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Abstract 
 
Popular video coding standards like H.264 and MPEG working on the principle of motion-compensated pre-
dictive coding demand much of the computational resources at the encoder increasing its complexity. Such 
bulky encoders are not suitable for applications like wireless low power surveillance, multimedia sensor 
networks, wireless PC cameras, mobile camera phones etc. New video coding scheme based on the principle 
of distributed source coding is looked upon in this paper. This scheme supports a low complexity encoder, at 
the same time trying to achieve the rate distortion performance of conventional video codecs. Current im-
plementation uses LDPC codes for syndrome coding. 
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1. Introduction 
 

With the proliferation of various complex video applica-
tions it is necessary to have advanced video and image 
compression techniques. Popular video standards like ISO 
MPEG and ITU-H.26x have been successful in accom-
plishing the requirements in terms of compression effi-
ciency and quality. However these standards are pertinent 
to downlink friendly applications like video telephony, 
video streaming, broadcasting etc. These conventional 
video codecs work on the principle of motion compensated 
prediction which increases the encoder complexity due to 
the coexistence of the decoder with the encoder. Also mo-
tion-search algorithm makes the encoder computationally 
intensive. The downlink friendly architectures belong to 
the class of Broadcast model, where in high encoder com-
plexity is not an issue. The encoder of a Broadcast model 
resides at the base-station where power consumption and 
computational resources are not an issue. However this 
Broadcast model of video is not suitable for uplink friendly 
applications like mobile video cameras, wireless video 
sensor networks, wireless surveillance etc which demands 
a low power, low complexity encoder. These uplink 
friendly applications which belong to wireless-video model 
demands a simple encoder since the power and the compu-
tational resources are of primary concern in the wireless 
scenario. Based on the information theoretic bounds estab-
lished in 1970’s by Slepian-Wolf [1] for distributed lossless 

 coding and by Wyner-Ziv [2] for lossy coding with de-
coder side information, it is seen that efficient compression 
can also be achieved by exploiting source statistics partially 
or wholly at the decoder. Video compression schemes that 
build upon these theorems are referred as distributed video 
coding which befits uplink friendly video applications. 
Distributed video coding shifts the encoder complexity to 
the decoder making it suitable for wireless video model. 
Unlike conventional video codecs distributed coding ex-
ploits the source statistics at the decoder alone, thus inter-
changing the traditional balance of complex encoder and 
simple decoder. Hence the encoder of such a video codec is 
very simple, at the expense of a more complex decoder. 
Such algorithms hold great promise for new generation 
mobile video cameras and wireless sensor networks. In the 
design of a new video coding paradigm, issues like com-
pression efficiency, robustness to packet losses, encoder 
complexity are of prime importance in comparison with 
conventional coding system. In this paper we present the 
simulation results of distributed video coding with syn-
drome coding as in PRISM [3], using LDPC codes for 
coset channel coding [4]. 
 

2. Background 

 
2.1. Slepian-Wolf Theorem for Lossless Distrib-

uted Coding [1] 
 
Consider two correlated information sequences X and Y. *SMIEEE. 
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Encoder of each source is constrained to operate with-
out the knowledge of the other source while the decoder 
has access to both encoded binary message streams as 
shown in Figure 1. The problem that Slepian-Wolf 
theorem addresses is to determine the minimum number 
of bits per source character required for encoding the 
message stream in order to ensure accurate reconstruc-
tion at the decoder. Considering separate encoder and 
the decoder for X and Y, the rate required is RX ≥ H(X) 
and RY ≥ H(Y) where H(X) and H(Y) represents the en-
tropy of X and Y respectively. Slepian-Wolf [1] showed 
that good compression can be achieved with joint de-
coding but separate encoding. 

