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ABSTRACT 

This paper considers the problem of controlling the rotational motion of an axi-symmetric rigid body using two inde-
pendent control torques without angular velocity measurements. The control law which stabilizes asymptotically this 
motion is obtained only in terms of the orientation parameters. Global asymptotic stability is shown by applying LaSalle 
invariance principal. Numerical simulation is introduced. 
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1. Introduction 

A rigid body in general (non-symmetric) is controlled 
with three independent controls without angular velocity 
measurements [1-3]. If one of the controls is failure, the 
rigid body is not controllable. Thus the attitude control of 
a rigid body motion using two controls is an important 
control problem. 

The angular velocity along the symmetric axis of the 
rigid body is fixed to its initial value. In this case, two 
control torques are used to stabilize asymptotically the 
rotational motion about the symmetric axis. Moreover, 
the orientation of the symmetric axis is described using 
stereographic coordinates form direction cosines [4]. 

Many authors have discussed the attitude control of a 
rigid body motion using two controls that depend in 
terms of the angular velocities of the rigid body and the 
orientation parameters. The stabilization of a zero total 
angular momentum satellite using two reaction wheels 
has been shown in [5,6]. Two controls which stabilize 
asymptotically a rigid body motion using matching con-
dition are obtained in terms of the angular velocities of 
the rigid body [7]. Two controls which stabilize asymp-
totically an axi-symmetric rigid spacecraft are obtained 
in terms of the angular velocities of the rigid body and 
the orientation parameters [8-11]. The angular velocity 
measurement is noisy. It contains high frequency and 
random fluctuations. In this paper, two control torques 
which stabilize asymptotically the rotational motion of an 

axi-symmetric rigid body are obtained only in terms of 
the orientation parameters. 

The present paper is organized as follows: Section 2 
presents dynamic and kinematic equations of an axi- 
symmetric rigid body with two control torques. Section 3 
is devoted to obtain the two control torques which stabi-
lize asymptotically the rotational motion of an axi-sym-
metric rigid body in terms of the orientation parameters. 
The asymptotic stability of this motion is proved by ap-
plying LaSalle invariance principal. Section 4 contains 
numerical simulation to illustrate the theoretical results 
of the paper. 

2. Dynamics and Kinematics 

Consider the rotational dynamics of an axi-symmetric 
rigid body controlled by two independent control torques. 
Two reference frames are introduced. The first 

 1 2 3ˆ ˆ ˆ ˆ, ,n n n n  is an inertial reference frame, and the 
second  1 2 3

ˆ ˆ, ,b b

1b̂

ˆ ˆb b  is a body-fixed reference frame 
and coincident with the principal axes of inertia of the 
body. The unit vector 3  lies along the axis of symme-
try. Two control torques 1  and 2u  are applied along 
the unit vectors  and 2 , respectively (Figure 1). Let 

i

b̂

b̂
u

A  and  1,2,3i i   be the principal moments of iner-
tia of the rigid body and the components of the angular 
velocity of the body referred to the  frame, respec-
tively. The dynamic equations take the form: 

b̂
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Figure 1. Axi-symmetric rigid body with two controls. 
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Since 1 2A A A 
,

, if we let the initial condition 

30 3 0   3  will remain constant throughout the 
maneuver. Equations (2.1) can rewrite as: 

 
 

1 3 30 2

2 3 30 1

,

.

1

2

A A A u

A A A u

  

  

  

  




        (2.2) 

The orientation of an axi-symmetric rigid body is de-
scribed by using stereographic coordinates form direction 
cosines [4]. Two orientation parameters  and 2  
can be used to describe the position of the 3  inertial 
axis in the body fixed  frame. These parameters sat-
isfy the differential equation: 

1W
n̂

W

b̂

 

 

2 21
1 3 2 2 1 2 1 2

2 22
2 3 1 1 1 2 2 1

1 ,
2

1 .
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W W WW W W

W W WW W W


 


 

    

     




   (2.3) 

equations (2.2) and (2.3) can be written in a vector form 
as: 

   3 30 ,A A A S u             (2.4) 

   30W S W F W            (2.5) 

where  

     T T

1 2 1 2 1 2, ,W W W u u u     T
,  

 F W  is the 2  symmetric matrix  2

    T1
1 2

2
F W W W I WW   T       (2.6) 

and  30S   is the  skew-symmetric matrix 2 2

  30
30

30

0
.

