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Abstract 

Approaches based on integer linear programming have been recently proposed for topology optimization in 
wireless sensor networks. They are, however, based on over-theoretical, unrealistic models. Our aim is to 
show that it is possible to accommodate realistic models for energy consumption and communication proto-
cols into integer linear programming. We analyze the maximum lifetime broadcasting topology problem and 
we present realistic models that are also shown to provide efficient and practical solving tools. We present a 
strategy to substantially speed up the convergence of the solving process of our algorithm. This strategy in-
troduces a practical drawback, however, in the characteristics of the optimal solutions retrieved. A method to 
overcome this drawback is discussed. Computational experiments are reported. 
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1. Introduction 
 
Since the very beginning of research in the area of wire-
less sensor networks, one of the major issues has been 
saving power. This optimization is typically faced during 
the design, and prior the deployment of the nodes of a 
network. Such a high attention for this factor is easy to 
identify: the nodes of the network (devices) are typically 
equipped with low capacity, tiny batteries, and they have 
to stay alive in the longest possible time horizon. This in 
an environment usually characterized by reduced acces-
sibility. A tight management of the power budget is im-
posed by all these factors. Another peculiarity of sensor 
networks is that the largest share of power consumption 
is normally due to communication rather than to compu-
tation, sensing and state-changing activities [1,2]. We 
will base our study on this assumption. 

Wireless sensor networks are typically used in com-
manding actuators, monitoring events or measuring val-
ues at locations where people cannot reach easily, or 
where a long term sensing task is required. Examples of 
applications are habitat monitoring [3], civil structural 
monitoring [4] and environmental monitoring [5]. Nodes 
can usually be characterized as low cost devices, and are 
to be deployed in a potentially inaccessible area. Re- 

charging the sensors after the deployment might there-
fore not be an option, both for logistic and economical 
reasons. In this context, energy-efficiency becomes per-
haps the most important design criteria for sensor net-
works, since it directly impacts on the time the network 
itself is kept in operation. Many sensor network applica-
tions are intrinsically about dissemination of information 
from a well-identified source node. It is therefore critical 
to identify energy efficient network topologies, opti-
mized according to the type of communications that has 
to be supported. In this paper we will concentrate on 
broadcasting topologies, where a piece of information 
has to be sent from a source node to all of the other 
nodes of the network. We will assume to work on a static 
network, i.e. nodes do not move after the deployment. 

Researchers have proposed many different mechan-
isms for achieving energy-efficiency in sensor networks. 
For example, transmission power control in radios, peri-
odic cycling of nodes’ activity schedules [6], in-network 
processing of sensor data [7] and aggregation [8] for da-
ta-gathering applications. In most of the communication 
models adopted in these studies, the total energy cost for 
a transmitted bit is computed as the cost of a transmis-
sion over a wireless channel over a certain distance. In 
some cases, the cost due to reception by the destination 
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radio hardware [9] is also taken into account. Most of the 
communication models however ignore this, do to the 
multicast nature of the wireless channel, many nodes in 
the vicinity of a sender node overhear its packet trans-
missions, even if they are not the intended recipients of 
these transmissions [10]. This redundant reception results 
in unnecessary expenditure of battery energy of all the 
recipients. It is finally worth to observe that temporarily 
turning off neighboring radios during a certain point- 
to-point wireless transmission can mitigate overhearing 
costs [1,2]. 

The research in the field of integer linear program-
ming models for energy-efficiency in wireless sensor 
network has been focused until now on very theoretical 
representation of the interactions among nodes. In most 
of the works [11,12,13] the power consumed by a com-
munication from a device to another one is simply eva-
luated as the distance between the devices elevated to the 
power of 2 (or 4). This model is extremely simplistic, 
and many studies that show this have been proposed. For 
example, it has been shown that energy is consumed 
while receiving [1,10], and that also the overhearing 
phenomenon (mentioned above) has an important impact 
on consumption [14]. In order to limit the effects of 
overhearing, some authors suggest the use of nodes able 
to turn themselves into a temporary sleeping mode when 
a communication is not for them [6,10]. It is worth to 
observe that the idea of going into a temporarily sleep 
mode can be extended to situations in which nodes know 
that no communication is going to happen in a subse-
quent time window of a given length. Finally, an inter-
esting extension of the models presented so far might 
consider heterogeneous networks, where devices with 
different characteristics (in terms of battery capacity 
and/or maximum transmission power) are part of the 
same network. 

The topology design of wireless sensor networks is 
usually split into two phases: selection and placement of 
the nodes [15] and power optimization of the transmis-
sion powers of the nodes. In this paper we will concen-
trate on the second phase. 

The aim of the present paper is to plug the realistic is-
sues and ideas mentioned before into integer linear pro-
gramming models. The objective of the problem we 
model is maximizing the lifetime of wireless sensor net-
works [16]. The realistic issues we will embed into our 
models cover the following aspects:  

Hardware/Network models. Characteristics of the de-
vices are considered. In particular, each device can be 
characterized by a maximum transmission power and a 
residual battery capacity at deployment time. Heteroge-
neous networks, formed by devices with different cha-
racteristics are considered.  

Energy consumption models. The energy consumed in 

the following situations is taken into account: transmit-
ting, receiving, overhearing, sensing, computing and 
state-changing. 

