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Abstract 
 
Wireless Sensor Networks (WSNs) attract considerable amount of research efforts from both industry and 
academia. With limited power and computational capability available on a sensor node, robustness and effi-
ciency are major concerns when designing a routing protocol for WSNs with low complexity. There are vari-
ous existing design approaches, such as data-centric approach, hierarchical approach and location-based ap-
proach, which were designed for a particular application with specific requirements. In this paper, we study 
the design and implementation of a routing protocol for data acquisition in WSNs. The designed routing 
protocol is named Centralized Sensor Protocol for Information via Negotiation (CSPIN), which essentially 
combines the advertise-request-transfer process and a routing distribution mechanism. Implementation is 
realized and demonstrated with the Crossbow MicaZ hardware using nesC/TinyOS. It was our intention to 
provide a hand-on study of implementation of centralized routing protocol for WSNs. 
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1. Introduction 
 
Thanks to recent advances in wireless communications 
[1] and electronics technologies, wireless devices with 
low price and high performance are now available in the 
market. Wireless communications can be infrastructure- 
based, e.g., multihop cellular networks [2], as well as 
infrastructureless, e.g., ad hoc networks. Recently, one 
type of ad hoc network, namely wireless sensor network 
(WSN) [3], becomes increasingly popular due to its wide 
applications, high flexibility and low cost. During the 
implementation of a WSN, adoption of small or even 
tiny devices is the first priority and the devices are usu-
ally referred to as sensor nodes. Unlike the traditionally 
large-size wireless devices, sensor nodes have many 
constraints such as scarce memory, limited power and 
low computational capacity. Furthermore, these sensor 
nodes are more prone to failures than other wireless 
communication devices. In addition, WSN is normally 
composed of a large number of sensor nodes. Therefore, 
as compared to conventional cellular networks, different 
approaches in designing wireless networking protocols 
are required for a WSN [4]. 

Many existing sophisticated networking protocols and 
algorithms that generally support point-to-point commu-
nications in traditional networks are not suited to the 
requirements of WSNs. Moreover, most of sensor nodes 
are usually unable to establish one-hop connections di-
rectly with the base stations or fixed access points due to 
their limited power, which unfortunately limits their 
transmission range. Consequently, they have to rely on 
multihop transmissions in order to communicate with the 
desired nodes, through data forwarding with the aid of 
their neighbors. 

Limited computational capacity limits the application 
of multihop routing among sensor nodes and poses a big 
challenge because it causes difficulty to set up and 
maintain a WSN. Besides, there are other challenges 
related to hardware and software of a sensor node, which 
is going to be discussed in this paper. That is why robust 
and flexible routing protocols are desired for WSNs. 
Furthermore, the constraints on each WSN might not be 
the same and trade-offs should be considered. These is-
sues should be considered dependent on the specific 
category of applications. As a result, various approaches 
have been studied during the design of routing protocols 
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for WSN [5]. 
In this paper, we design and implement a data-centric 

centralized routing protocol, namely Centralized Sensor 
Protocol for Information via Negotiation (CSPIN), which 
combines advertise-request-transfer process in SPIN [6] 
and the routing distribution mechanism. Two main ob-
jectives are to provide centralized control to the base 
station and to reduce unnecessary transmissions over the 
network. 

The rest of this paper is organized as follows. Section 
2 analyzes the challenges and requirements for the de-
sign of an efficient routing protocol for WSNs. Section 3 
presents the design concept using a general routing 
model and Section 4 describes the CSPIN implementa-
tion with Crossbow MicaZ hardware using nesC/TinyOS. 
Then the operation of CSPIN is explained in detail in 
Section 5. Finally, Section VI discusses and concludes 
about the work. 
 
2. WSN Routing Protocol Design Challenges 
 
This section provides the list of all the important and 
common challenges that are encountered by aforemen-
tioned applications. With these technical challenges in 
mind, we can be able to focus the critical issues during 
the design and implementation of a routing protocol for 
WSNs. 
 
