ ,x y  for each d 1 2   
Move one step towards the COM. 
And representation diagrammatically as in Figure 2. 
In Figure 2, the black dots are nanorobotic agents, the 

tiny circle is COM and the arrows signify possible 
movement choices for each moving nanorobotic agent. 
Our nanorobotic agents will move towards the average 
destination neighbors keeping the swarm in alignment 
and moving together towards the same general heading. 
To align them the nanorobotics agents will need to 

 

 

Figure 1. An example of the dispersion algorithm in action. 

communicate velocity of the neighboring agent and ad- 
just its speed to suit the rest of the swarm. The main and 
final aspect of this research as mentioned earlier is to 
communicate the location of the target. As soon as one of 
the nanorobotic agents get in contact with the target in 
the environment it will change color and make some 
movements (waggle) observed by those within the same 
proximity. Agents within the proximity will also change 
color to red to show that they have received the message 
and they will move towards the target. In our simulator 
all user options are dynamic and may be switched during 
execution. Target deployment: The user can only deploy 
a sing target anywhere in the environment by assigning 
values for x and y axis in the target information panel. 
The agents in our simulator can be deployed in batches, 
starting form 2, 5, 10, 20 up to 50. Agent deployments: 
Agents enter the environment through a single entry 
point as defined by the user. The user will also enter the 
point of entry through accepting the x and the y axis 
value. Agent speed control: Speed of the nanorobotic 
agents can either be decreased on increased through a 
button under the agent information panel. 

Figure 3 shows the nanorobots swarming towards 
the target at closed formation. Here, the screen is the 
environment while the control panel is the agent and 
target information panel. Our approach, we kept a 
 

 

Figure 2. Cohesion diagrammatic representation. 
 

 

Figure 3. Simulator interface. 
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closer look on and avoid the following as our nanorobots 
will be sending a message to its neighbors; send wrong 
message or fail to send message. In our approach our 
nanorobotic agents are capable of observing and decod- 
ing message being sent by the waggling nanorobotics 
agent. After observation our agents will select the best 
waggle dance considering distance, direction and tar- 
get location. We logically present our algorithm as 
follows: 

a) Deploy target 
b) Deploy n agents 
c) Explore environment 
d) Communicate swarm direction 
e) Cohesion 
f) Agent collision avoidance 
g) If found = null: go back c. 
h) Communicate target location 
i) Coordinate movement towards communicated loca- 

tion. 

4. Simulation Scenarios 

The simulation environment should provide an accurate 
estimate of nanorobotic agent performance in the real 
human like environment. The potential metrics for nano- 
robotics agent’s communication and coordination are 
convergence speed and quality. Convergence speed was 
measured in terms of time and distance. Time was meas- 
ured in iterations. Quality was measured in terms of fre- 
quency and time. In order to examine the performance of 
the proposed communication control algorithm we first 
consider the efficiency of the following experiments: Dis- 
persion, Direction coordination, Cohesion control, and 
Target location. If the agents collide it may take a certain 
delay time to reassemble and that affect systems effi- 
ciency in performance. In the event that the agents are 
about to collide the separation algorithm will be called to 
disperse the near collision agents. We started by deploy- 
ing 2 agents in the environment to run at a speed 0.4. In 
the screen shot given above 10 nanorobotic agents have 
been deployed at position 0, 0 in terms of and y axis. We 
observed the agents and noted that they are moving in a 
single coordinated direction. As the agents will be scan- 
ning the environment each nanorobotic agents need in- 
formation about the speed of neighboring agent. 

5. Results and Discussion 

The results obtained from the simulation are presented 
below. 

Convergence speed: In this experiment two simulation 
setups have been chosen to compare and study perform-
ance and scalability of the proposed algorithm in terms of 
convergence speed. The setups were carried out in the 
same environment where number of agents was changed 

with the target remaining at the same position. The first 
simulation setup was made for reference case model fol- 
lowed by the coordinated simulation model. 

5.1. Parameter Justifications  

As shown in Table 1, we used three batches of 5, 10, and 
20 agents for both reference case model and coordinated 
agents model in order to ascertain the results in the event 
of doubled agents’ deployment. Simulation time has to 
be set such that we have the maximum limit to avoid 
running the simulation to infinite. The environment has 
been given as 884 × 418 following the measure of the 
canvas space given when we developed the simulator. 
The target was deployed at the midpoint for it not too far 
or too close to the boundary to enable more observation 
time. Agent deployment point was kept constant at point 
0, 0 to enable consistent results. Figure 4 given in the 
following shows summarized results obtained after run- 
ning some experimental simulation where agents are not 
capacitated with any control algorithm. The results shows 
that using random guess, the agents were able to locate 
the target after so many iterations. For testing purposes 
we ran the simulation three times with the same agent 
density in order ascertain how varied the results would be. 
The non-effectiveness of reference case model has shown 
high iteration values implying that there is low conver- 
gence speed. 

