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Abstract 

Graph realization from a matrix is an important topic in network topology. This paper presents an algorithm 
for the realization of a linear tree based on the study of the properties of the number of the single-link loops 
that are incident to each tree branch in the fundamental loop matrix Bf. The proposed method judges the 
pendent properties of the tree branches, determines their order one by one and then achieves the realization 
of the linear tree. The graph that corresponds to Bf is eventually constructed by adding links to the obtained 
linear tree. The proposed method can be extended for the realization of a general tree. 
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1. Introduction 
 
Graph realization from a matrix is an important topic in 
network topology. It has a broad application in electrical 
networks, switching networks, linear programming etc. 
The study of graph realization from a matrix is to judge 
whether a given matrix can be realized to be a graph. If 
yes, the method for realization needs to be found so that 
graph realization for a given matrix can be achieved. 
There are three aspects in graph realization from a matrix: 
a) the realizablity of the given matrix, b) the method for 
graph realization from a matrix, c) the unique corre-
spondence between the realized graph and the given ma-
trix. All the above issues have been under research by 
using algebra theory, graph theory, geometry structure 
etc [1–5]. While the necessary and sufficient conditions 
for the realizability of a graph from a matrix are pro-
posed by many researchers from different viewpoints, 
the judgment of the realizability and the realization of the 
graph, in practice, are carried out simultaneously rather 
than in sequence. 

Quite a few researchers studied the realization of a 
linear tree [6,7]. This paper presents an algorithm for the 
realization of a linear tree based on the study of the 
properties of the number of the single-link loops that are 
incident to each tree branch in the fundamental loop ma-
trix Bf. The proposed method judges the pendent proper-
ties of the tree branches, determines their order one by 
one and then achieves the realization of the linear tree. 

Since a general tree possesses a linear sub-tree, a general 
tree can then be realized by adding other tree branches 
after the linear sub-tree is realized. The graph that corre-
sponds to an arbitrary fundamental loop matrix Bf is 
eventually constructed by adding links to the obtained 
linear tree. As is seen, the proposed method is simple, 
practical and efficient in realizing a general tree. 
 
2. Pretreatment 
 
For a graph that possesses n nodes and b branches, after 
a certain tree T is chosen, the fundamental loop matrix Bf 
has a standard form [Bt 1] where Bt is a (b-n+1)(n-1) 
matrix. Assume that the columns b1, b2, …, bn-1 in Bt 
correspond to the branches t1, t2, …, tn-1 of T, while the 
columns bn, bn+1, …, bb in 1 correspond to the links. As is 
known, bi

Tbj indicates the number of the pairs of corre-
sponding entries being all “1”s in the branch columns bi 
and bj. By realizing a graph from the matrix that is con-
structed by the rows of the aforementioned pairs as well 
as the same indexed rows in the corresponding link col-
umns, we know that bi

Tbj is the number of the sin-
gle-link loops that pass ti and tj. Specially, bi

Tbi indicates 
the number of entries “1” in bi. By realizing a graph from 
the matrix that is constructed by the rows of the afore-
mentioned “1”s as well as the same indexed rows in the 
corresponding link columns, we know that bi

Tbi is the 
number of the single-link loops that pass ti. To facilitate 
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






our discussions, it is assumed that the tree that corre-
sponds to Bt is a linear tree. For example: 

1 2 3 4 5 6
4 1 1 1 1 0 0

[ , ] 5 1 1 0 0 1 0
6 0 1 1 0 0 1


 
 


B B 1
f t

 

The number of the pairs of corresponding entries be-
ing all “1”s in b1 and b2 (i.e., row 1 and row 2) is 2. Thus, 
b1

Tb2 =2. By realizing a graph (Figure 1) from the matrix 

 that is constructed by the rows of the 

aforementioned pairs as well as the same indexed rows in 
the corresponding link columns, we know that b1

Tb2=2 
is the number of the single-link loops that pass t1 and t2. 
Specially, b1

Tb1=2 is the number of the single-link loops 
that pass t1. The following theorems present the rela-
tionship among the branches of T (Due to limitation of 
space, the proofs are not presented in this article). 

