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Abstract 
In the present investigation of a spherically symmetric electrically neutral anisotropic 
static fluid, we present a new solution of the Einstein’s general relativistic field equa-
tions. The solution shows positive finite central pressures, central density and central 
red shift. The causality condition is obeyed at the centre. The anisotropy parameter is 
zero at the center and monotonically increasing toward the surface. The adiabatic 
index is also increasing towards the surface. All the other physical quantities such as 
matter-energy density, radial pressure, tangential pressure, velocity of sound and red 
shift are monotonically decreasing towards the surface. Further by assuming the sur-
face density 17 32 10  kg mρ −= × ⋅ , we have constructed a model of massive neutron 
star with mass 2.95 M



 with radius 18 km with all degree of suitability. 
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1. Introduction 

A compact stellar object is formed by an equilibrium state which is reached after 
condensation and contraction of a massive gas cloud. At this state thermal radiation 
pressure together with normal fluid pressure balances the gravitational binding energy. 
Various studies are made for understanding the formation of compact star, its physical 
properties and internal structure by the solution of Einstein’s field equation. Therefore 
the static isotropic and anisotropic exact solution which describes the compact star is 
caused to enthusiasts the Researchers to conduct the work in the same field. The study 
of interior of massive fluid ball can be made by well behaved solution of Einstein’s field 
equation. These equations were solved by Schwarzschild for the interior of the static 
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compact stellar object. The first ever two exact solution of Einstein field equation for a 
compact object in static equilibrium was obtained by Schwarzschild [1] in 1916. The 
first solution corresponds to the geometry of the space-time exterior to a static perfect 
fluid ball, while the other solution describes the interior geometry of a fluid sphere of 
constant energy-density. Tolman [2] has obtained eight different types of exact solu- 
tions for static cases. The III solution corresponds to the constant density solution 
obtained earlier by Schwarzschild. The V and VI solutions correspond to infinite 
density and infinite pressure at the centre, hence not considered physically viable. Thus 
only the IV and VII solutions of Tolman are of physical relevance. Despite the non 
linear character of Einsteins field equations, various exact solutions for static and 
spherically symmetric metric are available in the related literature.  

The search for the exact solutions is of continuous interest to researcher. Buchdahl  
[3] proposed a famous bound on the mass radius ratio of relativistic fluid spheres which 
is an important contribution in order to study the stability of the fluid spheres. Delgaty- 
Lake [4] studied all the then existing solutions and established that Adler [5], 
Heintzmann [6], Finch and Skea [7], etc. do not satisfy all the well behaved conditions 
and also pointed out that only nine solutions are well behaved; out of which seven in 
curvature coordinates (Tolman, Patwardhan and Vaidya [8], Mehra [9], Kuchowicz 
[10], Matese and Whitman [11], Durgapals two solutions [12]) and only two solutions 
(Nariai [13], Goldman [14]) in isotropic coordinates. Ivanov [15] [16], Pant [17], 
Maurya and Gupta [18], Pant et al. [19] [20] studied the existing well behaved solutions 
of Einstein field equations in isotropic coordinates. Recently we have found some exact 
solutions of Einsteins field equations for anisotropic fluid given by Herrera et al. [21] 
[22], Komathiraj and Maharaj [23], Thirukkanesh and Regel [24], Sunzu et al. [25], 
Chaisi and Maharaj [26], Maurya and Gupta [27], Gupta and Maurya [28]. Some 
pioneer work in Relativity is given by Fuloria et al. [29], Whitman and Burch [30], 
Bonner and Vickers [31], Pant and Negi [32], Herrera and Santo [33] Tikekar [34], 
Gupta and Kumar [35], Herrera et al. [36] [37] [38] [39], Tewari and Charan [40] [41] 
[42], Tewari [43], Ivanov [44] [45] [46] [47] [48], Maurya and Gupta [49] and Pant et al. 
[50] [51]. 