Communication models. We take into account proto-
cols that, in addition to straight communication, are able 
to switch into a long-time sleep mode when no message 
is going to be transmitted for a given time, and to switch 
into a temporarily (short-time) sleep mode when they 
understand they are overhearing a message. 

As far as we are aware, the one we present is the first 
integer linear programming framework able to optimally 
solve problems of realistic size with the characteristics 
listed above. Notice that a preliminary (and partial) ver-
sion of the work presented in this paper appeared in [17]. 

Sections 2, 3 and 4 are devoted to the formal descrip-
tion of the models adopted to describe hardware, energy 
consumption and communication, respectively. Integer 
linear programming models of increasing realism, are 
described in Section 5, where a solution approach is also 
introduced and experimental results are presented and 
discussed. Section 6 presents a speed-up strategy based 
on an observation about the characteristics of the solving 
procedure previously discussed. Experimental results 
confirm that the strategy is able to remarkably improve 
the convergence speed of the algorithm in many cases. 
Section 7 discusses a practical drawback introduced by 
the speed-up strategy. A very fast post-processing pro-
cedure that overcomes this drawback is also discussed. 
Conclusions are drawn in Section 8. 
 
2. Hardware/Network Models 
 
We assume that a static network formed by heterogene-
ous nodes is provided, with a given node s designed as 
the source for the broadcasting process. 

Messages have to be periodically sent from the source 
node to all the other nodes in the network. Any node can 
be used as a relay node to reach other nodes in the net-
work, realizing a so-called multi-hop communication. 
We assume all nodes to be equipped with omnidirection-
al antennae, so that if node i transmits to node j, all nodes 
closer to i than j will also receive the transmission. This 
phenomenon has been defined in [13] as the wireless 
multicast advantage, meaning that transmitting at high 
powers can be convenient, since many nodes are poten-
tially reached by a single transmission. An example of 
the wireless multicast advantage is provided in Figure 1, 
where, for the sake of simplicity, we assume that the 
power required for a transmission is proportional to the 
diameters of the circle representing transmission ranges. 
We will keep this assumption for all the examples dis-
cussed in this paper. In Figure 1, node r transmits at 
such a power to reach node j. Because of the wireless 
multi- cast advantage, also nodes l and k will receive the 
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message, since they are closer to r than j. 
We assume the power necessary to transmit from each 

node of the network to each other node to be known in 
advance. It usually depends on the characteristics of the 
terrain in which nodes are deployed. We will refer to the 
power necessary to transmit a bit of information from 
node i to node j as pij. We also assume to know, for each 
node i, its maximum transmission power MPi and its 
residual battery capacity at deployment time, referred to 
as capi. To represent the problem in mathematical terms, 
we can therefore define a complete directed graph G = 
 ,V A , where V is the set of nodes of the network, and 
A is a set of arcs corresponding to all the possible 
one-hop communications between the nodes of the net-
work:  ,i j  ∈ A ∀i, j∈V. Power pij can be then seen as 
a label associated with arc  ,i j . 

It is important to stress that the models and methods 
we will discuss in Section 5 are independent on the mod-
el used to estimate power requirements. 

Notice that placement and characteristics of the nodes 
are regarded as the output of a previous optimization 
phase. 
 
3. Energy Consumption Models 
 
In most of the power-optimization studies proposed so 
far [2,11,13,16], very simplistic, basic energy models 
were considered: typically anything different from 
transmitting power pij (see Section 2) was classified as 
negligible, and therefore ignored. On the other hand, 
many works exist to precisely quantify the energy con-
sumption involved in the different operations carried out 
by the nodes [10]. 

In wireless sensor networks nodes consume energy 
while sensing, changing state, computing and communi-
cating. Sensing, state-changing and computing activities 
are strictly application dependent, and we therefore as-
sume to have an estimate for the energy consumption 
involved in them. Different is the situation for the power 
consumed in communication activities. We assume that 
energy is consumed when a packet is sent, received, and 
overheard, i.e. when a node receives a message that was 
not destined to it. The model we adopt is that proposed in 
[14]. In the network of Figure 1, node k (which has al-
ready received the transmission from r) overhears the 
communication from node j to node m, being closer to j 
than m. Considering the overhearing phenomenon makes 
the energy model particularly realistic.  

Let us formally define what we will refer to as the ad-
vanced energy model. Energy consumption in one bit 
data transmission, tx , is proportional to the transmitting  

power p of the transmitting node: 

ptx txelec                   (1) 

where txelec  is the energy consumption by transmitter  

electronics,   is an amplifier characteristic constant 
(that depends on the media) .  

Energy consumption in reception is independent of the 
transmitting power, and refers to the energy consumed 
by receiver electronics. We will refer to the energy dis-
sipated for receiving a bit of information as rc . 