2.1. Hardware Challenges 
 
1) Node Failure: since the sizes of sensor nodes are 
normally small, they are more prone to failure due to 
lack of power, physical damages or environmental inter-
ference [3]. Thus, the entire network may be suspended 
or interrupted because WSN relies on multihop transmis-
sions from each other. As a result, an adaptive routing 
protocol needs to be used to ensure reliability of the 
network if case of these failures. 

2) Node Density: since the number of sensor nodes in 
WSN may be in the order of hundreds or even thousands, 
depending on the requirement of a particular application 
[3], the network requires robust and flexible routing 
schemes to efficiently utilize a single node’s processing 
capacity. 

3) Power Limitation: due to their limited battery ca-
pacity, sensor nodes have a very short transmission range. 
Besides, the distance between a particular source-desti-
nation pair may be very long so that multihop transmis-
sion should be adopted due to out of communication 
range between them. In other word, the source node 
needs to rely on its neighboring sensor nodes to forward 
data towards to the destination node. 

4) Computational Capability: usually a small or even 

tiny sensor node needs to include all the required func-
tion blocks, such as sensing block, data processing block 
and wireless transceiver. These requirements obviously 
result in many limitations on the capability of a sensor 
node, such as limited power, slow processing speed and 
scarce memory. 

5) Sensing Purposes: WSNs will provide different 
kind of services to have different type of sensor nodes 
such as sound sensors and temperature sensors for acous-
tic surveillance and volcanic monitoring, respectively. 
Consequently, communication links between different 
sensor nodes may not be the same type due to their par-
ticular hardware platforms and abilities. 

6) Autonomous Capability: WSN must have its 
autonomous capability such that each sensor node has to 
collect and process data independently without any hu-
man intervention for a long period of time. Thus, it is 
good to have central stations to query for data or send 
other commands over the network because central sta-
tions are usually under manual control. 
 
2.2. Design Challenges 
 
The design of a new protocol requires the consistency of 
functionalities implemented in modules and interfaces. 
Minimizing unnecessary coupling between modules re-
sults in the reduction in effort to combine and implement 
new functionalities. Moreover, it is highly desirable that 
the protocol designed for one particular application can 
be reused in other applications. Since co-existing proto-
cols with modules to implement overlapping functional-
ities unnecessarily occupy extra resources in terms of 
memory and energy, the life time of resources con-
strained sensor nodes can be prolonged by maximizing 
code reuse code portability [7]. 
 
3. Design Framework and Layout 
 
We are enlightened by the pioneer work presented in [7], 
which not only provided a good starting point to imple-
ment our proposed routing protocol, but also outlined 
general rules for us to use in this work to make sure that 
the result discussed in this paper is generic enough to be 
reused. Similarly, it is also of our interest to develop 
some function modules that might be useful for other 
researcher during their implementation of networking 
protocols for WSNs. 

A modular network layer for sensor networks was 
discussed in [7], which mentioned the main objective is 
to “ease the implementation of new protocols, by in-
creasing code reuse, and enable co-existing protocols to 
share and reduce code and resources consumed at 
run-time”. Subsequently, a representative set of various 
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protocols for sensor networks was examined in order to 
identify their common parts. Fortunately, this inspection 
results in a possible division of the protocol into several 
function modules, among which certain function mod-
ules can be shared by all or some of the protocol. Con-
sequently, this methodology was then used to design a 
general layout of components that provides a frame-
work for implementing the routing protocol [8]. The 
working mechanism of the layout is illustrated in Fig-
ure 1. In particular, the layout is divided into two 
parts—the data plane and the control plane. Imple-
menting the control plane is not surprisingly much more 
complicated, since it is fully responsible to accommo-
date the routing protocol.  

