
Wireless Sensor Network, 2009, 1, 276-283 
doi:10.4236/wsn.2009.14034 Published Online November 2009 (http://www.scirp.org/journal/wsn). 

Copyright © 2009 SciRes.                                                                                 WSN 

Real-Time Automatic ECG Diagnosis Method 
Dedicated to Pervasive Cardiac Care 

Haiying ZHOU1, Kun-Mean HOU2, Decheng ZUO1 
1School of Computer Science & Technology, Harbin Institute of Technology, Harbin, China 

2LIMOS Laboratory UMR 6158 CNRS, University of Blaise Pascal, Clermont-Ferrand, France 
Email: {haiyingzhou, zdc}@hit.edu.cn, kun-mean.hou@isima.fr 

Received May 1, 2009; revised May 25, 2009; accepted May 31, 2009 

Abstract 
 
Recent developments of the wireless sensor network will revolutionize the way of remote monitoring in dif-
ferent domains such as smart home and smart care, particularly remote cardiac care. Thus, it is challenging to 
propose an energy efficient technique for automatic ECG diagnosis (AED) to be embedded into the wireless 
sensor. Due to the high resource requirements, classical AED methods are unsuitable for pervasive cardiac 
care (PCC) applications. This paper proposes an embedded real-time AED algorithm dedicated to PCC sys-
tems. This AED algorithm consists of a QRS detector and a rhythm classifier. The QRS detector adopts the 
linear time-domain statistical and syntactic analysis method and the geometric feature extraction modeling 
technique. The rhythm classifier employs the self-learning expert system and the confidence interval method. 
Currently, this AED algorithm has been implemented and evaluated on the PCC system for 30 patients in the 
Gabriel Monpied hospital (CHRU of Clermont-Ferrand, France) and the MIT-BIH cardiac arrhythmias da-
tabase. The overall results show that this energy efficient algorithm provides the same performance as the 
classical ones. 
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1. Introduction 
 
Due to the increasing occurrence of sudden death events 
caused by cardiovascular diseases, there is a need to pro-
vide a long-term, real-time continuous PCC service for 
the sudden death high-risk population. The PCC system 
has thus been developed for different populations at a 
variety of environment, including at home, clinical and 
outdoor. 

The studies of AED methods focused mainly on the 
clinical services. Unlike the clinical applications, the 
acquisitions of the PCC system is ambulatory ECG sig-
nal that is non-stationary and easy-disturbed by interfer-
ences. Moreover, the nodes of the PCC system have 
strict resource constraints, i.e. the capacities of computa-
tion, storage and power supply. Classical AED algo-
rithms are thus unfit for the PCC system. 

This paper presents a real-time and low resource con-
sumption AED algorithm for the PCC system. Section 2 
introduces the state-of-the-art of the AED algorithms. 
Section 3 describes this algorithm in detail and section 4 
presents the performance evaluation. The conclusions are 
drawn at the last section. 
 
2. State-of-the-Art 
 
Due to its high potential amplitude, steep slope (R-wave) 
and wide duration, QRS complex is generally used for 
the cardiac event diagnosis and analysis. Different AED 
algorithms are classified by Köhler et al. [1]: 1). Time- 
domain analysis can implement a simple and rapid detec-
tion but it is noise-sensitive; 2). Wavelet transform 
analysis has high detection performance but has huge 
computation overhead; 3). Syntax analysis exposes the 
wave pattern elements and their mutual relations, but it is 
noise-sensitive and has huge computations; 4). Neural 
network analysis needs a large amount of training sample 
set and long training time. 
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Other classical AED techniques include: template 
matching [2], hidden Markov model [3], Hilbert trans-
form [4], mathematical morphology [5] method, etc. 
These techniques generally have huge computation 
overhead. The new AED algorithms generally integrate 
multiple techniques. For example, Oliveira et al. [6] in-
tegrates the Hilbert transform and wavelet transform, and 
Szilágyi et al. [7] combines the neural network, wavelet 
transform and genetic algorithm techniques. Generally, 
these hybrid methods can improve the detection accuracy, 
but have huge computation overhead, more resource 
consumption and less operation efficiency. 
 
