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ABSTRACT 

We consider the time dependent neutron diffusion equation for one energy group in cylinder coordinates, assuming 
translational symmetry along the cylinder axis. This problem for a specific energy group is solved analytically applying 
the Hankel transform in the radial coordinate r. Our special interest rests in the build-up factor for a time dependent 
linear neutron source aligned with the cylinder axis, which in the limit of zero decay constant reproduces also the static 
case. The new approach to solve the diffusion equation by integral transform technique is presented and results for sev-
eral parameter sets and truncation in the solution for the flux and build-up factor are shown and found to be compatible 
to those of literature [1,2]. 
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1. Introduction 

Energy production and environmental issues are strongly 
related and even though recent events have put nuclear 
energy on the black list of energy sources, it will recover 
its role in world’s energy production matrices. In this 
sense it remains meaningful to search for progress in 
topics related to nuclear reactor theory, especially by 
virtue of recent efforts in innovative nuclear reactor 
technology. As a contribution in this line we develop an 
analytical method to determine the build-up factor for 
neutrons, the description of neutron distributions inside 
the nuclear reactor core. Note, that other applications 
with this method are possible such as radiation protection, 
nuclear medicine, among others, see the works [3-5]. The 
mathematical model that serves as our starting point is 
motivated by the S2 approximation of the Boltzmann 
equation, i.e. the diffusion equation [6]. This equation 
represents the balance between production and loss of 
these particles, described in the next section. In Sections 
2 and 3 we solve this problem in an analytical fashion 
using the finite Hankel Transform, which is appropriate 
for problems represented in cylindrical coordinates, fol-
lowing the idea of the solution of this kind of problem in 
Cartesian geometry [7,8].  

2. Neutron Diffusion 

We consider the time dependent neutron diffusion equa-
tion for one energy group in cylinder coordinates, as-
suming translational symmetry along the cylinder axis 

    , , Σ ,t r Rr t D r t S r t               (1) 

Here   is the scalar neutron flux, D is the diffusion 
coefficient for neutrons, r  is the radial part of the el-
liptic operator, given by  

1
r rr r r                 (2) 

The ΣR  is the macroscopic removal cross section and 
 ,S r t  is the source of the problem, that depends on r 

and t, respectively. Equation (1) is subject to the follow-
ing boundary conditions 

   0, 0; , 0r t R t   

n

           (3) 

This problem for one energy group may be solved ana-
lytically applying the Hankel transform in the radial co-
ordinate r in cylindrical geometry.  

3. Solution by Finite Hankel Transform 

Next, we apply the Finite Hankel transform of order zero 
to (1), making use of some properties of the transform. 
Recalling, that the Hankel transform of order p has the 
definition, 

     
0

; d
a

p n pH f r r f r J r r            (4) 

where n  are values such that p nJ   0a   for n N , 
e inversion is given by  and th
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
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Differently, than in other applications, where the trans-
form has an infinite upper limit, here the i
upper limit R due to the assumption that the flux outside 
th

ntegral has an 

e cylinder with radius R is zero and especially 
 , 0R t   holds. Since the neutron flux is related to a 

distribution means that  0, t  is limited. Our special 
interest is in the build-up factor for the unique initial 

condition ,0 0r  . Upon multiplying both sides of (1) 
by  0 nrJ r , and integrat om 0 to the radius R, we 
obtain 

ing fr
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
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   (6) 

where 

0 d
R

nJ r r

 ,S r t  
sformed

is the source term of the problem. Using 
the tran  quantities (6) can be rewritten 

   

   , ,R n nt S t

 

   

    (7) 

The integral containing the spatial derivative
cast into an expression containing transformed quantities 
using integration by parts,  

0
0

1
, d
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t r t t
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

 may be 
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which further simplifies due to the choice o

          


f n  such 
that and implies that the first term f the 
righ shes. Therefore, 
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t side in (8) vani
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

which by virtue of 

  2
1
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n n nr J r r
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   
 
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reduces to 

       2d
, Σ , ,

dt n n R n nt D t S t         (11) 

This equation is subject to the initial condition  
 ,0 0n    because  ,0 0,r   and has the solution, 

      12) 

with, 

 2 Σ

0

, , e dn R
t

D t t

n nt S t t


  
  
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     0
0

, ,
R

n nS t rS r t J r    dr        (13) 

The inversion may be obtained by the u
nition of the inversion (5) applied to Equati
w

se of the defi-
on (12). Thus, 

e obtain the result 

     
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J R   

and expressed in terms of Equation (12) is 
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 (15) 

that is the solution for the group g. For example,
consider a fixed source, in this case, we have a source 

    

 if we 

without time dependence, and the inversion (15), can be 
written as 
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with 
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and therefore, the final expression for the flux is 
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4. Infinite Line Source Distribution 

We consider now as a source a string that coincides with 
nted by the the centre of the cylinder and may be represe

Delta Function  r  (in cylindrical case), which is 
defined to be zero for all values of r except at r = 0. The 
integral of  r  is finite, provided r = 0 lies in the 
range of integration, and the value of the integral is taken 
to be unity. In er to treat the special case, where r = 0 
lies at the border of the interval we recall, that for any 
compact set 

ord

 ,a b  with 0a b  , that is a compact 
support for  ,  .  

