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ABSTRACT 
We have determined a value for the 1S0 neutron-neutron scattering length (ann). The scattering length result is 
presented for the extended-soft-core (ESC04) interaction. The value obtained in the present work is ann = 
−18.6249 fm. The method of solution of the radial Schrödinger equation with nonlocal potential for nucleon- 
nucleon pairs is described and the result is consistent with previous determinations of ann = −18.63 ± 0.10 (statis-
tical) ± 0.44 (systematic) ± 0.30 (theoretical) fm. The nonlocal potentials are of the central, spin-spin, spin-or- 
bital, and tensor type. The analysis from the ESC04 interaction is done at energies 0 ≤ Tlab ≤ 350 MeV. We com-
pare the present result with experimental S-wave phase shifts analysis and agreement is found. 
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1. Introduction 
In nuclear physics, important information can be ob-
tained from the scattering length associated with low- 
energy nucleon-nucleon scattering. At these energies, the 
nucleon-nucleon interaction can be treated non-relativis- 
tically and the scattering was studied by means of a sin-
gle particle Schrödinger equation which involves a non- 
local effective potential, derived from [1-4] using an ex-
tended soft-core model (ESC interaction). In the present 
manuscript, we consider a potential that involves a cen-
tral part, a spin-spin interaction, a spin-orbital interaction 
and a tensor part and perform a numerical study of the 
associated Schrödinger equation. Also, we determine a 
numerical value for proton-proton and neutron-proton 
scattering lengths.  

The present work is realized by considering energies 
in the range of 0 ≤ Tlab ≤ 350 MeV. For nucleon-nucleon 
scattering, it has been demonstrated that the interaction 
from the ESC model gives a description that is in good 
agreement with the nucleon-nucleon data. The extended 

soft-core model, also known as ESC, is used for nucleon- 
nucleon (NN), hyperon-nucleon (YN), and hyperon- 
hyperon (YY) scatterings. The particular version of the 
model ESC, called ESC04 [T. A. Rijken, Phys. Rev. C 
73, 04007 (2006)], describes NN and YN interaction in 
an unified way using broken SU (3) symmetry. 

A good fit with the experimental data is obtained by 
using the ESC04 model. The manuscript is organized as 
follows: in Section II, we give a theoretical review of the 
model; in Section III, we present our numerical results 
and in Section IV, we draw our conclusions. 

2. Theory 
2.1. The Schroedinger Equation with  

Non-Local Potential 
The model we are going to study numerically involves a 
radial Schrödinger equation with ESC04 potential; 
namely  
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2
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where 1 2

1 2

m m
m m

µ =
+

 is the reduced mass of the nucleons  

whose individual masses are m1 and m2, and have spins 
1σ


 and 2σ


; r is the distance between the nucleons. The 
potential is parameterized as  

( ) ( ) ( ) ( ) ( )12c SS LS TV r V r V r S S V r L S S V r= + • + • +
   

 

where ( )( ) ( )12 1 2 1 23S r rσ σ σ σ= • • − •
     

 is a second 
rank tensor operator. 

For an S-state we introduce ( )u r , where  

( ) ( ) ( )u r
r r

r
Ψ = Ψ =


. 

For a given value of the quantum number J, 

( ) ( )L
JML

L

u r
r

r
Ψ = Φ∑
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,         (2) 

where we introduce 

( )1 |
L S
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=−

Φ = ∑ ,   (3) 

where the symbol ( )1 | L SL J M M M  denotes a Clebsch- 
Gordan coefficient, and YLML are the spherical harmonics, 
and 

1 1 2χ α α+ = ; 

( )0 1 2 2 1
1
2

χ α β α β= + ; 

1 1 2χ β β− = . 

The subscript on χ refers to the magnetic projection 
quantum number MS of the spin-1 state, while α and β 
represent spin up and spin down for the particular spin-½ 
nucleon indicated by the subscript. 

 
The Equation (2) forms an orthonormal set spanning the space of spin-1 functions and functions of the direction r. 

The normalization of ( )rΨ  requires that the radial functions satisfy, 

( )2
0

1L
L

u r dr
∞

=∑∫ .                                     (4) 

The Schrödinger equation [Equation (1)] is processed by the method of separation of variables, we obtain as its radial 
component, 

( ) ( ) ( ){ } ( ) ( )
2

2 2 2
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We use the parametrized potential  

( ) ( ) ( ) ( ) ( )12c SS LS TV r V r V r S S V r L S S V r= + • + • +
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and  
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for an S-state to obtain, 
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where ( )' ' 12 ',JLL JML JMLS S dr= Φ Φ∫


 [5], and S12 may be written as an operator of the form  

( )1 2 1 2 '' ´ q qqq j j qq Mλ σ σ∑


 

with λ = 2 and j1 = j2 = 1. Here ( )1 2 ´j j qq Mλ  is the Clebsch-Gordan coefficient. 
Using Racha algebra (see appendix A of [6]) we can show that 

( ) ( ) ( ) ( ) ( )( )1
' ' ' '2 6 ' 1 '2 000 '11;2 2 3 1 000 1 ' 000J

JLL JJ JJ LLS LL LL W LL J J L J Lδ δ δ+  = − = −  .      (7) 

2.2. Numerical Solution of the Schrödinger Equation 
Considering the single state for the 1S0 wave, Equation (6) for the neutron-neutron system has the form (S = J = L = 0, 
L’ = −1, 0, 1),  
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where S00-1 = S001 = 0, S000 = 2 are calculated from Equa-
tion (7). 