The logic for the calculation of the energy dissipated 
in overhearing activities oh ) is the same as for the cal-
culation of the energy required while receiving. In this 
paper, following the approach already adopted in [14], 
we will assume that the energy consumed while over-
hearing is exactly the same as the energy consumed 
when receiving: oh = rc . This assumption leads to a 
simplified notation (without oh ), which is adopted in 

the reminder of the paper. 
The energy dissipated in computing, state-changing 

and sensing has finally to be considered. As previously 
observed, this quantity is extremely application- 
dependent, and has to be estimated case by case. We 
therefore assume to know in advance the cumulative 
energy dissipated by each node i  in these tasks during 
each broadcasting cycle. We will refer to it as  sc i  . 
Notice that this quantity is not necessarily the same for 
all the nodes, and that the energy dissipated between two 
consecutive broadcasting cycles is also counted here: if 
the devices are able to switch themselves into a tempo-
rary sleeping mode between two consecutive broadcast-
ing cycles, the energy consumed will be low, otherwise 
the energy dissipated while in idle state will be higher. 
 
4. Communication Models 
 
Two different communication models are considered in 
this paper, based on two different communication proto-
cols implemented in the reality. 

The standard communication protocol considered is 
that working on devices without the capability of 
switching into a temporary sleep mode when they under 

 

 

Figure 1. The wireless multicast advantage [13]. Example of 
overhearing phenomenon. 
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stand that a message that is being transmitted is not of 
their interest. The smart communication protocol is that 
associated with advanced devices able to switch into a 
temporary sleep state. Notice that this protocol implies 
the presence of header messages, used to identify the 
subsequent data messages. Header messages will intui-
tively contain the information of the data message that 
will follow, together with the length of the message itself. 
Consider again the example in Figure 1. If the smart 
protocol is in use, node k can temporarily turn itself off 
when it understands that the transmission generated from 
node j is not of its interest (it is about a message already 
received at k while transmitted from r). 

It is easy to foresee that a smart communication pro-
tocol can be very useful for mitigating power consump-
tion due to overhearing at the nodes. This justifies the 
increase in the complexity of both the hardware of the 
devices and the communication protocol. 

In the reminder of the paper we will refer to the di-
mension of the data packet that has to be broadcasted 
from the source node to all the other nodes of the net-
work as D . We will also indicate with the H dimension 
of the header of the data packet, which will contain a 
message-id and the dimension of the following data 
packet. The header will be sent immediately before the 
data packet and (if a smart communication protocol is 
used) nodes hearing it will know if they have received 
the message already, and undertake the appropriate ac-
tions. 

5. Integer Linear Programming 
Formulations 

5.1. Maximum Transmission Powers 

According to Section 2, a maximum transmission power 

iMP  is given for each node . This parameter is, in fact, 
transparent to the integer linear programming models we 
will propose. 

Consider the case where the transmission power re-
quired to transmit from a node i to another node j (pij) is 
greater than iMP . It means that node i is not able to 
transmit to j in a single hop. We can therefore modify pij 
and assign an infinite value to it. This will rule out the 
single-hop communication i−j from every feasible solu-
tion of our models. Formally, we will modify the power 
requirements for the one hop communication for some 
pairs of nodes  ,i j , as follows: 

:ij i ijp MP p               (2) 

5.2. Skeleton Structure 

The integer linear programming models we propose are 
all based on the common idea of skeleton structure. Such 

an approach is common in the literature of topology op-
timization (see, for example [11,18]). Each feasible solu-
tion is characterized by at least a skeleton, which ensures 
that all the nodes of the network receive, in a multi-hop 
fashion, the message broadcasted from the source node s. 
For example, in Figure 1 a skeleton of the broadcasting 
structure is the depicted directed tree (arborescence) 
rooted in s. Notice that all the transmission powers of the 
nodes are such that the arcs of the arborescence are cov-
ered. The vice-versa is not true: not all the arcs covered 
by the power assignment are part of the arborescence. In 
our approach, we will adopt a structure that contains (is a 
superset of) an arborescence. 

We define the skeleton in terms of mixed integer pro-
gramming formulation. The transmission power  r i  
assigned to a generic node i will assume either a value of 
zero or of pij, for some j V . A set of variables x is 
then introduced to describe the transmission power of 
each node. For each pair of nodes i,j ∈ V we have: 

 1      if r

0     otherwiise
i j

ij

i p
x

 


           (3) 

It is easy to verify that if xij = 1, then all the nodes 
closer to i than j will also receive (or overhear) the 
transmission from i. We have the following definition: 
Definition 1 Given two nodes i and j such that pij < +∞, 
we define  N  as follows:  

  :iN j k V pik pij           (4) 

The set  iN j contains the nodes of V which are not 
closer to i than j. Notice that j ∈  iN j . The set Skl of 
all possible skeleton structures defined on graph G, is 
described by the following constraints: 

 \

,

1  C V,s C

k V C

ij
i C
j U Ni k

x






              (5) 

1  ij
j V

x i V


               (6) 

0is
i V

x


                  (7) 

  0,1   ,ijx i j               (8) 

In constraints (5), C is used to model each non-empty 
subset of V containing the source node s. For each one of 
these sets, there is a constraint in the model specifying 
that at least one of the nodes of C must transmit at such a 
power to reach at least one node out of C. Constraints (6) 
state that at most one arc among the outgoing ones from 
each node must be active. Constraint (7) states that none 
of the incoming arcs of the source node can be active. 
Constraints (8) define variables domain. 



                                         R. MONTEMANNI 
 

Copyright © 2010 SciRes.                                                                               WSN 

928

5.3. Objective Function 

In our optimization we seek for a broadcasting structure 
that maximizes the number of broadcasting cycles sup-
ported before the first device runs out of battery. The 
power consumption at each node of the network and its 
initial battery capacity are taken into account. This 
translates into counting the number of broadcasting 
cycles supported by each node, and choosing the smallest 
value. 