For doing this an admissible rate region is defined [6] 
as shown in Figure 2 given by: 

RX + RY ≥ H(X,Y)                 (1) 

RX ≥ H(X/Y), RY ≥ H(Y)          (2) 

RX ≥ H(X), RY ≥ H(Y/X)             (3) 

Thus Slepian-Wolf [1] showed that Equation (1) is the 
necessary condition and Equation (2) or Equation (3) are 
the sufficient conditions required to encode the data in 
case of joint decoding. With the above result as the base, 
we can consider the distributed coding with side infor-
mation at the decoder as shown in the Figure 3. Let X be 
the source data that is statistically dependent to the side 
information Y. Side information Y is separately encoded 
at a rate RY ≥ H(Y) and is available only at the decoder. 
Thus as seen from Figure 2 X can be encoded at a rate RX 
≥ H(X/Y). 
 
 
 
 
 
 
 

Figure 1. Compression of correlated sources by separate 
encoder but decoded jointly. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Admissible rate region [5]. 
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Figure 3. Lossless decoder with side information. 
 
2.1. Wyner-Ziv Rate Distortion Theory[2,6] 
 
Aaron Wyner and Jacob Ziv [2,6] extended Slepian- 
Wolf theorem and showed that conditional Rate-MSE 
distortion function for X is same whether the side in-
formation is available only at the decoder or both at 
encoder and decoder; where X and Y are statistically 
dependent Gaussian random processes. Let X and Y be 
the samples of two random sequences representing the 
source data and side information respectively. Encoder 
encodes X without access to side information Yas 

shown in Figure 4. 

Decoder reconstructs


X using Y as side information. Let 

D = E [d (


X , X)] is the acceptable distortion. Let RX/Y(D) 
be the rate required for the case where side information is 

available at the encoder also and  represent the 

Wyner-Ziv rate required when encoder doesn’t have access 
to side information. Wyner-Ziv proved that Wyner-Ziv rate 

distortion function  is the achievable lower 

bound for the bitrate for a distortion D 
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They also showed that for Gaussian memoryless 
sources 

0 )()( // DRDR YX
WZ

YX              (5) 

As a result source sequence X can be considered as the 
sum of arbitrarily distributed side information Y and in-
dependent Gaussian Noise. Ry

Rx

bits

bitsH(x)H(x/y)

H(y/x)

H(y)

Distributed video coding is based on these two funda-
mental theories, specifically works on the Wyner-Ziv 
coding considering a distortion measure. In such a coding 
system the encoder encodes each video frame separately 
 

 
 

 
 
 
 
 

Figure 4. Lossy decoder with side information. 
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The correlation between binary sources X = [X1, 
X2.....,Xn] and Y = [Y1, Y2, ..., Yn] is modeled using a bi-
nary symmetric channel. We consider Xi and Yi to be 
correlated according to Pr [Xi Yi] = p < 0.5. The rate 
used for Y is its entropy RY = H(Y), therefore the theo-
retical limit for lossless compression of X is given by 

with respect to the correlation statistics between itself and 
the side information. The decoder decodes the frames 
jointly using the side information available only at the 
decoder. This video paradigm is as opposed to the conven-
tional coding system where the side information is avail-
able both at the encoder and decoder as shown in Figure 5. 
 nRx  ≥ nH(Xi/Yi) = nH(p) =n(−plog2p−(1−p)log2(1−p)) 
2.2. Syndrome Coding [5] 

(6)  
The compressed version of X is the syndrome S which 

is the input to the channel. The source Y is assumed to be 
available at the decoder as side information. Using a lin-
ear (n,k) binary block code, it is possible to have 2n−k 
distinct syndromes, each indexing a set of 2k binary 
words of length n. This compression results in mapping a 
sequence of n input symbols into (n−k) syndrome sym-
bols.  

Let X be a source that is to be transmitted using least 
average number of bits. Statistically dependent side in-
formation Y, such that X = Y + N is available only at the 
decoder. The encoder must therefore encode X in the 
absence of Y, whereas the decoder jointly decodes X us-
ing Y. Distributed source encoder compresses X in to 
syndromes S with respect to a Channel code C [7]. De-
coder on receiving the syndrome can identify the coset to 
which X belongs and using side information Y can recon-
struct back X. 