    1 2 4 5
4 1 1 1 0
5 1 1 0 1

  

Theorem 1: Suppose Bt is a (b-n+1)3 matrix and tp is 
a pendent branch of the linear tree T that corresponds to 
Bt. If and only if bp

Tbq bp
Tbr (pqr, p, q, r=1, 2, 3), 

the order of the branches of T is tp, tq, tr. 
As is seen in Figure 2, while there is only one sin-

gle-link loop passing tp and tq, there are two passing tp 
and tr. Therefore, bp

Tbr bp
Tbq and the order of the 

branches of T is tp, tr, tq  according to Theorem 1. 

 

 

Figure 1. The explanation of b·bj. 

 

 

Figure 2. The explanation of Theorem 1. 

Theorem 2: Suppose Bt is a (b-n+1)(n-1) matrix and 
tp is a pendent branch of the linear tree T that corre-
sponds to Bt. If and only if bp

Tbqbp
Tbr (pqr, 1p, q, 

rn-1), the order of the branches of T is tp, …, tq, …, tr 
(i.e., tq is closer to tp than tr is). 

Theorem 3: Suppose Bt is a (b-n+1)(n-1) matrix. For 
a certain column bl arbitrarily chosen, if bl

Tbp 

=  bl
Tbi (pl, 1pn-1), tp is a pendent 

branch of the linear tree T that corresponds to Bt. 

min
1,...2,1,  niil

Theorem 4: Suppose Bt is a (b-n+1)(n-1) matrix. For 
a certain column bl arbitrarily chosen, if bl

Tbj 

=  bl
Tbi where jU={p, q, r, …, w} 

(pqr…wl, 1p, q, r, …, wn-1), there must exist a 
certain sU such that ts is a pendent branch of the linear 
tree T that corresponds to Bt. 

min
1,...2,1,  niil

As is seen in Figure 3, while bl
Tbm=bl

Tbn=2, bl
Tbp 

=bl
Tbq=1. Thus, there must exist a certain sU={p, q} 

such that tp or tq is a pendent branch of the linear tree T. 
Theorem 5: Suppose Bt is a (b-n+1)(n-1) matrix. For 

a certain column bl arbitrarily chosen, if bl
Tbj 

=  bl
Tbi where jU={p, q, r, …, w} 

(pqr…wl, 1p, q, r, …, wn-1), then the th, tm, 

tn, …, tl that correspond to ={h, m, n, …, l}construct 

a linear sub-tree of T, where U =  and U 

= n-1. 

min
1,...2,1,  niil




U


U




U

As is seen in Figure 3, U ={p, q} and ={m, n, l}. 
Since bl

Tbm=bl
Tbn=2 but bl

Tbp =bl
Tbq=1, tm, tn  and tl  

construct a linear sub-tree of T. 


U

Theorem 6: Suppose Bt is a (b-n+1)(n-1) matrix. For 
a certain column bl  arbi trari ly chosen,  bl

T bj 

=  bl
Tbi where jU={p, q, r, …, w} 

(pqr…wl, 1p, q, r, …, wn-1). Thus, the th, tm, 

tn, …, tl that correspond to ={h, m, n, …, l} construct 

min
1,...2,1,  niil


U

 

 

Figure 3. The explanation of Theorem 4. 
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a linear sub-tree of T, where U =  andU 

= n-1. Then for a certain k  , if there are cer-

tain s1 and s2 U*U such that , after 

the links L’s that correspond to  in 

the graph G that corresponds to Bf are deleted, the graph 
constructed by G1 that corresponds to U* and the graph 

G2 that corresponds to (U-U*)


is a separable graph, 

where G1 and G2G, G1G2GL=G, G1 G2GL= 
and GL is the graph that corresponds to the links L’s. If 
G1 and G2 are inseparable graphs, respectively, then G1 
and G2 have a common cut-point. 