    0r r             (19) 
 


,

d
a b

f r f

holds as usual, since r = 0 lies truly in
case where r = 0 lies at the interval li

 the interval. In the 
mit, the following 

limit shall be applied to determine the integral property 
from above. 

Copyright © 2013 SciRes.                                                                               WJNST 



J. C. L. FERNANDES  ET  AL. 3

   
 

   
 

   
 

 

0,

d
b

f r r r

0
,

0
,

1
lim d

2

1
lim d

2

1
0

2

b

b

f r r r

f r r r

f










 
 
 
 
 
  
 
 













     (20) 

The Hankel transformed expression for the source as 
well as in (13). If we have the source has time depend- 
ence, as for instance the classical example from reference 
[9

 

] 

   0, e
π

t S r
S r t

r
               (21) 

where is the initial value for the source, and 0S    is 
the decay constant, then for b R . 
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(

Finally, we can express the final solution for the flux, 
making use of the inversion using (22), yields then 
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The integral in the previous equation may be solved, 
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so that the final solution reads 
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(25) 

The time dependent source solution also includes the
time independent source term upon taking the limit 

R D 

 

0  .  

The bu up factor have been calculated for different 
he design of fuel 
sed in this work 

5. Analysis of Build-Up Factor 

ild-
response functions that have impact on t
element distribution. The composition u
is that used in the Mirror Advanced Reactor Study 
(MARS) design. The build-up factor for the response 
function from an infinite line source is defined as 

   
Σ

,
Σ ,

e 2πtp t r
z

R r t
B r t

r


          (26) 

where z  is a unit height of the cylinder. The use of the 
unit length along the cylinder axis is necessary, due to 
the fact that we considered an infinite
case, we will consider the response function being the 

de

 cylinder. In our 

flux insi  the cylinder divided by the decay constant in 
order to render the build-up factor dimensionless 

   
Σ

,1
Σ ,

e 2πtp t r

r t
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r


            (27) 

Here Σt  is the total macroscopic cross section. There- 
fore, th ild-up factor in this case in terms of the ratio 
of the flux including scattering by the f
tering is 

e bu
lux without scat-
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As the material thickness increases from zero to a
mean free paths, the energy spectra of neutrons ch
considerably. Different build-up factors obtained depend 
on the energy dependence of cross sections for the dif-
fe

 sets and truncation N = 10 in the solution 
build-up factor. The results are compara-

om other authors. 

In
-up factor solution of 

 neutron diffusion problem in cylin-
ing the Hankel transform for a linear 

 

   



  

   
 

(28) 

 few 
ange 

rent response functions. However, after a few mean 
free paths, the neutron spectra assume fixed shapes. This 
stems from the fact that the mean free path for a fission 
source of neutrons is larger than for lower energy neu-
trons, as thermal neutrons for instance. This results in the 
same build-up factor variation with the material thickness 
regardless of the response function. In Figure 1 we show 
the correlation of the build-up factor with the radius of 
our cylinder. 

6. Results 

In this section we present a selection of results for sev-
eral parameter
for the flux and 
ble to those fr

The results for the fluxes depending on the parameter 
choice are shown in Figures 2-5. 

7. Conclusion 

 this work, we established the existence for the time 
dependent neutron flux and build
the time dependent
drical geometry us
source aligned with the cylinder axis. The obtained solu-
tion applies to the time dependent case as well as the time 
independent case if the decay constant is taken in the 
zero limit. Since existence and uniqueness of the solution 
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Figure 1. Build-up factor for different values of t. 
 

 

Figure 2. Flux using D = 1.43, ΣR = 0.39, λ = 0.37, t = [0, 10] 
and truncation at N = 10. 
 

 

Figure 3. Flux using D = 1.13, ΣR = 0.39, λ = 0.58, t = [0, 10] 
and truncation at N = 10. 
 
is guaranteed by the Cauchy-Kovalewsky theorem, that 
includes the present equation as a special case, we

hnique. This procedure allows  

 
showed a new approach to solve the diffusion equation 
by integral transform tec

 

Figure 4. Flux using D = 1.43, ΣR = 0.39, λ = 0.58, t = [0, 30] 
and truncation at N = 10. 
 

 

Figure 5. Flux using D = 1.13, ΣR = 0.39, λ = 0.58, t = [0, 10] 
and truncation at N = 10. 
 
us to generate a function library that efficiently supplies 
with these solutions, where only the physical and geo

antage, that for numerical pur-
oses the solution may be considered quasi exact, once 

-
metrical parameters need to be specified. Furthermore, 
this method has the adv
p
an adequate number of terms of the solution expansion is 
taken into account. An error analysis that will specify the 
truncation index is currently in progress. It is noteworthy, 
that no numerical errors have to be taken care of due to 
the analytical character of the solution. Finally motivated 
by the preliminary good results attained by this method-
ology, in a forthcoming paper we shall present results for 
a heterogeneous problem with regions of different 
physical properties. 
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