0
S





 

   
          (2.7) 

Equations (2.4) and (2.5) can be used to solve the prob-
lem of controlling the rotational motion of an axi- 
symmetric rigid body, using Liapunov function tech-
nique. 

The main objective is to determine the control law  
in terms of the orientation parameters that will derive 

u
  

and  to zero. To derive this control law, we introduce 
the new parameters  

W

T

1 2
ˆ ˆ ˆW W W     

which estimate the orientation parameters  

 T1 2 ,W W W
 

respectively. Also we suppose that the orientation pa-
rameters and their estimates satisfy the following auxil-
iary system of differential Equation: 

 30
ˆ ˆ .W W W S W  

         (2.8) 

Using the kinematic Equation (2.5) the auxiliary sys-
tem (2.8) can be written in the form: 

 F W                 (2.9) 

where  

ˆ .W W                 (2.10) 

3. Stabilization Problem 

The main object of this section is to determine the control 
law  which stabilizes asymptotically the system (2.4), 
(2.5), (2.9). This control law depends upon the orientation 
parameters only. 

u

Theorem. The control law 

   T Tu k W F W           (3.1) 

where  stabilizes asymptotically the system (2.4), 
(2.5), (2.9). 

0k 

Proof. Assume that, the Liapunov function in the form 

T T T2Φ .A k W W            (3.2) 

This function is a positive definite with respect to stabi-
lize variables  , , and W  . The time derivative of the 
Liapunov function (3.2) using (2.4), (2.5), (2.9) and the 
control law (3.1) takes the form 

 
    

T T T

T T T

T

d

d

0.

A k W W
t

u k W F W k

k

   

T   

 


  

   

  



 (3.3) 

The time derivative of the Liapunov function is a nega-
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tive semi-definite function (constant sign function). Thus, 
under the control law (3.1), the system is stable. 

Now, we will prove the asymptotic stability of this sys-
tem using LaSalle Invariance Principle [12]. Define Ω  
as the largest invariant set in  

     , , : 0 , , : 0 .W W           

On Ω  we have that   0F W    from (2.9). 
This implies that 0   on Ω . Since Ω  is invariant, 

0   in turn implies  

 T 0kW F W   

(from (2.4) and (3.1)). This implies that  on 0W  Ω . 
Therefore 

  , , : 0 .W W         

4. Numerical Simulation 

This section shows the effect of the value of the control 
constant  in control purposes. The Program used in 
this numerical approach is MAPLE. We choose the iner-
tial moments of an axi-symmetric rigid body, the initial 
angular velocities of the rigid body, the initial orientation 
parameters and the initial error attitude parameters as 
follows:  

k

     
   
   

2
1 2 3

1 2 3

1 2

1 2

15, 20 kg m ,

0 0.2, 0 0.2, 0 0.1 rad s

0 0, 0 0,

0 0, 0 0.

A A A

W W

  

 

   

  

 

 

,
  (4.1) 

Figures 2(a)-(d) show the time response of the body 
angular velocities, the orientation parameters, the error of 
the orientation parameters and the control torques, re-
spectively for the control constant . 2k 

Figures 3(a)-(d) show the time response of the body 
angular velocities, the orientation parameters, the error of 
the orientation parameters and the control torques, re-
spectively for the control constant . 20k 

Figures 4(a)-(d) show the time response of the body 
angular velocities, the orientation parameters, the error of 
the orientation parameters and the control torques, re-
spectively for the control constant . 40k 

Based on the above numerical simulation study we 
conclude that, increasing the value of the control constant 

 has the effect of decreasing the convergence behavior 
of the system. This result is different from the result 
when the control torques are obtained in terms of the 
angular velocities of the rigid body and the orientation 
parameters [11]. 

k

5. Conclusion 

The angular velocity measurement contains high fre-  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. (a) Body angular velocities; (b) Orientation pa-
rameters; (c) Error orientation parameters; (d) Control 
torques. 
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Figure 3. (a) Body angular velocities; (b) Orientation pa-
rameters; (c) Error orientation parameters; (d) Control 
torques. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. (a) Body angular velocities; (b) Orientation pa-
rameters; (c) Error orientation parameters; (d) Control 
torques. 
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nd noises or random fluctuations. Two control 

[1] A. Abdessam Global Traj

quency a
torques (3.1) which stabilize asymptotically the rotational 
motion of an axi-symmetric rigid body are obtained in 
terms of the orientation parameters without angular ve-
locity measurements. Global asymptotic stability is shown 
by applying LaSalle invariance principal. 
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