Given an skeleton x ∈ Skl, we will refer to the power 
consumed in a single broadcasting cycle by node i 
as  ,pc i x . The problem studied in the paper can be 
formally defined through the following equation: 

 
max min

,
i

i Vx Skl

cap
n

pc i x

    
 

              (9) 

where n is the number of broadcasting cycles supported 
by the optimal broadcasting structure. Constraints (9) 
cannot be directly expressed in terms of mixed integer 
linear programming, because the variables of the model 
are at the denominator. It is however possible to mani-
pulate (9) in order to obtain an equivalent description 
that can be expressed as a mathematical program. If we 
invert the fraction in (9), we end up with an expression 
for the inverse of the number of cycles supported by each 
node. The min and max operators have also to be com-
plemented as a consequence of the inversion. We obtain 
the following equation:  

 ,1
min max
x Skl i V

i

pc i x

n cap 

    
 

          (10) 

from which it is trivial to obtain the original value of n, 
once (10) has been solved. Starting from (10), and as-
suming that we are able to find a linear expression for 

 ,pc i x , a mixed integer linear program is easy to ob-

tain. First we have to get rid of the nested max operator. 
This can be done by introducing a free variable z, and by 
transforming (10) into the following system, which is 

linear if we can find a linear expression for  ,pc i x : 

1
min z

n
                      (11) 

 ,
. . z     

i

pc i x
s t i V

cap
                (12) 

x Skl                 (13) 

z IR                 (14) 

Notice that constraints (13) can be substituted by their 
linear expression, which is provided by inequalities (5), 
(6) and (7). 

What remains to be disclosed is the expression in li- 
near terms of  ,pc i x . In Subsections 5.4, 5.5 and 5.6 we 

will see how this can be done for different combinations 
of the energy and communication models described in 
Sections 3 and 4. 
 
5.4. Model M1: Basic Energy Model, Basic 

Communication Protocol 
 
The energy and communication models adopted for this 
formulation are those commonly used in the theoretical 
studies for minimum power broadcasting structures 
[11,13] and maximum lifetime broadcasting structures 
[16]. A very high level of abstraction is implied, and 
therefore these models are often regarded as too theoreti-
cal. 

The energy model does not take into account the 
energy consumed while receiving and overhearing ( rc  
= oh = 0), flattering down also the role of the commu-
nication protocol (a smart protocol is not of any help if 
overhearing is not taken into account). 

It is important to notice that this model, although not 
of particular practical interest, has been considered in 
this study because it provides a sort of a bridge between 
the very theoretical mathematical programming models 
provided so far [11,13,18], and the more realistic models 
M2 and M3 we will describe in Sections 5.5 and 5.6. 

The model is composed of constraints (11), (5), (6), (7) 
and (14), plus the following inequalities (15), that make 
constraints (12) explicit. 

 


  
\

z   
tr ijsc

ij
j V ii i

H D pi
x i V

cap cap





 
     (15) 

The first term in the right hand side of constraints (15) 
models the fraction of the available energy consumed by 
nodes during each broadcasting cycle for sensing, com-
puting and state-changing. The second term models the 
fraction of battery consumed for transmitting during each 
cycle. Notice that for each node i, at most one of the xijs 
will take value 1 in each feasible solution, because of 
constraints (5), (6) and (7). Consequently, in each one of 
constraints (15), no more than one x variable will take 
value 1. 
 
5.4. Model M2: Advanced Energy Model, Basic 

Communication Protocol 
 
Model M2 is for problems described through the ad-
vanced communication models presented in Section 3, 
but where no smart communication protocol is imple-
mented (see Section 4). 

Beside constraints (11), (5), (6), (7) and (14), model 
M2 includes the following inequalities (16), that make 
constraints (12) explicit. 
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 


  


 

 
\

\

z  

       

j

tr ijsc
ij

j V ii i

rc
jk

j V i i
k N i

H D pi
x

cap cap

H D
x i V

cap









 
 


  




   (16) 

The first term in the right-hand-side of constraints (16) 
has the same meaning as in constraints (15). The first 
sum represents the fraction of the available energy dissi-
pated by node i for data transmission. Notice that if xij= 0 
∀j ∈ V, it means that node i does not transmit in the 
current skeleton, and consequently this term will give a 
contribution of 0. The second sum represents the fraction 
of the available energy dissipated while receiving and 
overhearing. Notice that this contribution is paid for each 
communication reaching node i. 
 
5.6. Model M3: Advanced Energy Model, Smart 

Communication Protocol 
 
The integer linear programming model presented in this 
section builds up on that proposed in Subsection 5.5. The 
difference is that now the advantages derived from the 
use of a smart communication protocol (which is useful 
when nodes can go in a sleep mode when they are not 
interested in a transmission) have been taken into ac-
count. 