In this paper we present a new solution in spherically symmetric canonical 
coordinates which is well behaved. We present a new general solution of Einstein Field 
Equations and its detailed study, in order to construct a realistic model of compact star. 
In our present study the paper consists of eight sections. In Section 2 Einstein’s field 
equations in canonical coordinates are given. Expressions of density, anisotropic 
pressures( radial and transverse pressures), anisotropy parameter and redshift are 
incorporated in this section. Section 3 consists of boundary conditions for well behaved 
solutions. A new class of general well behaved solution of Einstein’s field equations in 
canonical coordinates is given in Section 4. This section also includes a particular  

solution for 5
2

n = −  for constructing a new realistic model for compact star. Section 5  

stipulates the properties of this new class of solution of Einstein’s field equations. In 
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Section 6 the matching conditions of interior metric of the fluid with the Schwarzschild 
exterior metric are given. For better illustration of our physically accepted solutions, the 
relevant physical quantities are presented by means of tables and figures in Section 7. 
Finally, some concluding remarks have been made in Section 8.  

2. Einstein’s Field Equation in Canonical Coordinates  

The Einstein’s field equations of general relativity are  

4

1 8π
2

GR Rg T
cµν µν µν− = −                          (1) 

where Tµν , the energy momentum tensor for a anisotropic fluid ball is defined as  

( ) ( )2
r t r tT c p u u p g p p x xµν µ ν µν µ νρ= + − + −                    (2) 

where ρ  is the proper density, rp  and tp  are pressures of the fluid in the direction 
of uµ  (radial pressure)and orthogonal to uµ  (tangential pressure) respectively, uµ  
time-like four-velocity vector, xµ  is the unit space like vector in the direction of radial 
vector and g µ

ν  metric tensor of space-time. 
The interior space-time metric for spherically symmetric fluid distribution is given 

by  

( )2 2 2 2 2 2 2 2 2d d d sin d ds B r r A tθ θ φ= − − + +                  (3) 

where A and B are functions of r only. 
In view of the metric (3) and energy momentum tensor (2), the field Equation (1) 

gives  

4 2 2 2

8π 1 2 1 1
r

G Ap
rAc B r r
′ = + − 

 
                       (4) 

4 2

8π 1
t

G A A A B Bp
A rA AB rBc B
′′ ′ ′ ′ ′ = + − − 

 
                     (5) 

2 2 2 2

8π 1 2 1 1G B
rBc B r r

ρ
′ = − − + 

 
                      (6) 

( ) ( ) ( )
4 2

8π
t r

rG p p r
c B

δ
− = ∆ =                        (7) 

where  

( )
2

2 2

1A B A B A Br
A rB AB rA r r

δ
′′ ′ ′ ′ ′ = − − − − + 

 
                   (8) 

The gravitational redshift of massive spherically symmetric ball is  
1

2
001 Z g
−

+ =                                (9) 

which gives central ( )0Z  and surface ( )ZΣ  gravitational redshifts  

0 1cZ
A

= −                               (10) 
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and  
1

1 1rBZ
B

−

Σ

′ = + − 
 

                         (11) 

3. Boundary Conditions for Well Behaved Solution  

For well behaved nature of the solution in isotropic coordinates, the following 
conditions should be satisfied (Bonnor-Vickers [31]):  

(i) The solution should be free from geometrical and physical singularities. Metric 
potentials A and B must be non-zero positive finite for free from geometrical 
singularities while central pressure, central density, should be positive and finite or 

0 0ρ >  and 0 0p >  for free from physical singularities.  
(ii) The solution should have maximum positive values of pressure and density at the 

center and monotonically decreasing towards the surface of fluid object i.e.  

(a) 
0

d
0

d
rp

r
  = 
 

 and 
2

2
0

d
0

d
rp

r
 

< 
 

 such that the radial pressure gradient, d
d

rp
r

 is 

negative for 0 r rΣ≤ ≤ .  

(b) 
0

d
0

d
tp

r
  = 
 

 and 
2

2
0

d
0

d
tp

r
 

< 
 

 such that the tangential pressure gradient, d
d

tp
r

 

is negative for 0 r rΣ≤ ≤ .  