As shown in Figure 1, headers of packets coming 
from the lower or upper layer are examined by the Dis-
patcher in order to determine the protocol to which the 
packet belongs, and then these packets will be passed to 
an appropriate protocol service, which may include a 
Forwarding Engine, a Routing Engine and a Topology 
Engine. These protocol services are revisited as follows: 

1) Forwarding Engine—Forwarding Engine is not 
aware of the protocol format and algorithms, though it is 
part of a protocol service. Its function simply include: 1) 
before forwarding a packet, Forwarding Engine will 
request the Routing Engine to fill the routing header; 2) 
when the packet has reached its destination, Forwarding 
Engine will deliver the packet to the upper layer. For-
warding Engine belongs to the protocol service because 
it may perform those tasks dependent on the protocol, 
such as packet aggregation or scheduling. 

2) Routing Engine and Topology Engine—They are 
the core components of a protocol. In brief, the Routing 
Engine generates and processes control packets. Next, 
according to the data reported by the Routing Engine, the 
Topology Engine computes and stores the necessary in-
formation about the network topology. 

3) Output Queue—It handles the packets to be sent  
 

 

Figure 1. Network layer decomposition with flow of packet 
and control information [8]. 

from all the protocols running on the node, which can 
schedule them according to the node policy due to the 
fact that all packets must go through this component. 
 
4. Design and Implementation of CSPIN 
 
As show in Figure 2, the implementation of CSPIN was 
realized by a configuration component, namely CSpin-
NetworkC, whose objective is to transparently send and 
receive data in a multihop WSN. CSpinNetworkC pro-
vides the wiring illustrated in Figure 2, which should 
certainly include a transport protocol to transport data 
through multihop route because CSPIN is a routing pro-
tocol. Any transport protocol using a 16-bit address can 
be adopted. In this paper, we refer to the transport pro-
tocol as Multihopping (MH). Through CSpinNetworkC 
via the SubReceive interface, CSPIN can possibly inspect 
all the multihop data packets that flow through this node 
and decide where the next hop is. 

Next, the SplitControl interface initiates the network 
layer and SplitControl is implemented by a dedicated 
module, NetControlM, while the link layer is imple-
mented by ActiveMessageC module. Before letting the 
application use the network layer, NetControlM waits for  

 

 

Figure 2. Simplified layout of the CSpinNetworkC compo-
nent. 
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all other components to start. After that, multihop pack-
ets, including adverting, requesting and responding 
packets, can be then sent and received by the application 
and these packets may be manipulated with the MHSer-
viceC component. 

Consequently, the RouteDistributeC and MHServiceC 
components are responsible for all the processing and 
packet manipulations related to their respective protocol 
since they are the protocol services. In particular, each 
service has its own sending and receiving queue, an in-
stance of AMSenderC and AMReceiverC. Although this 
is not depicted in Figure 2 for simplicity reasons, it does 
not break the single Output Queue principle and these 
queues rely on ActiveMessageC to exchange packets 
within the radio chip. ActiveMessageC actually plays the 
role of the Output Queue, which utilizes the parameter-
ized wiring feature of nesC [9] in order to process the 
packets to the AMReceiverC and from the AMSenderC 
components. As a consequence, a Dispatcher component 
is not necessary. The ActiveMessageC component pro-
vides the link-layer feedback by possibly request hard-
ware acknowledgements for each packet sent, and thus 
determine if the packet has been received by a neighbor.  

Interactions between components are shown in Figure 
3 and Figure 4 when the application sends and forwards 
a packet to the base station, respectively. Before sending 
a packet, the application must wait for a routing message 
to compute its routing tables. After that, it sends the 
packet as if it was a single-hop packet. The packet is 
passed to the MHServiceC component (as illustrated in 
Figure 5), which is aware of how to obtain a route, 
though it does not know how the routing protocol oper-
ates. The route is obtained from the RoutingTableC, 

 

 

Figure 3. Flow chart of a node sending a message. 
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Figure 4. Flow chart of a node forwarding a message. 
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Figure 5. Modified MHService Component [8]. 
 

which is shared by both of the protocol services. There-
fore, when the routing table is updated and signals to the 
application, MH service will be able to deliver the packet 
to the next hop along the route. Then, the application is 
signaled by the sendDone event and it may reuse the 
packet buffer. 