This model can be regarded as the most realistic model 
we present in this paper, and is based on the following 
constrains: (11), (5), (6), (7), (14), plus (17) and (18): 

 


  


 

  

\

\

z  

     +   \ 8

j

tr ijsc
ij

j V ii i

rcrc
jk

j V i i i
k N i

H D pi
x

cap cap

H DH
x i V

cap cap










 
 


  




 (17) 

 


   


 

\

\

z  

    

j

tr sjsc
ij

j V ss i

rc
jk

j V s s
k N s

H D ps
x

cap cap

H
x

cap









 
 






      (18) 

The first term in the right-hand-side of inequalities (17) 
and (18) is the usual fractional power consumption due 
to sensing, computing and state-changing during each 
broadcasting cycle. The first sum of constraints (17) is 
the same as in constraint (16). The second sum models 
overhearing at node i, following the same reasoning al-
ready seen for the second sum of (16): the sum contains 
all the communications potentially overheard by i, that 
will give a contribution or not to the sum according to 
the value of the x variables associated. The last term fi-

nally models the fractional energy consumption due to 
data reception (not overhearing). This contribution is 
based on the consideration that each node (apart from the 
source s) will receive the data packet exactly once. No-
tice that each node will be able to classify a packet as 
already received by analyzing the corresponding header. 
The only difference between constraints (17) and (18), is 
that in the right-hand-side of the former, the last term of 
(17) is not present, since the root will not receive any 
message, being the node from which the broadcasting is 
actually originated. 
 
5.7. Solution Method 
 
The bottleneck of the three mixed integer linear pro-
gramming formulations described in Subsections 5.4, 5.5 
and 5.6 is represented by the common constraints (5). 
Specifically, constraints (5) are present in huge number 
(exponential in the number of devices in the network), 
and create difficulties to the solvers used to handle the 
models. To overcome these problems, we adopted a 
strategy commonly used in similar cases (see, for exam-
ple, [19]), and that can be summarized as follows. It is an 
iterative approach, which in the beginning does not con-
sider any of the constraints (5), and adds them only when 
violated by the current (infeasible) solution. 

In the reminder of this section we will refer to a ge-
neric mixed integer linear program IP. Formulations M1, 
M2 and M3 (initially without constraints (5)) can all 
substitute the generic formulation IP. 

At each iteration, the integer linear program IP is 
solved to optimality and the values of the x variables in 
the optimal solution are examined. If the arcs corres-
ponding to variables with value 1 (we will refer to them 
as active variables) form a directed structure that reaches 
all the devices of the network (skeleton), then the prob-
lem has been solved to optimality, and we can stop. Oth-
erwise, a set of violated constraint of type (5) is identi-
fied (by solving maximum flow problem, see [20]) and 
added to the mixed integer linear program IP, and the 
process is repeated. In case the optimal solution has not 
been found, let us consider the arcs corresponding to the 
active x variables of the last available solution. We de-
fine the set C of the constraint (5) as the set of nodes that 
can be reached from the source s using arcs associated 
with active x variables only. The new constraint added 
makes the current solution infeasible for the newly aug-
mented problem IP, forcing the solver to move to a dif-
ferent solution in the next iteration. Iteration after itera-
tion, the incumbent solution x should get closer and 
closer to feasibility with respect to the original problem, 
being it of type M1, M2 or M3. The algorithm is summa-
rized in Figure 2, where a pseudo-code is presented. 

A well-known technique (see, for example, [20]) to  



                                         R. MONTEMANNI 
 

Copyright © 2010 SciRes.                                                                               WSN 

930

 

Figure 2. A pseudo-code for the algorithm used to solve 
integer linear formulations M1, M2 and M3. 

 
speed up the algorithm described above first considers 
LR, the linear relaxation of the mixed integer linear pro-
gramming formulation IP. It is obtained by substituting 
constraints (8) with the following one:  

 0 1  ,ijx i j             (19) 

The algorithm described in Figure 2 is run on LR. When 
there are no more violated cuts, which means LR has 
been solved to optimality, the original problem IP is con-
sidered, and the algorithm presented in Figure 2 is run 
again, starting from the set of cuts identified for the li-
near relaxation LR (instead of an empty set). The aim of 
such a technique is to reduce the number of mixed integ-
er programs that have to be solved to identify violated 
cuts, in the hope that many of the cuts were already iden-
tified on the linear relaxation LR, which is off course 
much easier to solve, not having binary variables. We 
will adopt this strategy in our implementation. 
 
5.8. Experimental Results 
 
Computational experiments have been carried out on 
random networks with up to 80 nodes. The signal propa-
gation model adopted for the experiments is the one 
commonly used in the literature (see, for example, [13, 
21]). For a node i of the network, the power required to 
reach another node j is given by: 

 2

ij ijp d               (20)  

The data and energy parameter settings adopted for the 
simulations are the following ones: D = 500 bites, H = 
10 bites,  = 0.1 nJ/bit/m2, txelec  = 50 nJ/bit, rc = oh     

= 50 nJ/bit,  rc i = 50 nJ/cycle. For every problem  

considered, the capacity capi associated with the battery 
of node i (expressed in Joule for the sake of simplicity) is 
chosen at random from the interval [1000; 5000]. 

Problems with |V| (number of nodes) ∈ {20, 30, 40, 
50, 60, 70, 80} have been considered. Ten instances have 
been generated at random on a 100×100 grid for each 
value of |V|. Tests have been carried out on a computer 
equipped with an Intel Pentium M 1.73GHz processor 
and 512 MB of memory. IBM ILOG CPLEX 12.1 
(http://www.cplex.com) has been used to solve mixed 
integer linear programs. A maximum computation time 

of 3 hours has been allowed for each combination (model, 
instance). 