U

1sb

max
m,h,


U

b

n,...,




U

2s
T

k
T

k bb 

lk 

T
kb 

U





1sb

As is seen in Figure 4(a), bl
Tbj =1 where jU={p, q, r, 

w}. Thus, the th, tm, tn, …, tl that correspond to 


U ={h, m, 

n, l}construct a linear sub-tree of T. Let k=h


U

2

, and s1 

and s2U*={p, q}U. Since =3, links 

1, 2 and 3 are deleted. The remaining G1 and G2 are 
separable graphs as shown in Figure 4(b). 

1

T
ks

T
k bbbb  s

From the above facts, it is seen that when the condi-
tions in Theorem 6 are satisfied, G1 and G2 are 2-iso-
morphic. Therefore, in the ordering of the branches of 
the linear tree, the branches of the linear sub-tree that 
corresponds to G1 are first put into order separately, then 
those of the linear sub-tree that corresponds to G2. The 
ordering of the branches of the linear tree is now reduced 
to the ordering of the branches for each linear sub-tree. 
The solution of this problem is depending on the follow-
ing Theorem 7, where it is assumed that the sub-trees do 
not form 2-isomorphism. 

 

 
(a) 

 
(b) 

Figure 4. The explanation of Theorem 6. 

Theorem 7: Suppose Bt is a (b-n+1)(n-1) matrix. For 
a certain column bl arbitrarily chosen, bl

Tbj 

=  bl
Tbi where jU={p, q, r, …, 

w}(pqr…wl, 1p, q, r, …, wn-1). Thus, the th, tm, 

tn, …, tl that correspond to ={h, m, n, …, l}construct 

a linear sub-tree of T, where U = and U 

=n-1. Then for a certain k , if there is a certain 

sU such that =  ,  is a 

pendent branch of the linear tree T that corresponds to Bt. 

min
1,...2,1,  niil


U

T
kb 


U

min
p,j 



w


U

T
kb




U

r,...,q,
sb

s,j 
jb st

As is seen in Figure 5, U={p, q, r} and ={h, m, n, 

l}. Let k=h  and s=pU. Since  

and , is a pendent branch of 

the linear tree T. 


U

1


U

1

2 q
T

hp
T

h bbbb

3 r
T

hp
T

h bbbb
pt

 
3. The Algorithm for the Construction of the 

Linear Tree 
 
We propose the following algorithm for the construction 
of the linear tree T. The thread of thinking is that one of 
the two pendent branches of T, e.g., tp is found first. The 
other pendent tree branch tq is found by using tp as a base. 
Then tq is taken off, the other pendent tree branch tr is 
found by using tp as a base again. Keep on with this pro-
cedure until the order of all the branches of T is decided. 

1) For a given fundamental loop matrix Bf=[Bt 1], let 

M=Bt
TBt where the entry = . Establish a ma-

trix Bt’ which is of the same dimension as Bt so that the 
columns of Bt after ordering can be put into Bt’. Let the 
column index for Bt’ be f. Set f=1. 

ijm ji bb T

2) For row i (1in-1) in M (Usually, let i=1 first to 
follow the row order in M), if there is only one entry mip 
in row i that takes the minimum value, tp that corre-
sponds to column p is a pendent branch of the linear tree 

 

 

Figure 5. The explanation of Theorem 7. 
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T according to Theorem 3. Go to step (6). On the other 
hand, if there are multiple entries , , , …, 

in row i that take the minimum value, there must 

exist a certain sUd={pd, qd, rd, …, wd} (d is the iteration 
index. Let d=1 first.) such that ts that corresponds to 
column s is a pendent branch of the linear tree T accord-

dipm
diqm

dirm

diwm

ing to Theorem 4. 

3) For row k in M where k ={h, m, n, …, 

l}(Usually, let k follow the row order in ), if there is 
only one entry mks in row k that takes the minimum value 
where sUd, ts that corresponds to column s is a pendent 
branch of the linear tree T according to Theorem 7.

dU


dU


  Go 
to step (4). On the other hand, if there are multiple en-
tries , , , …, in row k that take 

the minimum value, there must exist a certain sUd={pd, 
qd, rd, …, wd} (d=d+1) such that ts that corresponds to 
column s is a pendent branch of the linear tree T accord-

dkpm
dkqm

dkrm
dkwm

ing to Theorem 4. Repeat step (3) until k takes all the 

elements in . At that time, if there are still multiple 
entries in row k that take the minimum value, go to step 
(8). 

dU


4) If the last column of Bt’ is not filled by a column 
from Bt yet, set p=s. Go to step (6). Otherwise, judge the 
adjacency of tk, ts and tp according to Theorem 2. 