 
3. Implementation  
 2.3. Correlation Channel and the Channel Codes [4] 
3.1. Encoder  
 The performance of the channel codes is the key factor 

of the distributed video coding system in both error cor-
recting and data compression. Turbo and LDPC codes 
are two advanced channel codes which have astonishing 
performance near the Shannon Capacity limit. The use of 
LDPC codes for syndrome coding was first suggested by 
Liveris in [4], where the message passing algorithm was 
modified to take syndrome information in to account. 

The encoder block diagram is shown in the Figure 6. The 
video frames are divided into blocks of 8x8 and each 
block is processed one by one. Block DCT (Discrete 
Cosine Transform) is applied to each 8x8 block (or 
16x16) and the DCT coefficients are zig-zag scanned so 
that they are arranged as an array of coefficients in or-
der of their importance. Then the transformed coeffi-
cients are uniform quantized with reference to target 
distortion measure and desired reconstruction quality. 
After quantization a bitplane is formed for each block 
as shown in Figure 7 [3]. Main idea behind distributed 
video coding is to code source X assuming that the side 
information Y is available at the decoder such that X = 
Y + N, where N is Gaussian random noise. This is done 
in the classification step where bitplane for each coeffi-
cient is divided into different levels of importance. 
Classification step strongly rely on the correlation noise 

 

 
 
 
 
 
 

Figure 5. Lossless decoder with side information. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Video encoder.       
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Figure 7. Bit planes for each coefficient blocks. 
 
structure N between the source block X and the side 
information block Y. Less is the correlation noise be-
tween X and Y, more is the similarity and hence less 
number of bits of X can be transmitted to the decoder. 
In order to classify the bitplanes offline training is done 
for different types of video files without any motion 
search. On the basis of offline process 16 types of 
classes are formed, where each class considers different 
number of bitplanes for entropy coding and syndrome 
coding for each coefficient in the block. In the classifi-
cation process, MSE (mean square error) for each block 
is computed with respect to the zero motion blocks in 
the previous frame. Based on the MSE and the offline 
process appropriate class for that particular block is 
chosen. As a result some of the least significant bit 
planes are syndrome coded and some of the bitplanes 
that can be reconstructed from side information are to-
tally ignored. The syndrome coding bitplanes shown in 
black and gray in Figure 7 and skip planes shown in 
white in Figure 7. Skip planes can be reconstructed 
back using side information at the decoder and hence 
need not be sent to the decoder. The important bits of 
each coefficient that cannot be determined by side in-
formation has to be syndrome coded [3]. In our imple-
mentation we code two bitplanes using coset channel 
coding and the remaining syndrome bitplanes using 
Adaptive Huffman coding. Among the syndrome cod-
ing bitplanes we code the most significant bit planes 
using Adaptive Huffman coding. The number of bit-

planes to be syndrome coded is directly used from class 
information that is hard coded. Hence we need not send 
four-tuple data (run, depth, path, last) as in PRISM [3]. 
Rest of the least significant bitplanes is coded using 
coset channel coding. This is done by using a parity 
check matrix H of a (n,k) linear channel code. Com-
pression is achieved by generating syndrome bits of 
length (n-k) for each n bits of data. These syndrome bits 
are obtained by multiplying the source bits with the 
parity check matrix H such that 

x0 x1 x2 x3 x63
b0

b2

bm

b1

Coefficients

Bitplanes

S = HbX 

where S represents the syndrome bits. H represents the 
parity check matrix of linear channel code. bX represents 
the source bits. 

These syndromes identify the coset to which the 
source data belongs to. In this implementation we have 
considered two biplanes for coset coding marked gray in 
the Figure 7. We have implemented this using irregular 
3/4 rate LDPC coder [4]. 
 
3.2. Decoder 
 
The Decoder block diagram is shown in the Figure 8. 
The entropy coded bits are decoded by an entropy de-
coder and the coset coded bits are passed to the LDPC 
decoder. In this implementation, previous frame is con-
sidered as the side information required for syndrome 
decoding. Once the syndrome coded bits are recovered 
they identify the coset to which Xi belongs and hence 
using the side information Yi we can correctly decode the 
entire bits of Xi. The quantized codeword sequence is 
then dequantized and inverse transformed to get the 
original coefficients. 
 