Results are summarized in Table 1, where for each 
combination (model, |V|) we report average and standard 
deviation for the number of cuts (5) added (both on the 
linear relaxation phase and in total), and for the compu-
tational time in seconds. Statistics are computed on the 
instances solved to optimality (reported in the second 
column of the table) over the ten considered for each line 
of the table. 

The computational results suggest that two of the three 
methods we developed are able to handle networks with 
up to 80 nodes in 3 hours. This result is encouraging be-
cause it proves that the approach we propose is suitable 
to be used on networks with sizes of practical interests. A 
deeper analysis of Table 1 suggests that model M1 re-
quires much more iterations (cuts (5)) than M2 and M3 
to converge to the optimal solution. Analogous consider-
ations can be done for the computation times required to 
solve the different models. Another important indication 
emerging from Table 1 is about the performance degra-
dation as the number of nodes increases. Models M2 and 
M3 clearly scale up much better than M1.  

The most important outcome of Table 1 is however 
probably the indication that handling more complex 
models (M2 and M3) leads to easier problems (from a 
computational point of view) than the simpler models 
considers so far in the literature (M1). Basically, M2 and 
M3 provide better models both from a theoretical (level 
of realism) and practical (solution times) point of view. 

It is finally important to observe that the standard 
deviation of all the indicators reported in Table 1 is high. 
This indicate that the performance of the exact methods 
we propose tend to be instance-dependent. 
 
6. A Speed-up Strategy 
 
Classic valid inequalities for integer linear models of 
broadcasting problems on wireless networks can be eas-
ily adapted to our problem (we refer the interested reader 
to [8,20,21]). However, we discovered that a strategy 
different from (and usually not compatible with) classic 
valid inequalities is more effective and efficient for the 
maximum lifetime problems on wireless networks, in a 
framework like the one we propose. 

Notice that in the reminder of the paper we will concen-
trate, for short, on formulation M2, but all the results can 
be trivially adapted to both the other models M1 and M3. 

The idea exploits a characteristic of the problem: the 
objective function cost is only determined by the node i 
with the shortest lifetime of the current topology. In this 
context, it is easy to observe that if all the other nodes of 
the network transmit at the maximum possible power 
such that their lifetime is not shorter than that of node i, 
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Table 1. Computational results. 

V  Solved LR cuts (5)  added Total cuts (5)  added Seconds 

 (over 10) avg stdev avg stdev avg stdev 

Model M1 

20 10 69.90 16.78 73.60 17.27 0.30 0.28 

30 10 146.40 41043 153.20 36.71 12.79 23.54 

40 4 247.50 49.84 278.25 53.56 485.23 658.91 

50 3 288.67 27.97 363.33 90.29 1441.73 913.65 

60 1 415.00 0.00 415.00 0.00 558.00 0.00 

70 0 - - - - - - 

80 0 - - - - - - 

Model M2 

20 10 68.90 16.13 73.50 17.15 0.37 0.45 

30 10 154.60 52.56 162.10 49.03 115.35 320.05 

40 4 242.17 32.88 270.67 39.50 654.64 997.76 

50 3 307.50 31.10 365.75 53.54 1287.99 795.31 

60 1 408.00 0.00 428.00 0.00 2016.14 0.00 

70 0 - - - - - - 

80 0 - - - - - - 

Model M3 

20 10 142.90 47.12 142.90 47.12 0.14 0.05 

30 10 436.80 143.48 439.80 143.08 2.31 2.06 

40 4 949.50 347.31 957.90 338.54 15.78 11.85 

50 3 1677.90 457.48 1687.30 463.09 86.02 136.97 

60 1 2083.90 994.99 2095.00 988.00 313.39 603.28 

70 0 2938.60 930.12 2954.80 933.34 454.97 410.18 

80 0 2940.00 652.01 2968.88 645.43 934.44 958.92 

 
the objective function cost does not change, and at the 
same time the probability of having a violated constraint 
(5) is dramatically reduced. In this context we have 
therefore interest in forcing nodes to transmit to their 
maximum possible power.  

In order to achieve our goal, we propose a two level, 
hierarchical objective function, where the main objective 
is to maximize the lifetime of the network, and the sec-
ondary one is to have nodes to transmit to the highest 
possible power. The original objective function (11) (that 
is common to all the models considered in Section 5) is 
changed to the following one: 

\
min ij ij

i V j V i

z p x
 

          (21) 

Where   is an arbitrarily small constant. In such a 
way, for a given value of z, each node i will be assigned 
the highest possible transmission power (with respect to 
z). An example is given in Figure 3(a), where the nodes 
of a network are depicted. We assume that all nodes have 
the same initial battery capacity and that the simple equ-
ation (20) is used to measure power requirements. Model 

M2 is considered for the example. In Figures 3(b) and 
3(c) two feasible topologies are depicted. The first one is 
the optimized solution obtained according to the original 
objective function (11), while the second one is  
the optimal topology obtained by considering the hierar-
chical objective function (21). Notice that the lifetime of 
both the solutions is the same, and is determined by node 
9, which is the first node to run out of battery. The arc 
representing the transmission power of the first node to 
fail is in bold (arc (9,1) in our case), while arcs that are 
obtained by the wireless multicast advantage (i.e. they do 
not correspond to the maximum transmission power of 
the originating node) are dashed. It is important to ob-
serve that the topology of Figure 3(b) is contained in 
that of Figure 3(c). This is a side-effect of the strategy 
we have applied. 