(c) 
0

d 0
dr
ρ  = 

 
 and 

2

2
0

d 0
dr
ρ 

< 
 

 such that the density gradient, d
dr
ρ  is negative 

for 0 r rΣ≤ ≤ .  

(iii) The radial pressure must be equal to the tangential pressure at the center i.e. 
( ) ( )0 0r tp p= .  

(iv) At boundary radial pressure, rp  must vanish while tangential pressure, tp  
may not vanish.  

(v) The radial pressure, rp , tangential pressure, tp  and density ρ  should be 
positive.  

(vi) Solution should have positive value of pressure-density ratio which must be less 

than 1 (weak energy condition) and less than 1
3

 (strong energy condition) throughout  

within the fluid object and monotonically decreasing as well. (Pant and Negi [32]).  
(vii) The condition that the velocity of sound should be less than that of light 

throughout the model must be satisfied i.e. 2

d
0 1

d
rp

c ρ
≤ <  and 2

d
0 1

d
tp

c ρ
≤ < . The 

velocity of sound should be monotonically decreasing towards the surface and 

increasing with the increase of density i.e. dd 0
d d

rp
r ρ
 

< 
 

 or 
2

2

d
0

d
rp

ρ
 

> 
 

 and 

dd 0
d d

tp
r ρ
 

< 
 

 or 
2

2

d
0

d
tp

ρ
 

> 
 

. In this context it is worth mentioning that the equation  

of state at ultra-high distribution has the property that the sound speed is decreasing 
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outwards.  
(viii) The anisotropy factor ∆  should be zero at the center and incresing towards 

the surface of fluid object.  

(ix) For realistic matter, adiabatic index . . d1 
d

p pi eγ
ρ ρ

> < , everywhere within the 

ball.  
(x) The red shift should be positive finite everywhere within and on the fluid sphere, 

and is monotonically decreasing in nature with the increase of radius from the center 

0z .  
(xi) The stability factor 2 2

t rv v−  should lie between 1−  and 0  throughout the 
ball.  

Under these conditions, we have to assume the one of the gravitational potential 
component in such a way that the field Equation (1) can be integrated and solution 
should be well behaved.  

4. New Class of Well Behaved Solution  

We present the following general analytic solution of the field Equations (4) to (7)  

( ) 121
n

A b d ar
+

= + −                        (12) 

( )21
n

B ar= −                          (13) 

The anisotropic pressures, matter-energy density, red shift and anisotropic 
parameter of fluid ball are given by  

( )
( ) ( )

( )
( )

22

4 21 2 22 2

1 14 18π

11 1

n

r nn n

ara n dG p
c r arar b d ar

+

 
− −− + 

= + 
  − − + −   

          (14) 

( )
( ) ( ) ( )4 2 11 22 2

4 18π 2

11 1
t nn n

a n dG anp
c arar b d ar

++

 
− + 

= + 
  − − + −   

           (15) 

( )
( )

( )

22

2 2 1 22 2 2

1 18π 4

1 1

n

n n

arG an
c ar r ar

ρ +

 − −− = + 
− −  

                (16) 

( ) ( )
( )

12

12

1

1

n

n

c b d ar
Z

b d ar

+

+

− + −
=

+ −
                     (17) 

( ) ( )

( )

2 12 2

2 12 2

1 2 1 1

1

n

n

ar n ar

r ar

+

+

− + + −
∆ =

−
                   (18) 

Here a, b, and d are arbitrary constants. 

In order to construct a new relativistic model, we assume 5
2

n −
=  then we have  
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( )
3

2 21A b d ar
−

= + −                         (19) 

( )
5

2 21B ar
−

= −                          (20) 

The anisotropic pressures, matter-energy density, red shift and anisotropic 
parameter of fluid ball are given by  

( )
( )

42
4 8 3 6 2 4 2

4 3
2 2

6 18π 5 10 10 5
1

r

d arG p a a r a r a r ar
c

b ar d

 
− 

= − + − + − 
 − + 

         (21) 

( )
( )