3. AED Algorithm 
 
3.1. Signal Preprocessing and Conditioning 
 
Due to the non-stationary and easy-disturbed natures of 
the ambulatory ECG signals, the acquisitions of PCC 
system must be de-noised before making detection. Most 
of artifacts, such as baseline shift, electrical noise and 
muscle tremor interference, can be effectively eliminated 
or reduced by choosing suitable filters. In this subsection, 
we present the filter techniques. 
 
3.1.1. ECG Time Series 
There are three ECG signals series, i.e. R(t), AD(t) and 
RC(t), in our algorithm. The R(t) series is the raw ECG 
signals acquired from electrodes. It’s generally contami-
nated by different kinds of noises. The AD(t) series is the 
adaptive differential signals with the processing of the 
differential filter and the adaptive filter. The inferences 
of the baseline drift and the motion artifacts can be 
eliminated in the AD(t) series; hence this series is used to 
detect and to localize the QRS complexes. The RC(t) 
series is the de-noised ECG signals with the operations 
of the band-pass filter and the linear amplifier. Since the 
electrical noises and the muscle tremors have been re-
moved from the RC(t) series, hence it is used to extract 
the characteristics of the QRS complexes. 
 
3.1.2. Adaptive Filter 
The classical filter for the ECG series, e.g. Notch filter, 
low-pass filter, and high-pass filter, can effectively re-
move or reduce most of the interferences. But for the 
motion artifacts, because of their irregular occurrences 
and irregular morphological attributes, these filters can-
not eliminate these disturbances. These artifacts can 
make greatly troubles in QRS detection when encoun-
tering QRS-like artifacts. 

This algorithm adopts an adaptive filter to reduce mo-
tion artifacts. The resultant signal series, named A(t), are 
generated by performing AT operation in the raw series 
R(t). The expression of adaptive filter is 
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were   s the balance coefficient that is relative to the 
signal sample frequency (default 0.95). 

Figure 1 shows different ECG series. Figure 1(a) is the 
raw signals R(t) which are serious polluted by noises. 
Figure 1(b) represents the reconstructed series RC(t) 
when filtering the R(t) series by the classical filters, i.e. 
Notch filter, low-pass filter and high-pass filter. The 
RC(t) series still contain the interferences generally 
caused by baseline wandering and motion artifacts. 
Figure 1(c) is the adaptive filter signal A(t) when filter-
ing the R(t) series by the adaptive filter, which has better 
signal quality than RC(t). Figure 1(d) is the reconstructed 
signal RC*(t) based on the adaptive filter signal A(t). 
Obviously, in contrast to the previous reconstructed sig-
nal RC(t), the signal RC* (t) has better signal quality in 
which the motion artifacts are effectively eliminated. 
 
3.2. QRS Complex Detection 
 
This paper presents a new QRS detector which copes 
with noises, artifacts and variability of ECG morphology 
by exploiting a self-adaptive threshold method (SAT), 
and a particular state transition recognition procedure 
(STR). The SAT method is used to estimate the peaks of 
ECG sub-segments and the means of contextual thresh-
olds, which allows estimating the optimum thresholds in 
segment space. The STR procedure traces the waveform 
changes of signal series and identifies QRS complexes 
based on the optimum thresholds and the rules of state 
transition.  
 
3.2.1. Diagnostic Segment Window (DSW) 
A short-term redundant data (default 5 seconds) is im-
portant in QRS detection. Firstly, this short-term segment 
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Figure 1. Filtered ECG signal series. 
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enables the complex contextual correlative analysis and 
reduces the interferences of baseline drift. In view of the 
low-frequency baseline drift, a short-term segment has 
fewer disturbances caused by baseline wandering than 
long-term signals. The redundant data enable the QRS 
detector to identify current QRS complex by comparing 
with the fore-and-aft QRS complexes. Furthermore, in 
views of the unpredictability and variability of network 
quality, the redundancy is necessary for the data retrans-
mission and the network communication. 
 