The same experiments summarized in Table 1 have 
been replicated with the speed-up strategy in operation, 
and the results are reported in Table 2. The meaning of 
the columns of Table 2 is the same as in Table 1. In ad-
dition the percentage variation, with respect to Table 1, is 
reported in brackets for each indicator. 

Table 2 shows the benefit guaranteed by the speed-up  
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Table 2. Computational results of the models discussed in Section 5 with the objective function (21). Percentage variations 
with respect to Table 1 are reported in brackets. 

V  Solved LR cuts (5) added Total cuts (5) added Seconds 

 (over 10) avg stdev avg stdev avg stdev 

Model M1 

20 10 (+0) 29.80 (-61.5%) 13.78 (-86.9%) 30.00 (-59.2%) 13.58 (-21.4%) 0.12 (-57.4%) 0.04 (-17.8%) 

30 10 (+0) 53.70 (-95.9%) 12.22 (-98.7%) 54.10 (-64.7%) 12.38 (-66.3%) 0.53 (-63.6%) 0.17 (-70.5%) 

40 10 (+6) 83.90 (-10.1%) 24.37 (+57.3%) 84.20 (-69.7%) 24.61 (-54.1%) 436.49 (-66.1%) 1036.45 (-51.1%)

50 8 (+5) 100.25 (-90%) 23.44 (-64.1%) 100.25 (-72.4%) 23.44 (-74.0%) 144.92 (-65.3%) 327.97 (-16.2%)

60 8 (+7) 166.36 (-49.6%) 34.31 (n.a.) 166.00 (-60.0%) 34.13 (n.a.) 3281.7 (n.a.) 236.80 (n.a.) 

70 1 (+1) 188.00 (n.a.) 0.00 (n.a.) 188.00 (n.a.) 0.00 (n.a.) 100.91 (n.a.) 0.00 (n.a.) 

80 1 (+1) 167.00 (n.a.) 0.00 (n.a.) 167.00 (n.a.) 0.00 (n.a.) 208.41 (n.a.) 0.00 (n.a.) 

Model M2 

20 10 (+0) 29.60 (-71.21%) 13.66 (-94.5%) 29.70 (-59.6%) 13.43 (-21.7%) 0.11 (-57.0%) 0.02 (-15.3%) 

30 10 (+0) 57.50 (-99.5%) 14.2 (-99.9%) 58.2 (-64.1%) 14.30 (-70.8%) 0.55 (-62.8%) 0.22 (-73.3%) 

40 10 (+4) 81.10 (-0.4%) 16.89 (+28.8%) 81.40 (-69.9%) 17.20 (-56.5%) 652.13 (-66.5%) 1285.33 (-48.6%)

50 9 (+5) 115.22 (-90.9%) 29.52 (-80.2%) 115.89 (-86.3%) 29.34 (-45.2%) 116.81 (-62.5%) 157.53 (-5.1%) 

60 5 (+4) 191.80 (-93.6%) 88.13 (n.a.) 191.80 (-55.2%) 88.13 (n.a.) 129.70(-53.0%) 116.89 (n.a.) 

70 2 (+2) 91.50 (n.a.) 122.33 (n.a.) 91.5 (n.a.) 122.33 (n.a.) 1085.32 (n.a.) 1473.22 (n.a.) 

80 2 (+2) 232.00 (n.a.) 2.83 (n.a.) 232.50 (n.a.) 2.12 (n.a.) 564.02 (n.a.) 459.97 (n.a.) 

Model M3 

20 10 (+0) 142.90 (-18.1%) 47.12 (-27.8%) 142.90 (-0.0%) 47.12 (-0.0%) 0.12 (-0.0%) 0.04(-0.0%) 

30 10 (+0) 436.80 (-0.2%) 143.48 (+4.1%) 439.80 (-0.0%) 143.08 (-0.0%) 2.31 (-0.0%) 2.14 (-0.0%) 

40 10 (+0) 951.00 (-0.4%) 345.95 (-1.0%) 959.40 (+0.2%) 337.10 (-0.4%) 15.73 (+0.2%) 11.73 (-0.4%) 

50 10(+0) 1677.90 (-21.9%) 457.48 (-35.4%) 1687.30 (-0.0%) 463.09 (-0.0%) 67.18 (-0.0%) 88.54 (-0.0%) 

60 10 (+0) 2245.90 (-2.9%) 805.68 (-4.3%) 2278.10 (+8.7%) 795.68 (-19.5%) 304.33 (+7.8%) 577.26 (-19.0%)

70 10 (+0) 2557.20 (-16.6%) 1232.07 (-8.3%) 2570.80 (-13.0%) 1234.66 (+32.3%) 379.48 (-13.0%) 376.17 (+33.5%)

80 8 (+0) 2980.25 (-1.6%) 670.38 (+14.6%) 3001.13 (+1.1%) 659.96 (+2.3%) 919.26 (+1.4%) 1099.32 (+2.8%)

 
technique we propose. The advantage taken by models  
M1 and M2 when the suggested strategy is used is sig-
nificant with respect to every factor considered, with  
improvements in the solution times in the order of 60%,  
and the number of problems solved to proven optimality  
in the given time is dramatically increased. 