5) If tk and tp are at the same side of ts, i.e., the order 
is ts, …, tk, …, tp, set p=s. Go to step (6). On the other 
hand, if tk and tp are at the different sides of ts, i.e., the 
order is tk, …, ts, …, tp, use tk as a pendent tree branch 
to find the order of the tree branches corresponding to 
Ud and put them into the columns of Bt’, i.e., column f 
to column f’ where f’=f+(number of elements in Ud)-1. 
Set all the entries in the columns of M corresponding 
to Ud to be . If the entries in M are all , stop. If not, 
set f = f+ (number of elements in Ud). Go back to   
step (2). 

6) If the last column of Bt’ is already filled by a col-
umn from Bt, i.e., a pendent tree branch at one end is 
already decided, go to step (b). Otherwise 

a) Assume the pendent branch of T is tp. Put tp into the 
last column of Bt’. Set i=p. Go to step (7). 

b) Put column p of Bt into column f of Bt’. Set f=f+1. 
7) If all the columns of Bt have been put into Bt’, the 

ordered columns of Bt’ have already constitute a linear 
tree. Stop. Otherwise, set the entries in column p of M to 
be . Go back to step (2). 

8) When there are only two entries in Ud, choose ar-
bitrarily sUd. ts is a pendent branch of T. Go to step 
(4). Otherwise, according to Theorem 5 and Theorem 6, 
the linear sub-tree in graph G1 that corresponds to 
Ud*=Ud can be put into order separately. Thus, take the 
columns Bt

(1) in Bt that correspond to the elements in 

Ud to construct Bt
(1)T Bt

(1)=M(1). Repeat steps (2)-(8) 
for M(1). If the number of elements in Ud is not 
changed after one iteration, the order of the corre-
sponding tree branches is arbitrary. Put the ordered 
columns of Bt

(1) into column f to column f’ where 
f’=f+(number of elements in Ud)-1. Set all the entries in 
the columns of M corresponding to Ud to be . If the 
entries in M are all , stop. If not, set f=f+(number of 
elements in Ud). Go back to step (2). 
 
4. An Example 
 
Given a fundamental loop matrix  

Br= ,  



















100011100

010010111

001010001

000111111

987654321

we have 

Bt = and Bt
T . 



















11100

10111

10001

11111

54321  

























1111

1001

1101

0101

0111

a) According to step (1), 

M=Bt
TBt= . 























42323

22211

32322

21222

31223

5

4

3

2

1

54321

Also, establish a matrix Bt’ which is of the same di-
mension as Bt so that the columns of Bt after ordering 
can be put into Bt’. Let the column index for Bt’ be f. Set 
f=1. 

b) According to step (2), consider row 1 of M. As m14 
is the only entry in row 1 that takes the minimum value, 
t4 is one pendent branch of T. Go to step (6). 

c) According to step (6)(a), put column 4 of Bt into the 
last column of Bt’, i.e., 

Bt’= . Set i=4. 



















1

0

0

1

4
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d) According to step (7), set all the entries in column 4 
of M to be , i.e.,  

M =  





























4323

2211

3322

2222

3223

5

4

3

2

1

54321

e) According to step (2), consider row 4 of M. As m41 

and m42 are the entries in row 4 that take the minimum 
value, there must exist the other pendent branch of T 
among t1 and t2 that correspond to U1={1, 2}. Here, 

={3, 4, 5}.  1


U

f) According to step (3), consider row 3 of M. As m31 

and m32 are the entries in row 3 that take the minimum 
value, there must exist the other pendent branch of T 
among t1 and t2 that correspond to U2={1, 2}. Here, 