3.2.2. Self-Adaptive Threshold (SAT) 
The QRS waveforms in AECG have rapid changes and 
high potential amplitudes so that the differential series 
D(t) can exactly represent the changes. The QRS signals 
have higher absolute amplitudes in a cardiac cycle of D(t) 
series. The goal of QRS detection is to search the opti-
mum pair-peak for each QRS complex, i.e. the positive 
and negative peaks of a cardiac cycle. In DSW, there are 
generally multiple pair-peaks because several heart beats 
will occur during the 5s length. These pair-peaks make 
up of a pair-peak group in a DSW. Based on the pair- 
threshold obtained from the pair-peaks group of a DSW, 
the STR procedure is then able to locate QRS complexes. 
The absolute amplitude of each peak is generally greater 
than the associated absolute threshold in D(t). Further-
more, since the offset of location between the D(t) series 
and the A(t) series is constant, we can thus obtain the 
positions of QRS complexes in A(t) by locating the com-
plexes in D(t). 

The SAT method aims to determine the optimum pair- 
threshold, which is estimated from two aspects: the mean 
of the pair-peak group of DSW and the pair-threshold of 
the previous DSW. The pair-threshold results from the 
means of the negative and positive pair-peaks group of 
DSW. In order to accurately estimate these pair-peaks, 
the diagnostic segment window is divided into 5 sub- 
segments with the length of one second (see in Figure 2). 
Because the normal heart rate of a healthy adult is 
60bmp-100bmp [8], each sub-segment thus contains one 
 

 

Figure 2. Mean of pair-peak group in diagnostic window. 

heart beat. Since the differential signals of QRS complex 
have the maximum absolute amplitudes in a cardiac cy-
cle, a pair-peak will represent a QRS complex and then 
can be used to estimate the thresholds. Furthermore, the 
shorter of sub-segment is, the less interference of base-
line drift the sub-segment has. A sub-segment with the 
length of one second can thus be regarded as a stationary 
series. 
 
3.2.3. QRS Location: State Transition Recognition 
In view of the QRS morphology properties in D(t) series, 
the complexes are categorized into two groups: positive 
and negative. Therefore, the different states are defined 
to outline the phases of QRS complex in D(t). S2~S9 
represent the positive states of QRS complex (see in 
Figure 3), corresponding S20-S29 represent negative 
states. An adaptive and self-corrected procedure, named 
STR (State Transition Recognition), is developed to 
automatically track the changes of signal series, to cor-
rect error detection and to record detected complexes. 
The states transitions are based on three basic reference 
lines: the baseline, the positive threshold and the nega-
tive threshold. 
 
3.2.4 Feature Extraction: Geometric Analysis Method 
QRS complex has the triangular-alike or triangular- 
component morphological characteristics, see in Figure 4. 
This paper thus employs the geometric analysis method 
(GAM) to extract the features of QRS complexes. GAM 
has simple operations and low resource consumption, 
being able to predict and estimate the key points of QRS 
complexes under noisy situations, such as R wave peak, 
end point of Q wave (Qt) and onset point of S wave (Si). 
Therein, R wave peak is obtained from Tpeak1 or 
Tpeak2 and it has mono-peak or poly-peaks. The meas-
urement and the detection phases of Qt and Si points are 
illuminated as follows. 

·Define two-level thresholds for left and right sides of 
R wave (LH=1/4*Vpeak1, LL=3/4*Vpeak1, RH= 
1/4*Vpeak2 and RL=3/4*Vpeak2). 

 

 
Figure 3. Positive states of QRS complex in D(t). 
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Figure 4. Illumination of geometric analysis method. 
 
·Calculate the intersection points between the thresh-

old values and complex signals. The slopes of two 
approaching lines represent two characteristics of 
QRS complex: SP (Positive Slope) and SN (Nega-
tive Slope). 

·Obtain the duration length of QRS (LQRS) which is 
the distance of two intersection points between the 
baseline and two approaching lines. 

 
3.3. Cardiac Arrhythmias Classification 
 
Basing on the features values extracted from ECG sig-
nals, a self-diagnosis expert system is implemented to 
classify heart rhythms and interpret cardiac arrhythmias. 
The diagnostic rules of the expert system rely on the ex-
periential rules estimated from the self-learning of sys-
tem and the definitions of cardiologists. The diagnosis 
system is composed of three phases: a pre-learning ma-
chine, a rhythm classifier and an arrhythmia interpreter, 
see in Figure 5. 