( )
42

42
4 3

2 2

6 18π 5 1
1

t

d arG p a ar
c

b ar d

 
− 

= − − 
 − + 

                  (22) 

( )2 2 4 3 6 4 8
2

8π 15 50 70 45 11G a ar a r a r a r
c

ρ = − + − +                 (23) 

( )( )
( )

3
2 2

3
2 2

1

1

c b ar d
Z

b ar d

− − −
=

− +
                        (24) 

( )2 2 4 3 6 4 810 20 15 4a ar a r a r a r∆ = − + −                   (25) 

Here a, b, and d are arbitrary constants. 
In view of Equations (21) and (22) the rate of change of pressures with radial 

distance from the center rp′  and tp′  are given by 

( ) ( )

( )

332 2 2

2 2 2 4 3 6
4 23

2 2

6 1 5 ( 1 8
8π 20 40 30 8

( 1 )
r

d ar b ar d
G p a r ar a r a r

c
b ar d

    − − + 
   ′ = − − + − + 

   − +  
   

 (26) 

( ) ( )

( )
( )

332 2 2

32 2
4 23

2 2

6 1 5 1 8
8π 40 1

1
t

d ar b ar d
G p a r ar

c
b ar d

    − − + 
   ′ = − − − 

   − +     

         (27) 

In view of Equation (23), (24) and (25) the rate of change of density, red shift and 
anisotropy parameter with radial distance from the center ρ′ , Z ′ , and ′∆  are given 
by  

( )2 2 2 4 3 6
2

8π 100 280 270 88G a r ar a r a r
c

ρ′ = − − + −                 (28) 

( )

( )

1
2 2

23
2 2

3 d 1

1

ca r ar
Z

b ar d

− −
′ =

  − + 
  

                         (29) 
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( )2 2 2 4 3 620 80 90 32a r ar a r a r′∆ = − + −                   (30) 

5. Properties of the Solution  

For real values of metric potentials A and B, 2 1ar r< ∀ . Figure 1 shows that the 
metric potentials A and B are positive at the center which are slightly and 
monotonically increasing with r for suitable choice of constants ,a b , and d . For the 
positive central value of A, ( ) 0b d+ > . 

The central value of p , ρ  and Z  are given as,  

( ) ( )
( ) ( )4 40 0

58π 8π
r t

a d bG Gp p
b dc c
−

= =
+

                    (31) 

02

8π 15G a
c

ρ =                             (32) 

0
c b dZ

b d
− −

=
+

                            (33) 

It is clear from Equaiton (31) to Equaiton (33) that for positive central values of 
physical quantities 0p ,  0ρ ,  and 0Z  are positive if 0a > ,  b d c+ <  and 

11
5

b
d

− < < . In view of Equaitons (26) to (30), the variation in the pressure, density, red  

shift and anisotropy parameter with the radial distance from the center of fluid ball are 
identically zero at the center. 
 

 
Figure 1. Variation of metric parameters A, B, Red Shift Z and anisotropy parameter ∆  with 
r
rΣ

. 
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At the center of fluid ball the second order derivatives of radial and tangential 
pressures with respect to radial distance from the center of fluid ball are  

( )
( )

( )

2 2
2

4 20

14 5 108π 2r

d bd bG p a
c b d

− −
′′ = −

+
                  (34) 

( )
( )

( )

2 2
2

4 20

4 25 208π 2t

d bd bG p a
c b d

− + +
′′ =

+
                  (35) 

The radial pressure is maximum at the center if  

( )0 . . 5 585 5 5850  
20 20

 r ep i b
d

− − − +′′ < < < . The tangential pressure is maximum at the 

center if ( )0
. .  25 945 25 9450  

40 40tp e b
d

i − − − +′′ < < < . At the center of fluid ball the 

second order derivative of density with respect to radial distance from the center of 
fluid ball is  

( ) 2
4 0

8π 100G a
c

ρ′′ = −                        (36) 

The density is maximum at the center for all constants as ( )0 < 0ρ′′  . 
The central equation of state  

( )2
0

5
15

rp d b
b dc

α
ρ

  −
= =  + 

                     (37) 

( )2
0

5
15

tp d b
b dc

β
ρ

  −
= =  + 

                     (38) 

α  and β  must satisfy the condition 0 1α< ≤  and 0 1β< ≤  which demands 
7 1

10 5
b
d

− ≤ ≤ . 

