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Abstract 
In this short article, the upwind and central compact finite difference schemes 
for spatial discretization of the first-order derivative are analyzed. Compari-
son of the schemes is provided and the best discretization scheme for convec-
tion dominated problems is suggested. 
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1. Introduction 

With the ever-increasing interest in numerical calculations demanding high ac-
curacy for a wide range of length scales, such as large-eddy simulation and direct 
numerical simulation of turbulence, high-order numerical methods are desired. 
Particularly, high-order finite difference, finite volume, and finite element me-
thods have received more attention in handling complex problems. These 
high-order methods try to achieve high accuracy and avoid spurious oscillations 
and are usually characterized by their self-adaptive nature. The use of high-order 
methods is particularly warranted by the need to simulate flows containing dis-
continuous phenomena, such as fluid interfaces and steep shear layers. The 
compact high-order finite difference schemes provide an effective way of com-
bining the robustness of finite difference schemes and the accuracy of spectral 
methods [1] [2] [3]. Generally, the computation of derivatives in compact finite 
differences is implicit in the sense that the derivative values at a particular node 
are computed not only from the function values but also from the values of the 
derivative at the neighboring nodes [4]. Compared to non-compact counterparts 
of the same order of accuracy, compact schemes utilize a smaller stencil, have 

How to cite this paper: Shah, A., Khan, 
S.A. and Ullah, N. (2019) High Resolution 
Compact Finite Difference Schemes for 
Convection Dominated Problems. World 
Journal of Mechanics, 9, 259-266. 
https://doi.org/10.4236/wjm.2019.912017 
 
Received: October 21, 2019 
Accepted: November 29, 2019 
Published: December 2, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

https://www.scirp.org/journal/wjm
https://doi.org/10.4236/wjm.2019.912017
https://www.scirp.org/
https://doi.org/10.4236/wjm.2019.912017
http://creativecommons.org/licenses/by/4.0/


A. Sha et al. 
 

 

DOI: 10.4236/wjm.2019.912017 260 World Journal of Mechanics 
 

smaller truncating errors, and give better resolution especially at higher wave 
numbers [5] [6]. Compact finite difference schemes can generally be classified 
into two broad categories: upwind and central. The upwind compact schemes 
inherently possess the needed dissipation to control the numerical instabilities. 
Fu and Ma [7] have developed some upwind compact schemes which are suc-
cessfully implemented by Shah et al. [8] [9] [10] [11] for solving fluid flow prob-
lems. As these schemes possess appropriate dissipation to prevent non-physical 
oscillations, they seem to be suitable for solving the convection dominated prob-
lems. N.B. Ali et al. [12] used implicit and explicit third and fifth-order upwind 
compact schemes for solving the level set equation. De V. E. and Eswaran, V. [13] 
have studied some optimized upwind and upwind compact schemes for the so-
lution of acoustic wave problem. Central compact schemes have the advantage 
of achieving high-order accuracy with fewer grid points in the stencil, but they 
are non-dissipative, and using central compact schemes on non-staggered 
meshes for convection terms might cause numerical oscillations even for flows 
without discontinuities. Reducing or removing such oscillations requires the in-
troduction of dissipation terms or the use of filtering approach [14]. Resolution 
characteristics imply how compact finite difference approximation represents 
the exact result over the full range of length scales that can be realized for a given 
mesh [15]. This work aims to study different compact schemes to find the 
scheme more suitable for solving convection dominated problems. 

2. Model Problem 
In order to examine approximating behaviors of various numerical schemes, the 
following linear convection equation (also known as one-way wave equation) is 
considered. 

0,    0.u uc c
t x

∂ ∂
+ = >

∂ ∂
                      (1) 

The semi discrete form Equation (1) is 

0.j j

j

u u
c

t x
∂ ∂

+ =
∂ ∂

                          (2) 

The solution of Equation (1) represented by ( ),u x t  by a typical Fourier 
mode is given by: 

( ) ( )ˆ, e ,ikx
ku x t u t=                         (3) 

ˆku  is the Fourier mode of the wave number k and 1i = − , the exact spatial 
differentiation of Equation (3) is represented by; 

( ) ˆ
e ,ikxku

u i kh
h

′ =                        (4) 

where the wave number is scaled by the grid size lh
n

= , where l is the length of  

domain and n is the number of grids. By analogy the numerical approximation 
of the derivative is written as [13] 
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( ) ( ) ( )( )ˆ ˆ
e e .ikx ikxk k

eq r i
u u

u k kh k kh i k kh
h h

′ = = +              (5) 

The exact solution of Equation (1) is ( ) ( ), eik x ctu x t −= , and the exact solution  

of Equation (2) can be written as ( ), e e
i

jr
kct ik x ctk k xx

ju x t
 −−  ∆ ∆= , where the modified  

wave number eq r ik k ik= + . ik  is related to the phase speed in the numerical 
solution, and rk  is related to the numerical damping of a difference scheme. 
Fourier analysis of different discretization schemes allows us to choose the best 
scheme. 