4. Simulation Results 
 
Video Codec is designed for a single camera scenario 
which is an application to wireless network of video 
camera equipped with cell phones. The video codec is 
simulated and tested with a object oriented approach 
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Figure 8. Video decoder. 
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Table 1. Filename: foreman. QCIF, frame rate=30fps.             Table 2. Filename: football. QCIF, frame rate=30fps. 

 

 

Figure 9. a) Error resilience characteristics of DVC, 4th, 10th, 20th frames are lost for football; b) Error resilience character-
istics of DVC, 4th, 10th, 20th frames are lost for foreman. 
 

using C++ in gcc. The program processes frames one by 
one and within each frame, block wise processing is 
done. The input to the encoder is a QCIF video file 
(Quarter Common Intermediate Format). Encoder allows 
the storage of one previous frame. Objective perform-
ance evaluation of the system is done by measuring the 
Compression Ratio (CR), MSE and the Peak Signal to 
Noise Ratio (PSNR) between the original and the recon-
structed video. The PSNR and CR for various video se-
quences is computed. These are compared with that of 
H.263+ Intra and H.263+ Predictive video codec [8]. The 
encoder and decoder block as shown in Figure 6 and 
Figure 8 respectively are implemented and some pre-
liminary simulation results are presented in this paper 
for two video files Football and Foreman in QCIF 
resolution with a frame rate of 30 fps. The rate distor-
tion performance and the error resilience characteris-
tics of the distributed video coder is presented in this 
paper. As seen from the Table 1, for the same bitrate 
distributed video coder has better PSNR than DCT 
based intraframe coder and but is slightly inferior to 
H.263+ predictive coder [8] for Foreman file. As seen 
from Table 2 distributed video coder has better PSNR 
than DCT based intraframe coder and H.263+ predic-
tive coder for Football file. With some enhancements 
to the current coding scheme such as accurate model-
ing of correlation statistics between the source data and 

the side information, proper motion search module for 
side information generation etc, better rate-distortion 
performance can be achieved with a low complexity 
encoder model. 

Error Resilience characteristics of Distributed 
video scheme is as shown in Figure 9a for Football 
and Figure 9b for Foreman. Effect on the quality of 
the reconstructed video sequence is seen by dropping 
4th, 10th, 20th frames at the decoder in our imple-
mentation. It is seen that distributed video coder re-
covers quickly. In Distributed video scheme, decod-
ing is dependent on the side information Y that is 
universal for all source data X as long as correlation 
structure is satisfied. 
 
5. Conclusion 
 
In this paper we have tried PRISM [3] like implementa-
tion using LDPC coset channel coding. By proper mod-
eling of correlation structure of source and the side in-
formation for video we can achieve better compression 
performance with better quality of reconstructed video 
sequence. However the main aim of distributed video 
coding scheme is to reduce encoder complexity to con-
form with wireless-video model, which seems to be sat-
isfied. Distributed codec is more robust to packet /frame 

 Luma PSNR (dB) for different Methods 

BitRate
(Mbps) 

DVC 
Implementation 

H.263+ Predictive 
Coder 

IntraCoder 
(Motion JPEG)

3.52 30.724 25.62 30.07 

3.67 31.834 25.76 30.92 

4.87 34.005 26.59 33.80 

 Luma PSNR (dB) for different Methods 
BitRate 
(Mbps) 

DVC 
Implementation 

H.263+Predic-
tive Coder 

IntraCoder 
(Motion JPEG)

2.57 31.357 34.72 30.092 

2.67 33.554 35.03 32.863 

3.55 35.534 35.86 34.92 
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loss due to the absence of prediction loop in the encoder. 
In a Predictive coder accuracy of decoding is strongly 
dependent on a single predictor from the encoder, loss of 
which results in erroneous decoding and error propaga-
tion. Hence Predictive coder can recover from packet or 
frame loss by only some extent. The quality of the re-
constructed signal for the same CR can be improved by 
performing more complex motion search. However it is 
seen that the current implementation operates well in 
high quality (PSNR of order of 30dB) regime. The ex-
tension to lower bit rates without any compromise in the 
quality so that it is comparable with the conventional 
codecs will be the next part of the work. 
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