Based on the well-known experiential rules of cardiolo-
gists and the results of the training procedure, the pre- 
learning machine builds and estimates the diagnostic rules 
for every lead ECG signals of a patient. The rhythm classi-
fier classifies each detected heart rhythm into one of two 
catalogues: known rhythm or unknown rhythm. For the 
known rhythms, they are still classified into two types ac-
cording to the values of the RR intervals: sinus rhythm and 
ventricular rhythm; and for the unknown rhythms, we will 
adopt classical methods to classify, the classification results 
will be verified by the cardiologists. In terms of the known 
rhythm types and the diagnostic rules, the cardiac ar-
rhythmias interpreter is used to explain cardiac arrhyth-
mias with the symptoms of relative heart diseases. 
 
3.3.1. Automatic Learning Machine 
Ten seconds ECG signals are used to calculate the 
rhythm template and to estimate the diagnostic rules. The 

 
Figure 5. Illumination of automatic diagnosis system. 

 
initial cardiac status, rhythm type, statistical and mor-
phological features are achieved in this module. The di-
agnostic results will be further fed back to adjust the co-
efficients of diagnostic rules. Unlike resting ECG, 
long-term ambulatory ECG has continual tiny changes 
with the influences of exterior environments and the pa-
tient’s physical status. The tiny changes are generally 
normal and the coefficients of diagnostic rules thus 
should be self-updatable to meet the changes. 
 
3.3.2. Rhythm Classifier 
By adopting the expert system and the confidence inter-
val method, the rhythm classifier can recognize two 
kinds of QRS complex rhythms: sinus and ventricular. 
The details of signal features (RR interval, QRS duration, 
R wave left- & right-sides slopes, R wave amplitude, and 
QRS absolute area), the rhythm type and the complex 
peaks are used to describe a heart rhythm. Hence, they 
can be used to recognize a rhythm and by comparing 
with the features of the rhythm template. 

The rhythm classifier is based on the features com-
parison and the interval estimation. Since we have ob-
tained the features of current rhythm and the features of 
the standard rhythm (rhythm template) in pre-learning 
machine, the rhythm classification is thus to estimate the 
confidence intervals, the weighed factors and the devia-
tion coefficients of the features. The classification equa-
tion can be expressed as: 
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Where the i  is the classification factor that is used to 

determine the heart rhythm by estimating the confidence 
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interval that it falls; the i  is the weighed factor that 

indicates the contribution of the feature i; the i  is co-

efficient of deviation that associates the variation of the 
feature i; the N indicates the number of the features. 
 
3.3.3. Arrhythmia Interpreter 
In terms of the rhythm type and heat rate (HR), a heart 
rhythm can be recognized and interpreted by the ar-
rhythmia interpreter basing on diagnostic rules. Firstly, 
the arrhythmia interpreter classifies the rhythms into two 
catalogues: bradycardia and tachycardia by comparing 
current HR with the mean HR of the rhythm template. 

In arrhythmia interpreter, the heart rhythms are identi-
fied and classified into two basic categories: normal car-
diac rhythms and cardiac arrhythmias, and the cardiac 
arrhythmias can be further divided as two classes: the 
known cardiac arrhythmias and the unknown cardiac 
arrhythmias. The known cardiac arrhythmias are nor-
mally the cardiac tachycardia events which are caused by 
serious heart diseases, including PVC (Premature ven-
tricular complexes), VT (Ventricular tachycardia), VF 
(Ventricular Fibrillation), SVT (Supraventricular Tachy-
cardia) and PAC (Premature Atrial Contraction), etc. The 
known cardiac arrhythmias have distinctive QRS com-
plexes and rapid heart rates which make them be inter-
preted accurately. The unknown cardiac arrhythmias are 
normally the bradycardia events which are caused by less 
serious or benign heart diseases. The known cardiac ar-
rhythmias have regular heart rhythms but slow heart 
rates, the identifications of which are not reliable when 
depending only on the heart rate. 
 