2.1. Upwind Compact Scheme 

In this subsection, third and fifth-order upwind compact and upwind explicit 
schemes are analyzed. For the third-order upwind compact scheme [16], we 
have  

1 1
1

4 52 1 ,
3 3 6

j j j
j j

u u u
u u + −

−

+ −
+ =                   (6) 

that satisfy the relation 

( )

( )
( ) ( )

( ) ( ) ( )
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1 2 5e e
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2 1 e
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cos sin 4 5 cos sin
ˆ e

4 2 cos sin

1 cos sin 8 cos
ˆ e

5 4cos

j

j

j

i i

ikx
j
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ikx

ikx

u u t

i i
u t

i

i
u t

α α

α

α α α α
α α

α α α
α

−

−

+ −
=

+

+ + − −
=

+ −

− + +
=

+

            (7) 

where 

( ) ( )21 cos sin 8 cos
, .

5 4cos 5 4cosr ik k
α α α
α α

− +
= =

+ +
               (8) 

Similarly, for the fifth-order upwind compact scheme [7], we have 

2 1 1 2
1

12 36 44 33 2 ,
5 5 60

j j j j j
j j

u u u u u
u u + + − −

−

− + + − −
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where 

( )
( )

( )
( )

2 232 1 3cos 3cos sin 2sin 15cos 60cos
, .

3 13 12cos 3 13 12cosr ik k
α α α α α α

α α

− + − + +
= =

+ +
(11) 

https://doi.org/10.4236/wjm.2019.912017


A. Sha et al. 
 

 

DOI: 10.4236/wjm.2019.912017 262 World Journal of Mechanics 
 

For the explicit third-order upwind scheme [7], 

( ) ( )1 13 4cos cos 2 , 8sin sin 2 ,
6 6r ik kα α α α= − + = −           (12) 

and for the explicit fifth-order upwind scheme, we have, 

10 15cos 6cos 2 cos3 45sin 9sin 2 sin 3, .
30 30r ik kα α α α α α− + − − +

= =  (13) 

Figure 1 shows variations of rk  and ik  with the reduced wave number α  
for the above four schemes. We can see the fifth-order schemes can approximate 
the exact damping ( 0E

rk = ) to higher waver numbers than the third-order 
schemes, and the compact schemes can approximate the exact dispersion rela-
tion ( E

ik α= ) better than the non-compact schemes. 
Table 1 gives the upper limit of the reduced wave number, which corresponds 

to a point in Figure 1 where rk  or ik  begins to reach 2% errors relative to 
their exact solutions respectively. Larger upper limit implies fewer grid points 
are needed to resolve a given physical structure. For example, to approximate the 
exact wave speed within 2% error, the ratio of grid points needed by the 
5th-order upwind compact scheme to those needed by the 5th-order upwind bi-
ased scheme is 1.25 1.71 0.73=  in one dimensional case. In three-dimensional 
case, this ratio becomes ( )31.25 1.71 0.39= , resulting in significant saving in 
computer resources. 

2.2. Central Compact Schemes 

In this section, various compact finite difference schemes are studied. The family 
of cell centered central compact schemes given by Lele et al. [3] is given by: 

3 3 2 2 1 1
2 1 1 2 6 4 2

i i i i i i
i i i i i

u u u u u u
u u u u u c c c

h h h
ν µ µ ν + − + − + −

− − + +

− − −′ ′ ′ ′ ′+ + + + = + +  (14) 

The order of these schemes can be based parameters values as shown in Table 
2. 

Taking Fourier transform of Equation (14), we have 
 

 
Figure 1. Variations of rk  and ik  vs. α  for the compact and non-compact schemes. 
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Table 1. Upper limits of the reduced wave number when rk  and ik  of the difference 
schemes first exceed 2% errors relative to exact solutions. 

Scheme Upper limits of wave number 

 kr < 2% 1 2%ik α− <  

5th-order upwind compact 1.35 1.71 

3rd-order upwind compact 0.91 1.61 

5th-order upwind 1.08 1.25 

3rd-order upwind 0.72 0.902 

 
Table 2. Values of parameters involved for the central compact scheme. 

Order of scheme μ v a b c 

2nd order 0 0 1 0 0 

4th order 0 0 4
3

 1
3

 0 

6th order 1
3

 0 14
9

 1
9

 0 

8th order 4
9

 1
36

 40
27

 25
54

 0 

10th order 1
2

 1
20

 17
20

 191
150

 1
100

 

 

sin sin 2 sin 3
2 3 ; 0.