The central values of square of ratio of speed of sound and speed of light i.e. 2

d
d

rp
c ρ

 

and 2

d
d

tp
c ρ

 are given by  

( )
( )

2 2

2 2
0

14 5 10d 1
50d

r
d bd bp

c b dρ

− − 
= 

+ 
                  (39) 

and  

( )
( )

2 2

2 2
0

4 25 20d 1
50d

t
d bd bp

c b dρ

− − 
= 

+ 
                  (40) 

The causality conditions at the center 2
0

d
0 1

d
rp

c ρ
 

< ≤ 
 

 and 2
0

d
0 1

d
tp

c ρ
 

< ≤ 
 

 give 

5 585 5 585
20 20

b
d

− − − +
< <  and 25 945 25 945

40 40
b
d

− − − +
< <  respectively. 
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At the center of fluid ball, the second order derivatives of red shift and anisotropy 
parameter with respect to radial distance from the center of fluid ball are  

( )
( )20

3acdZ
b d

′′ = −
+

                        (41) 

( ) 2
0 20a′′∆ =                           (42) 

Red shift is maximum at the center if ( )0  . . 0  0i eZ d′′ < > . The anisotropy 
parameter is minimum at the center since ( )0 0′′∆ > . 

It is found that the metric potentials A and B are positive at the center which are 
slightly and monotonically increasing with r, anisotropy parameter increases from zero 
at the center to maximum positive value at the boundary and the red shift is zero at the 
center which is monotonically increasing with r (Figure 1). The density ρ  and 
pressure tp  fall monotonically from their maximum positive values at the center up to 
non negative values at the boundary while radial pressure rp  falls monotonically from 
it’s maximum positive values at the center up to zero value at the boundary (Figure 2) 
for different values of the parameters a , b , d  satisfying  

7 25 9450,   0,   0,   0  and  
10 40

ba b d c b d
d

− +
> < > > + > − < <      (43) 

The value of 2
rp

c
α

ρ
=  falls monotonically from it’s maximum positive values at the 

center up to zero value at the boundary and the value of 2
tp

c
β

ρ
=  falls monotonically  

from their maximum positive values at the center up to non negative values at the 
boundary (Figure 3). 

Figure 4 shows that speeds of sound are less than speed of light i.e. 2

d
0 1

d
rp

c ρ
< ≤ ,  

 

 

Figure 2. Variation of Density ρ , Radial Pressure rp  and tangential Pressure tp  with r
rΣ

. 
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Figure 3. Variation of 2
rp

c ρ
 and 2

tp
c ρ

 with r
rΣ

. 

 

 

Figure 4. Variation of 
2

d
d

rp
c ρ

 and 
2

d
d

tp
c ρ

 with r
rΣ

. 

 

2

d
0 1

d
tp

c ρ
< ≤  and the ratio of speeds of sound and light 2

d
d
p

c ρ
 falls monotonically 

from center to the boundary of the fluid ball. 

The adiabatic index γ  (
d
d

r

r

p
p
ρ

ρ
 and 

d
d

t

t

p
p
ρ

ρ
)falls monotonically from their 

maximum positive values at the center up to non negative values at the boundary 
(Figure 5). 

Figure 6 shows that the stability factor ( )2 2
t rv v−  lies between 1−  and 0 .  
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Figure 5. Variation of d
d

r

r

p
p
ρ

ρ
 and d

d
t

t

p
p
ρ

ρ
 with r

rΣ
. 