4. Performance Analysis 
 
The algorithm has been assessed on two ECG databases: 
MIT-BIH arrhythmia database [9] and CSD database 
(Clinic STAR Database). The former contains 48 half- 
hour excerpts of two-channel ambulatory ECG re-
cordings, and the latter is obtained from 30 subjects of 
the Gabriel Montpied hospital (CHRU de Clermont- 
Ferrand, France) by using a PCC system named STAR 
[10]. The CSD signals are recorded in the same format 
(WFDB) as MIT-BIH Database one. 
 
4.1. STAR System 
 
Currently, a real-time remote continuous cardiac ar-
rhythmia detecting and monitoring system, named STAR 
(Système Télé-Assistance Réparti), has been developed 
by the SMIR group of LIMOS laboratory of the Blaise 
Pascal University and been applied on the CHU de 
Gabriel Montpied hospital (Clermont-Ferrand, France). 
The STAR system combines the technology advantages 
of pervasive computing, AED algorithm and remote 

telemedicine system. Figure 6 shows its system architec-
ture, which consists of local wireless ECG sensor (WES) 
nodes and remote cardiac surveillance system. 

The system description is: a WES device equipped by 
the surveillance object, which integrates the AED algo-
rithm, can acquire and analyze the patient’s ECG signals 
in real-time. When a cardiac abnormal event is detected, 
an alarm message and (or) a segment of ECG signals will 
send to the cardiologists via the available wired or wire-
less communication mediums. In the remote cardiac sur-
veillance system, the cardiologists can examine cardiac 
abnormal events by employing AED algorithm and make 
a respond with the shortest delays. This system aims to 
provide a rapid detection and diagnosis method for the 
high-risk population of cardiac arrhythmias to prevent 
sudden death. It is also used to do long-term heart sur-
veillance for the population who has the history of heart 
diseases, or to do periodic heart examination for the 
health population. 
 
4.2. QRS Detector Evaluation 
 
Dotsinsky et al. [11] defined four performance parame-
ters to assess the algorithm efficiency (Se: sensitivity and 
Sp: specificity): TP (true positive), FP (false positive), 
FN (false negative) and shifted SH beats, shown as fol-
lows: 
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Comparing with the performance results of other algo-
rithms listed in Table 1, the performance results of this 
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Figure 6. Architecture of STAR system. 
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Table 1. Performance evaluation of QRS detection algo-
rithms. 

 Se(%) Sp(%) 

Afonso et al [12] 99.59 99.56 

Poli et al [13] 99.60 99.51 

Dotsinsky et al [11] 99.04 99.62 

Kaiser et al [14] 99.68 99.72 

Datex-Ohmeda Corp. [16] 99.86 99.88 

Alg 1 94.6 98.0 
Millet et al [15] 

Alg 2 97.3 98.0 

Our Algorithm 
99.43 
MIT 

99.25 
CSD 

98.55
MIT 

97.94
CSD 

 
detection algorithm, 99.37% sensitivity and 99.68% 
specificity on MIT-BIH database, 99.67% sensitivity and 
99.74% specificity on CSD database, show the high sen-
sitivity and specificity. This detection algorithm has 
minimal beat detection latency, low computational con-
sumption and fast detection ability. 
 
4.3. Rhythm Classifier Evaluation 
 
The rhythm classifier classifies heart rhythms into two 
catalogues: non-alarm and alarm-rhythms. The alarm- 
rhythms defined in our algorithm are tachycardia, i.e. 
PAC, PVC, SVT, VT, and VF. They represent serious 
heart diseases which need to be reported immediately. 
The non-alarm rhythms include the normal rhythms and 
some benign or less serious cardiac arrhythmias, such as 
bradycardia. 

The four parameters are used to assess the algorithm 
performance [17]: A true positive (TP) is a serious car-
diac arrhythmia that has been correctly classified as an 
alarm- rhythm; A false positive (FP) is an organized 
normal rhythm that has been incorrectly classified as an 
alarm- rhythm; A true negative (TN) is any normal or 
less serious rhythm that has been correctly classified as a 
non-alarm rhythm; A false negative (FN) is a serious 

cardiac arrhythmia that has been incorrectly classified as 
a non-alarm rhythm. 