For the proton-proton system we add the Coulomb effect 
to Equation (8), ( ) ( ) ( )c c coulE V r E V r V r− → − +       . 

The numerical techniques necessary to solve equation 
(8) with this ESC04 potential are explained in chapter 3, 
Equation (3.28) of [7]. The solutions of u0 from Equation 
(8) are introduced in the S matrix (Equation (10.58) of 
[7], which is, 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1

1 1 1

l n n l n l n n l n
l

l n n l n l n n l n

U r r h kr U r r h kr
S

U r r h kr U r r h kr

− −
− − −

+ +
− − −

−
=

−
,   (9) 

where the S matrix is evaluated in the last two points on a 
mesh of size ε ( 0, , 2 ,r Nε ε ε=  ). Ul are the solutions 
to Equation (8) with the ESC04 potential previously cal-
culated and hl are the spherical Hankel functions defined 
in Equation (10.52) of [7]. 

We insert the numerical solution of the S matrix in the 
solution of the S matrix for a real potential  

2 li
lS e δ= ,               (10) 

where δl is real and is known as the phase shift.  
Once the δ0 phase shift is found the ann scattering 

length and the effective range rnn are calculated. For l = 0 
the expression for ( )0cotk δ  can be parameterized in 
the following form, 

( ) 2
0 0

1 1cot
2

k r k
a

δ = − + + .        (11) 

The quantity a is called the scattering length and r0 is 
known as the effective range.  

In the limit of low energies the scattering length is 
given in terms of the s-wave phase shift (see appendix B 
of [8]), 

( )0
00

1lim sini

k
a e

k
δ δ

→

 = ℜ − 
 

,        (12) 

where 2 22k Eµ=   is the center-of-mass momentum 
(the wave number) and ℜ indicates the real part. 

2.3. Extended Soft-Core Potential (ESC04) 
An Extended Soft-core potential is calculated consisting 
of a central, spin-spin, spin-orbital, and a tensor part. The 
potential of the ESC04 model is generated by one-boson- 
exchange (OBE), two-meson-exchange (TME) and me-
son-pair-exchange (MPE); this potential is calculated and 
explained in [1-4]. In Figure 1 the total ESC04 potential 
is plotted as a function of the r distance. In Figure 2 we 

show the central, spin-spin, spin-orbital, and tensor part 
of this total potential.  

The algoritms for the YN potential are found in [9]. 

3. Results 
The ann Scattering Length 
The ann scattering length is calculated obtaining a nu-
merical value ann = −18.62497 fm and an effective range 
of rnn = 2.746615 fm. We use an ESC04 potential below 
350 MeV. In Figures 3 and 4 the phase shift ( )1

0Sδ  is 
plotted for the proton-proton and neutron-proton case. 

Table 1 shows the results for the low-energy parame-
ters from the scattering lengths and the effective ranges 
for neutron-proton, proton-proton and neutron-neutron 
system using the ESC04 interaction. 

4. Conclusions 
In the present work, we have numerically solved the 
Schrödinger equation with an ESC04 potential and ob-
tained the nucleon-nucleon scattering lengths. Summa-
rizing our main conclusions: 

1) Recent calculations using the ESC04 interaction for 
nucleon-nucleon dispersion have been realized [4], and 
reproduced with the Schrödinger equation. 

2) The numerical solution of the radial Schrödinger 
equation has been realized and has been demonstrated to 
give a good fit to the nucleon-nucleon data. 

3) The scattering lengths app, anp and ann have been 
calculated and are consistent with the experimental re-  
 

 
 

Figure 1. Total potential in the partial wave 1S0, for I = ½. 
 
Table 1. ESC04 low-energy parameters: S-wave scattering 
lengths and effective ranges. 

 Experimental data  ESC04 

app (1S0) 
rpp (1S0) 
anp (1S0) 
rnp (1S0) 
ann (1S0) 
rnn (1S0) 

−7.823 ± 0.010 
2.794 ± 0.015 

−23.715 ± 0.015 
2.760 ± 0.030 
−18.70 ± 0.60 
2.750 ± 0.11 

−7.98 
2.762 

−23.801 
2.773 

−18.625 
2.747 
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Figure 2. Central (a), spin-spin (b), spin-orbital (c), and tensor (d) part of the YN potential. 
 

 
 

Figure 3. Solid curve, proton-proton I = 1 phase shifts (de-
grees), as a function of Tlab (MeV), numerical solution for 
the ESC04 model. Dots, phases of the Rijken analysis [4]. 
Circles, s.e. phases of the Nijmegen93 PW analysis. Triangles, 
the m.e. phases of the Nijmegen93 PW analysis [10]. 
 

 
 

Figure 4. Solid curve, neutron-proton I = 0 phase shifts 
(degrees), as a function of Tlab (MeV), numerical solution for 
the ESC04 model. Dots, phases of the Rijken analysis [4]. 
Circles, s.e. phases of the Nijmegen93 PW analysis. Triangles, 
the m.e. phases of the Nijmegen93 PW analysis [10]. Di-
amonds, Bugg s.e. [11]. 

sults. The final value for ann from this study is ann = 
−18.625 fm. Results from previous studies are  

18.60 0.34 0.26 0.30 fm
 = 18.60 0.52 fm

nna = − ± ± ±

− ±
 [12], 

18.70 0.42 0.39 0.30 fm
= 18.70 0.65 fm

nna = − ± ± ±

− ±
 [13], 

and  
18.63 0.10 0.44 0.30 fm

= 18.63 0.48 fm
nna = − ± ± ±

− ±
 [14], 

The presented ESC model is thus successful in de-
scribing the NN data. 
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