Different is the situation for model M3: the results in 
this case do not show any significant difference with 
respect to those reported in Table 1. 

The conclusion is therefore that the speed-up strategy 
should be adopted when models M1 and M2 are consi-
dered, while it its use is not recommended for model M3 
(see also Section 7). 

7. A practical Drawback and Its Solution 

The speed-up strategy we have proposed in Section 6 has 
a practical drawback, which is clear from the example 
reported in Figures 3: in the optimal solution reported in 
Figure 3(c), there are many nodes transmitting to a 
power which is higher than necessary. This is not desira-
ble, since noise and overhearing phenomena on the net-
work increase. Moreover, the network lifetime is  

more sensitive to erroneous estimations of battery con-
sumptions. In conclusion, all the arcs in Figure 3(c) that 
are not also in Figure 3(b) are potentially damaging (and 
certainly unnecessary). There is therefore a contrast be-
tween the desirable solution from a practical, realistic 
point of view, and that retrieved when the speed-up rule  
is implemented (notwithstanding they are both optimal 
from a theoretical point of view). We will see in this sec-
tion how to overcome this problem. 

Notice that a similar problem had already been identi-
fied in a very related context in [16]. They proposed an 
integer linear model for a maximum lifetime problem, 
and observed that if powers are not constrained to be 
minimal for each node, it might happen what our strategy 
forces to happen as a side effect. To overcome what they 
correctly identifies as a problem, [16] proposed a hierar-
chic objective function, where the secondary objective is 
practically the opposite of the one we suggest in Section 
6: the authors somehow concentrate on the reality, and 
not on optimization like we do. Their approach can be 
adapted to our case by substituting the objective function 
(11) with the following one: 
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Figure 3. (a) Example of a network ;(b) Topology obtained by solving the original model M2, with the objective function (11), 
on the network of (a);(c) Topology obtained by solving the modified model M2, with the objective function (21),on the net-
work of (a). 
 

min
i V

z yi


                    (22) 

where y variables are free variables connected to the rest  
of the problem through the following constraints: 
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Variable yi models the lifetime (expressed in terms of 
number of transmitting cycles, see Section 5.3) of node i. 
Notice once more that we refer to model M2, but it is 
straightforward to translate it for M1 and M3.  

If the adaptation of the method suggested in [16] is 
applied to the example of Figure 3(a), the same topology 
depicted in Figure 3(b) is obtained. Such an approach 
clearly goes in the opposite direction of the speed-up 
strategy discussed in Section 6. It is interesting to notice 
in [16] the authors did not have any need for a speed-up 
strategy because they proposed a model, and not an algo-
rithm for efficiently solving it. 

In order to overcome the practical problem discussed 
before, we developed a post-optimization technique, 
where we shrink an optimal solution obtained by apply-
ing the speed-up rule discussed in Section 6. The objec-
tive is to increase as much as possible the lifetime of all 
the nodes of the network. 

The strategy we propose does not lead to an optimal 
solution (like the method suggested in [16] does), but it 
provides suboptimal solutions in a very short time. The 
rationale behind a heuristic approach is that the main 
target of the whole optimization is to maximize the net-
work lifetime, and we achieve this in the first phase (see 

Section 6). The second phase discussed here is therefore 
less crucial, and is suitable for a very fast heuristic me-
thod like the one we suggest. 

The second phase optimization method has a poly-
nomial execution time, and is based on the solution of a 
minimum cost arborescence problem on the connected 
structure obtained during phase one. Costs of arcs are 
represented by power requirements. Tohe algorithm de-
scribed in [22] is adopted. Once the arborescence has 
been identified, the transmission powers of the nodes are 
regulated based on the arborescence, saving as much 
power as possible. The lifetime of single nodes is there-
fore increased with respect to the solution obtained in 
phase one. Notice that the application of the post-opti- 
mization procedure to the example of Figure 3(c) leads 
to the topology of Figure 3(b). 

The post-optimization phase is run in polynomial time, 
and has a negligible computation time. Therefore the 
total execution times of phase one plus phase two remain 
similar to those presented in Table 2. On the contrary, 
the adaptation of the approach proposed in [6] leads to 
solving times greater than or equal to those of Table 1, 
which are longer than those of the method we suggest. 

 
8. Conclusions 
 
The aim of this paper was to show that tools like integer 
linear programming, often regarded as over-theoretical 
and unrealistic, are indeed suitable frameworks to in-
clude the latest advances in energy consumption and 
communication models in wireless sensor networks. 
Three models of increasing realism have been presented. 
Experimental results suggest that integer linear pro-
gramming can be used not only as an effective modeling 
tool, but also as an efficient solving method for problems 
of realistic size. A surprising result also indicates that the 
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easiest models to solve (in terms of computation times) 
are the most realistic ones, suggesting that they should be 
preferred in general. 

A speed-up technique, based on the characteristics of 
the problem, has been discussed and experimentally 
shown to be effective on many of the problems consi-
dered. A practical drawback introduced by the speed-up  
technique has been finally identified and a method to 
overcome it has been introduced. 
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