An effective “hit” occurs when 50% on the nanoro- 
botic agents find the target. The convergence properties 
were measured by running the model for three times on a 
group of 5, 10 and 20 respectively. In all runs, the refer- 
ence model achieved reaching the target after high itera- 
tion values. To evaluate the effectiveness of our algo- 
rithm in terms of convergence speed, we made several 
simulation runs. We fixed the target at mid point as justi- 
fied in simulations above and changed the number of 
agents from 5, 10 and 20 respectively. The results indi- 
cate that the agents were able to locate the target after far 
less iteration as compared to reference case model. Fig- 
ure 5 is the graphical representation for the results ob- 
tained. 

 
Table 1. Parameters for random guess. 

Description Values 

Number of agents 5, 10, 20 

Simulation duration (time step) 100 

Number of trials N 

Environment 884 × 418 

Target position in terms of (X, Y) Varied 

Agents entry point 442,209 
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5.2. Performance Measures of Our Agent  
Control Algorithm 

We have successfully deployed the agents in the envi- 
ronment in groups of 5, 10 and 20 respectively. We ob- 
served that the agents within the proximity will change 
color to red and move to the target instantly decreasing 
the iterations towards the target. Agents controlled by our 
algorithm achieved getting to the target in less iteration. 
We also observed that the more the agents the high the 
convergence speed though the variance is not that dis- 
tinct. In this research we drew up analogies between 
agent density and convergence speed. We have observed 
that the two are greatly related in that an increase in 
number of agent causes an increase in convergence speed. 
Another observation made is that as soon as one of the 
agents get informed all those agents within proximity get 
the information about the target location and they will 
immediately move towards the target meaning as the 
number increases the rate of confidence and convergence 
is increased. During the simulation some initially non 
informed agents had the opportunity to make new obser- 
vation that converts them into informed agents. We rec- 
ommend the deployment of many coordinated agents to 
enhance high convergence speed when using our algo- 
rithm. Not mentioning other factor the major or basic 
concept that enables high convergence speed is that we 
allow non informed agents to acquire informed state 
through interactions with neighbors. This will result in  

 

 
Figure 4. Reference case model graph. 

 

 
Figure 5. Results given different target position and varied 
number of agents. 

increasing in the number of informed agents hence high 
convergence speed. Random guess results have shown no 
consistence in terms of number of iterations. Conclu- 
sively we can safely say that convergence speed in- 
creases when agents are coordinated as compared to 
random guess and the number of agents takes a pivotal 
role convergence speed. Our algorithm allows all agents 
to follow dispersion, alignment, and cohesion rules to 
reach common decision in search of a target without 
complex coordination mechanism. 

Figure 6 shows coordinated agents in action searching 
for a target. In the screen shot it shows that as soon as 
one of the agents get in touch with the target it commu- 
nicates the information about the location of the target 
hence move directly towards the target increasing the 
frequency of “hitting” the target. Ultimately, this will in- 
crease the quality of emergence when using our algo- 
rithm. To authenticate our argument Table 2 shows the 
results obtained after a number of simulations to test for 
the quality when using our control algorithm. 

Figure 7 given below shows the corresponding results 
represented graphically. 

We observed that the agents within the proximity will 
change color to red and move to the target instantly. 
Agents controlled by our algorithm achieved high quality 
due to target location communication. 

6. Conclusions 

The bee agent control algorithm generally achieves better 
convergence speeds and qualities of emergence than the 
reference case model. Performances in both cases im- 
prove with an increase in agent density. Frequency of 
hitting the target increases as the number of informed 
agents increases in our algorithm compared to reference 
 

 

Figure 6. |Random wondering. 
 

Table 2. Coordinated agent results. 

 1st run 2nd run 3rd run 

5 18 16 15 

10 16 19 16 

20 17 20 18 
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Figure 7. Graphical results for coordinated agents. 
 
case model. Fast and coordinated swarm decisions mak- 
ing is prominent in bee agent control algorithm compared 
to reference case model. 

The results presented are a proof of concept that the 
bee agent algorithm we propose can successfully coordi- 
nate agents towards desired targets in specific environ- 
ments. As such, we contribute evidence of the potentials 
of similar algorithms to enhance search in human-body- 
like environments. In that way, connotations towards 
using the algorithm to control nanorobotic agents for 
health purposes are supported. A number of conclusions 
emanated from the results are reported in this work. 
Among these are: Swarms of bee-like agent that are de- 
ployed and controlled using the algorithm proposed in 
this work significantly out-performed the performances 
of swarms of random wandering agents that are deployed 
for the same purpose. We attribute these good results to a 
number of factors that are addressed by our algorithm. 
Most importantly our algorithm incorporate mechanisms 
in which the agents of the deployed swarm make use of 
local interactions and information to decide the direc- 
tion to follow in each step. This alone fosters the speed 
of convergence, and hence the quality of emergence be- 
havior that arises. 
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