={3, 4, 5}. 2


U

g) Repeat step (3). Consider row 5 of M. m52 is the 
only entry in row 5 that takes the minimum value. 

h) According to step (4), as the last column of Bt’ is 
already filled by a column from Bt, judge the adjacency 
of t5, t2 and t4. As m42<m45 in m4, the order is t2, …, 
t5, …, t4. 

i) According to step (5), as t5 and t4 are at the same 
side of t2, t2 is the other pendent branch of T that is based 
on t4. Set p=2. 

j) According to step (6)(b), put column 2 of Bt into the 

first column of Bt’, i.e., Bt’= . Set 

f=1+1=2. 



















10

01

00

11

42

k) According to step (7), set all the entries in column 2 
of M to be , i.e.,  

M = . 





























433

221

332

222

323

5

4

3

2

1

54321

l) According to step (2), consider row 4 of M. As m41 
is the only entry in row 4 that takes the minimum value, 
t1 is the other pendent branch of T that is based on t4 with 
t2 taken off.  

m) According to step (6), put column 1 of Bt into the 

second column of Bt’, i.e., Bt’= . Set 

f=2+1=3.  



















100

011

010

111

412

n) According to step (7), set all the entries in column 1 
of M to be , i.e.,  

M = . 





























43

22

33

22

32

5

4

3

2

1

54 321

o) According to step (2), consider row 4 of M. As m43 

and m45 are the entries in row 4 that take the minimum 
value, there must exist the other pendent branch of T that 
is based on t4 with t1 and t2 taken off among t3 and t5 that 

correspond to U1={3, 5}. Here, ={1, 2, 4}.  1U


p) According to step (3), consider row 1 of M. m13 is 
the only entry in row 1 that takes the minimum value. 

q) According to step (4), as the last column of Bt’ is 
already filled by a column from Bt, judge the adjacency 
of t1, t3 and t4. As m13>m14 in m1, the order is t1, …, t3, …, 
t4. 

r) According to step (5), as t1 and t4 are at the different 
sides of t3, t2 is used as the other pendent branch of T to 
find the order of the tree branches corresponding to Ud. 
Put column 3 of Bt into the fourth (f’=3+2-1=4) column 
of Bt’, i.e., 

Bt’= .  



















1100

0111

0010

1111

4312

Set f=3+1=4. Set all the entries in column 3 of M to be , 
i.e.,  

M = . 





























4

2

3

2

3

5

4

3

2

1

54321

s) According to step (2), consider row 4 of M. As m45 
is the only entry in row 4 that takes the minimum value, 
t5 is the other pendent branch of T that is based on t1 with 
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5. Conclusions t3 taken off.  
t) According to step (6), put column 5 of Bt into the 

third column of Bt’, i.e., Bt’= . Set 

f=4+1=5. 



















11100

01111

00110

11111

43512
 
This paper presents an algorithm for the realization of a 
linear tree based on the judgment of the pendent proper-
ties of the tree branches and the determination of their 
order one by one. The graph that corresponds to Bf is 
eventually constructed by adding links to the obtained 
linear tree. As an arbitrary tree contains a linear tree, the 
linear tree can then be realized first to realize a general 
tree. This will be discussed in another paper of ours. u) According to step (7), stop. 

The main contribution of this paper lies in the proposi-
tion of a new approach to the realization of a linear tree. 
Experiments validate the effectiveness of the proposed 
approach. This lays a foundation to the realization of a 
general tree and therefore a random graph from a given 
matrix. 

As a summary, we have the following table to achieve 
the order of the columns in Bt’. 

Colu. in Bt’ 5 1 2 4 3 

Colu. in Bt 4 2 1 3 5 

Steps (b),(c),(d) 
(e),(f),(g),
(h),(i),(j),

(k) 
(l),(m),(n) 

(o),(p), 
(q),(r) 

(s),(t),(u)

According to 
Algorithm 

Steps 
(2),(6), (7) 

(2),(3),(3),
(4),(5),(6),

(7) 
(2),(6),(7) 

(2),(3), 
(4),(5) 

(2),(6),(7)
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