 

 

Figure 6. Variation of stability factor ( )2 2
t rv v−  with r

rΣ
. 
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6. Matching Conditions of Boundary  

The solution so obtained are to be matched over the pressure free boundary of fluid 
sphere smoothly with the Schwarzschild exterior metric:  

( )
1

2 2 2 2 2 2 2 2
2 2

2 2d 1 d 1 d d sin dGM GMs c t r r
c r c r

θ θ φ
−

   = − − − − +   
   

       (44) 

which requires the continuity of 2A  and 2B  across the boundary r rΣ=  and 

( ) 0r rp
Σ
= . Thus  

1
5

2

1 1 ;   0 1a X X
rΣ

 
= − < <  

 
                      (45) 

1 2 3 4
5 5 5 5

3
10

1 5

6

c X X X X
b

X

 
+ + + −  

 = −                    (46) 

1 2 3 4
5 5 5 51

6

c X X X X
d

 
+ + + +  

 =                     (47) 

1 2 3 4
5 5 5 5

3 1 2 3 4
10 5 5 5 5

1 5

1

b X X X X
d

X X X X X

+ + + −
= −

 
+ + + +  

 

                  (48) 

where 1 2 pX S= − ; 2p
GMS
c rΣ

= , Schwarzchild parameter. 

7. Tables of Numerical Values of Physical  
Quantities and Their Graphs  

In view of Equaitons (45) to (48) the values of X ,  b ,  d  and b
d

 are 

0.4782, 0.078 ,  0.65c c−  and 0.564−  respectively and the value of 2 0.125arΣ =  for  

0.243pS = . For better illustration of our physically accepted solution, the relevant 
physical quantities are presented by means of Table 1 and Table 2 and Figures 1-6 for 
these constants. 

In order to construct a super dense star model, we prescribe the surface density of 
the star as 17 32 10  kg m−× ⋅  and the values of constants a , b  and d  can be 
evaluated for different values of pS  for describing the well behaved solutions. Thus a 
compact star model can be constructed by finding mass and radius corresponding to 
assumed surface density. The variation in the mass and radius with Schwarzschild 
parameters for our model of compact star is tabulated in the Table 3. 

Table 3 shows that neutron star model can be constructed for different values of pS  

ranging from 0.143 to 0.243. The variations in 2
2

8πG r
c

ρΣ Σ , radius R, mass M, central red 

shift 0Z  and surface red shift ZΣ  with Schwarzschild parameter pS  are shown in 
the Figure 7.  
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Figure 7. Variation of radius, mass, central red shift and surface red shift with Schwarzschild 
parameter. 
 

Table 1. A
c

, B , ρ , rp , tp , Z  and ∆  for 2 0.125arΣ =  or 0.243pS = .  

. .S N  
r
rΣ

 A
c

 B  2
2

8πG r
c

ρ Σ  2
4

8π
r

G p r
c Σ  2

4

8π
t

G p r
c Σ  Z  ∆  

1 0.0 0.57200 1.00000 1.8750 0.22727 0.22727 0.74825 0.00000 

2 0.1 0.57322 1.00313 1.86720 0.22436 0.22592 0.74435 0.00156 

3 0.2 0.57690 1.01261 1.84396 0.21572 0.22191 0.73338 0.00680 

4 0.3 0.58312 1.02868 1.80578 0.20160 0.21535 0.71489 0.01375 

5 0.4 0.59200 1.05180 1.75345 0.18243 0.20644 0.68919 0.02401 

6 0.5 0.60370 1.08260 1.68806 0.15876 0.19544 0.65644 0.3667 

7 0.6 0.61848 1.12200 1.61096 0.13129 0.18265 0.61687 0.05135 

8 0.7 0.63664 1.17118 1.52374 0.10083 0.16844 0.57074 0.06761 

9 0.8 0.65860 1.23177 1.42817 0.06824 0.15318 0.51837 0.08494 

10 0.9 0.68487 1.30588 1.32619 0.03446 0.13729 0.46011 0.10283 

11 1.0 0.71614 1.39630 1.21981 0.00000 0.12116 0.39636 0.12103 
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Table 2. 2
rp

c ρ
, 2

tp
c ρ

, 2
rdp

c dρ
, and 2

tdp
c dρ

 for 2 0.125arΣ =  or 0.243pS = .  