The RouteDistributeC actually has a Routing Engine 
(the RoutingEngineM component) and a Topology En-
gine (the RoutingTableC component), but no Forwarding 
Engine. Thus, it does not exactly follow the modular 
layout presented in Section III because an exact imple-
mentation would have caused useless complexity. The 
delivering functionality of the Forwarding Engine is not 
needed as a result of the fact that upper layers are not 
interested in routing packets. Moreover, the Forwarding 
Engine would not need to request the RoutingEngineM to 
select a route because it would have already been se-
lected by the RoutingEngineM, which is the only com-
ponent that sends routing packets. Therefore, the Rout-
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ingEngineM handles the received routing packets 
through direct connections to the AMSend and Receive 
interfaces. Processing a packet may take a long time and 
it thus is implemented as a split-phase operation. A rout-
ing packet is passed to the RoutingTableM module upon 
reception, which returns immediately by posting a task to 
read the packet. The information contained in a packet 
will be judged whether it is useful or not, and then de-
cided if it should be propagated accordingly. 

The route determined by the CSPIN protocol necessi-
tates the usage of a multihop transport protocol because 
CSPIN services rely on it to fully function, which was 
unfortunately available in the TinyOS 2.0 distribution. 
Nevertheless, we have designed and implemented one, 
which allows for a directly usable multihop network 
layer to applications. Different from the CSPIN service, 
the MH service does have a Forwarding Engine. 

As shown in Figure 5, the Forwarding Engine re-
quests ForwardingEngineM to fill the AM fields in order 
to put the packet on the route toward the base station 
when a MH packet is received from the AM layer or sent 
by the application. The Forwarding Engine will not dis-
card the packet if no route is immediately available be-
cause of its reactive nature. Next, the Forwarding Engine 
was made as generic as possible and does not rely on any 
MH-specific interface because it does not have any func-
tionality specific to the MH protocol. As a result, it may 
therefore be used by other protocol services. 
 
5. CSPIN Working Mechanism 
 
As a data-centric protocol, CSPIN explicitly stores the 
routing path to the base station. More precisely, routing 
information periodically propagates from node to node. 
Starting from the central node, a node will compute the 
shortest route towards the desired destination and update 
their routing tables accordingly upon receiving the rout-
ing information. Since routing tables are constantly 
maintained, little processing is needed when a node 
wants to send or forward a packet, which reduces com-
munication latency. 
 
5.1. Routing Distribution Mechanism 
 
As shown in Figure 6, CSPIN routing distribution makes 
it more centralized because the routing information is 
distributed from the central node [5]. 

Routing Advertisement: The advertisement (RouteADV) 
message is broadcast by base station periodically. All the 
nodes within its transmission range first receive the 
message. Then they build their routing tables based on 
the distributed routing information. Meanwhile, each of 
them will separately update the RouteADV message in  
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Figure 6. Three steps of route distribution. 
 

order to encapsulate new routing information accord-
ingly.  

Routing Information Propagation: The routing infor-
mation is propagated throughout the network by broad-
casting the new RouteADV messages. Then, the 
neighbors receive, process and update it, so on and so 
forth. 
 
5.2. Routing Logic Update 
 
When nodes receive a routing message, they look at all 
the included routing information. Then the nodes decide 
whether the routing information is better than what they 
already know based on sequence numbers and distances 
counted in hops from the routing information. If neces-
sary, the nodes update their routing tables. If the received 
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routing advertisement is a new distribution sent from the 
base station or it has a smaller route sequence number, 
the receiving node will definitely update its routing table 
without any further process. Otherwise, the received 
routing advertisement will be further processed with the 
second condition of the number of counted hops. Table 1 
shows the logical steps how a node update its routing 
table. 

During the processing, the content of the message is 
updated. Sensor nodes add information about themselves, 
which will be useful for surrounding nodes in determin-
ing the routing path. Moreover, hop counts are incre-
mented and routing information that was considered un-
useful is removed from the message so that it is not 
propagated further.  