The sensitivity (Se) is the number of true positive ab-
normal rhythms, expressed as a percentage of the total 
number of abnormal rhythms. Se is calculated by for-
mula (3). The specificity (Sp, also named positive pre-
dictive accuracy) is the number of organized rhythms 
that have been correctly classified as normal rhythms, 
expressed as a percentage of the total number of normal 
rhythms and computed by formula (4). 

TNFP

TN
Sp


                 (4) 

Comparing with the performance of other algorithms 
listed in Table 2, the performance results of this classifi-
cation algorithm, 90.90% sensitivity and 95.50% speci-
ficity on MIT-BIH database, 95.6% sensitivity and 
99.5% specificity on CSD records, show its good per-
formance. Since the features extracted by the detection 
algorithm are the time domain characteristics of QRS 
complex, this classification algorithm thus can directly 
utilize the experiences of cardiologists that reduces the 
complexity of rules training and then improves the accu-
racy of classification. Another advantage is that this al-
gorithm is able to identify various cardiac arrhythmias 
comparing to most of other algorithms. 
 
5. Conclusion 
 
The objective of our research is to design a real-time 
energy efficient Automatic ECG Diagnosis algorithm for 
the PCC system. The PCC application is free of the limi-
tations of time and space, that is, this system supports 
long-term monitoring (from few days to one month) and 
the patient have the freedom of daily actions. The results 
of the performance evaluation show that our algorithm 
satisfies application demands. 

 
Table 2. Performance evaluations of rhythm classification algorithm. 

NSR PAC PVC SVT VT VF Total  

Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp 

Horácek [18]         90.3 78.6     

Ge et al [19] 93.2 94.4 96.4 96.7 94.8 96.8 100 96.2 97.7 98.6 98.6 97.7 96.83 96.73

Ham & Han [20]      99 97         

Chen et al [21]         93  96    

Minami et al [22]     >98 >98   >98 >98     

Chen [23]       95.24  96.00  97.78    

Melo et al [24]   93  99          

Datex-Ohmeda [16]     94.08 97.55         

Philips AED [17]         84 91 97*,76** 91   

Our Algorithm             
90.91

95.62
95.51

99.52

*:Ventricular Fibrillation (amplitude > 0.200mv).  **: Fine Ventricular Fibrillation (0.100mv<amplitude < 0.200mv) 
1Evaluation results on MIT-BIH database             2Evaluation results on CSD clinical records 
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In this AED algorithm, the QRS detector adopts linear 

time-domain statistical analysis and syntactic analysis 
methods to locate QRS complex from AECG signals. 
The signal preprocessing and conditioning procedure, 
adopting adaptive filter and band-pass filter, remove or 
reduce various interferences caused by physical and 
technical factors. The most serious noisy, such as motion 
artifacts, has been effectively eliminated by the adaptive 
filter. According to the statistical feature and morphol-
ogic features of QRS complex, i.e. heart rate, steep edges 
and sharp amplitude, the QRS complex is located to 
mark heart beat by applying SAT method and STR pro-
cedure on sub-segment diagnosis window. 

The rhythm classifier classifies rhythms and interprets 
cardiac arrhythmias basing upon the diagnostic rules 
which are obtained from the experiences of cardiologists 
and the training results of pre-learning phase. The initial 
ECG signals with the length of 10 seconds are used to 
estimate the type of QRS complex and to extract the fea-
tures of normal rhythm template (the means of LQRS, 
RR, etc.). According to the origination of heart beat, the 
rhythms are categorized into two classes: sinus rhythm 
(atria) and ventricular rhythm (ventricle). According to 
the changes of heart rate, cardiac arrhythmias are catego-
rized into two classes: bradycardia and tachycardia. The 
cardiac arrhythmias interpretation procedure is adopted 
to classify cardiac arrhythmias into various types of bra-
dycardia and tachycardia, based on the features extracted 
in the detection algorithm. 

Currently, this algorithm has been applied on the 
STAR system. The performance evaluations results show 
that this algorithm was effective for the QRS detection 
and the rhythm classification, and was thus suitable for 
PCC services. The simple, fast and efficient features of 
this algorithm enable it to be embedded into microproc-
essor system or be implemented on chip. 
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