. .S N  
r
rΣ

 
2

rp
c ρ

 2
tp

c ρ
 2

d
d

rp
c ρ

 2

d
d

tp
c ρ

 
d
d

r

r

p
p
ρ

ρ
 d

d
t

t

p
p
ρ

ρ
 2 2

t rv v−  

1 0.0 0.12121  0.12121  0.37334  0.17334  3.08011  1.43011  0.20000−  

2 0.1 0.12016  0.12099  0.37279  0.17309  3.10250  1.43062  0.19970−  

3 0.2 0.11698  0.12034  0.37114  0.17235  3.17250  1.43216  0.19879−  

4 0.3 0.11164  0.11925  0.36837  0.17111  3.29955  1.43482  0.19726−  

5 0.4 0.10404  0.11773  0.36445  0.16938  3.50309  1.43871  0.19507−  

6 0.5 0.09405  0.11577  0.35936  0.16272  3.82107  1.44401  0.19664−  

7 0.6 0.08150  0.11338  0.35304  0.16451  4.331825  1.45098  0.18853−  

8 0.7 0.06617  0.11054  0.34542  0.16138  5.22012  1.45998  0.18404−  

9 0.8 0.04778  0.10726  0.33642  0.15782  7.04053  1.47145  0.17860−  

10 0.9 0.02598  0.10352  0.32590  0.15383  12.54187  1.48603  0.17207−  

11 1.0 0.00000  0.09932  0.31372  0.14943  ∞  1.50455  0.16429−  

 

Table 3. Variation in 2
2

8πG r
c

ρΣ Σ , rΣ , ρ , M
M



, 0Z  and ZΣ  with Schwarzschild parameter 

pS .  

. .S N  pS  2
2

8πG r
c

ρΣ Σ  rΣ  
M
M



 
0Z  ZΣ  

1 0.02 0.1182 05.635 0.076 0.03125 0.02062 

2 0.04 0.2342 07.931 0.214 0.06525 0.043062 

3 0.06 0.3437 09.658 0.391 0.10240 0.06600 

4 0.08 0.4572 11.081 0.598 0.14321 0.09109 

5 0.10 0.5690 12.362 0.834 0.18828 0.11803 

6 0.12 0.6687 13.401 1.085 0.23837 0.14707 

7 0.14 0.7690 14.371 1.358 0.29446 0.17851 

8 0.143 0.7831 14.502 1.399 0.30346 0.18345 

9 0.16 0.8649 15.241 1.646 0.35778 0.21267 

10 0.18 0.9568 16.030 2.035 0.42993 0.25000 

11 0.20 1.0452 16.754 2.262 0.51306 0.29100 

12 0.22 1.1254 17.385 2.581 0.61008 0.33630 

13 0.24 1.2066 18.001 2.916 0.72511 0.38541 

14 0.245 1.2252 18.140 3.000 0.75732 0.40045 

15 0.25 1.2432 18.272 3.083 0.79113 0.41421 
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8. Conclusion 

We have given a new solution for spherically symmetric anisotropic fluid ball. It has 
been observed that the physical parameters pressure, density, and redshift are positive 
at the centre and within the limit of realistic state equation and monotonically 
decreasing and the causality condition is obeyed throughout the fluid ball. Thus, the 
solution is well behaved for all values of Schwarzschild parameter pS  within the 
perfect fluid ball. Our solution is useful to construct the models of compact star like 
Strange star family, Neutron star and many more. We have discussed a model of 
massive neutron star having mass 2.95M



 and radius 18 km with surface density 
17 32 10  kg m−× ⋅  and central density 17 33.1 10  kg m−× ⋅ . The central radial and 

tangential pressures of neutron star are 33 23.4 10  N m×  while the surface radial 
pressure of the star is zero and surface tangential pressure is 33 21.8 10  N m× . Table 1 
shows that we can construct different models for neutron star having mass lies between 
1.4M



 and 3M


 for different values of pS  ranging from 0.143 to 0.245. The 
solution reduces to Schwarzschild interior solution for 1 2n = −  and for isotropic 
pressure. 
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