Routing Information Updating: Nodes only update 
their routing tables when they receive a new RouteADV 
or the RouteADV which has a smaller hop count than the 
local value. 

Practically, if a new node joins the network, it will 
remain silent until a RouteADV message is received. 
Upon completing the computation of the shortest path, it 
knows to which address to send or forward a packet in 
order to reach the base station. Moreover, instead of 
storing global knowledge of a full path, each routing 
table contains only one-hop closer addresses, which re-
duces the complexity of architecture of the protocol and 
computational processing. 
 
5.3. Three-Way Communication Procedure 
 
As shown in Figure 7, the three-way communication 
helps CSPIN reduce unnecessary transmissions in the 
network. It also gives more control ability to the central 
node over the network. 

1) Adverstise: Joined nodes regularly advertise them-
selves to the central node using node advertisement 
(nodeADV) messages. These messages include the iden-
tification, number of hops and full path information; 
upon processing all of them will provide the global 
knowledge of network topology. In other words, the base 
station has the list of available nodes, as well as the spe-
cific path to reach each of them.  

2) Request: In order to obtain the data of a particular 
node in a specific interested region, the base station is-
sues a request (REQ) message to this node.  
 

Table 1. Logical condition for update. 

new_route = rcv_newRoute or 

(rcv_routeSeq > local_routeSeq) or 

((local_routeSeq – rcv_ routeSeq) > MAX_SEQ/2) or 

((rcv_routeSeq = local_routeSeq) and (rcv_hopCount  

< local_hopCount)) 

 

Figure 7. Three-way communication of data acquisition. 
 

3) Transfer: The requested node in response starts sens-
ing and sends its sensed data back to the sink. Since the 
data acquisition goes through three steps of advertising, 
requesting and responding, it is therefore called three- way 
process. This process ensures that only interested nodes 
and their corresponding regions are focused on. 
 
6. Performance Evaluation 
 
The proposed protocol was tested in TinyOS SIMulator 
(TOSSIM) [10] before hardware implementation so as to 
ensure its correctness and compliance with the proposed 
specifications. TOSSIM is a simulator provided with the 
TinyOS distribution, which runs codes written in nesC. It 
is thus possible to benefit from the advantages of a 
simulator without having to rewrite the application in a 
specific language. TOSSIM provides an interface to the 
execution of the TinyOS application, and the user writes 
a program in C, C++ or Python to control the execution 
of the simulation. 

A testing component that provides and uses all the in-
terfaces that the tested component uses and provides was 
written and wired to the tested component (see Figure 8). 
The features of TOSSIM were then used to provide in-
formation about the execution and to check that the 
component behaves as expected. During the testing of 
the CSPIN route distribution and multihop services (as 
shown in Figure 9), a testing component will wrap the 
whole service in order to control all the incoming and 
outgoing calls. The testing component creates a MH 
packet, passes it to the MHserviceC via its AMSend in-
terface or its underlying Receive interface. The packet is 
then processed by the MHserviceC, during which various 
information about the process are displayed. The packet 
is eventually given to the upper or lower layer via the 
appropriate command or event, which are both imple-
mented by the testing component so that it can check and 
display the content of the packet. As shown in Figure 8, 
this ensures that packets were processed correctly at lo- 
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Finally, energy-saving operation is a certain require-
ment in the future implementation. Nodes when operat-
ing in energy-saving are able to alternate between sleep 
and wake-up states. They would be in the sleep mode 
most of the time and wake up when it is needed. Spe-
cifically, if there is no transmission or reception, each 
node turns off unnecessary activities to save power. 
When it has a message to send or there is a message 
coming, it turns on these activities on to carry out the 
process. Performance study about the effect of the pro-
posed CSPIN on other system parameters, such as power 
dissipation, throughput, bit error rate and end-to-end de-
lay, were left for future work. 

TestM Component

Interface3 Interface4 Interface5

Interface1 Interface2 Interface3 Interface4 Interface5

Interface1 Interface2

 

Figure 8.The generic wiring of a test program. 
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