1 2 cos 2 cos 2i r

b ca
k k

α α α

µ α ν α

+ +
= =

+ +
              (15) 

The different values of ik  are given in Table 3. 
The difference between modified wave number and exact wave number is very 

small, therefore these schemes have spectral like resolution. The comparison of 
various central compact schemes is presented in Figure 2. The eighth-order 
central compact scheme seems to follow the exact wave number more closely 
than all other central compact schemes, though it has a broader stencil width. 

2.3. Comparison of Upwind and Central Compact Scheme 

In this subsection, the upwind and central compact schemes are compared based 
upon the resolution characteristics ik  vs α . For this purpose, two upwind 
compact schemes and two central compact schemes are selected from the pre-
vious sections. 

The comparison plot for ik  vs α  is shown in Figure 3. 
The comparison of the scheme enables us to find the scheme best suitable 

from the chosen schemes. Figure 3 shows that the upwind compact schemes 
give the better resolution amongst all the schemes while central compact 
schemes have poor resolution. So in order to improve the resolution of central 
schemes, filtering is required. 

3. Conclusion 

We have analyzed upwind, upwind compact and central compact schemes of  
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Table 3. Values of parameters involved for the central compact scheme. 

Order of scheme ki 

2nd order sinα 

4th order 8sin sin 2
6

α α+  

6th order 

14 1sin sin 2
9 18

21 cos
3

α α

α

+

+
 

8th order 

40 25sin sin 2
27 108

8 11 cos cos
9 18

α α

α α

+

+ +
 

10th order 

17 191 1sin sin 2 sin 3
12 300 300

11 cos cos 2
10

α α α

α α

+ +

+ +
 

 

 

Figure 2. Comparison of various central compact schemes for ik  vs α . 

 

 
Figure 3. Comparison of upwind and central compact schemes ik  versus α . 
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different order accuracy for numerical investigation of convection equation. It is 
observed that the use of the upwind compact scheme makes the numerical solu-
tion more stable as compared with the central scheme and can be used for con-
vection dominated problems. A comparison is also given with non-compact 
schemes of the same order of accuracy with almost the same computational cost. 
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Abstract 
We reexamined the elastic collision problems in the special relativity for both 
one and two dimensions from a different point of view. In order to obtain the 
final states in the laboratory system of the collision problems, almost all text-
books in the special relativity calculated the simultaneous equations. In con-
trast to this, we make a detour through the center-of-mass system. The two 
frames of references are connected by the Lorentz transformation with the 
velocity of the center-of-mass. This route for obtaining the final states is easy 
for students to understand the collision problems. For one dimensional case, 
we also give an example for illustrating the states of the particles in the Min-
kowski momentum space, which shows the whole story of the collision. 
 

Keywords 
Relativistic Elastic Collision, Minkowski Momentum Space, Lorentz  
Transformation 

 

1. Introduction 

Collisions of the interacting particles have fundamental importance in both clas-
sical mechanics and special relativity. Illustrating the collision problems is re-
warding to understand them clearly and quickly. 

For one dimensional collision in classical mechanics, mass-momentum dia-
gram plays a key role [1] [2]. We can see the whole story of the collision in the 
single diagram for both the center-of-mass and the laboratory systems. For two 
dimensional collision in classical mechanics, two-dimensional momentum space 
describes the collision clearly in the textbook [3]. We also see the slightly differ-
ent illustration which lays emphasis on the transformation of the two systems [4]. 
For one dimensional collision in the special relativity, Saletan [5] proposed to 
understand the collision problems in the Minkowski momentum space, with 
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energy E/c represented along the vertical axis and momentum p represented 
along the horizontal axis. The states of the particles are expressed by the arrow 
in the space. The quantitative application of it is stated by [6]. We do not need 
any calculation for obtaining the whole story of the collision. For two dimen-
sional collision in the special relativity, illustration is clearly stated in the litera-
ture [6] [7]. We also see the slightly different illustration which lays emphasis on 
the transformation of the two systems [8]. 

In this article, we propose a different point of view for the elastic collision 
problems in the special relativity. We make a detour through the center-of-mass 
system for obtaining the final states in the laboratory system. It is applicable to 
both one and two dimensional collisions. This method shows the unified way to 
think about collision problems. 

Now, consider two reference frames K and K'. We assume that the frame K' 
moves in the x-direction at speed V with respect to the frame K. And let us as-
sume the origins O and O' of the two reference frames coincide at time 0=t . 
An event that occurs at some point is observed from both frames and is charac-
terized by a set of coordinates ( ), , ,ct x y z  and ( ), , ,′ ′ ′ ′ct x y z  where c is the 
speed of light. The Lorentz transformation gives the relation between two coor-
dinates and it is described by 

0 0
0 0

,
0 0 1 0
0 0 0 1

γ βγ
βγ γ

′ −    
    ′ −    =
    ′
    

′    

ct ct
x x
y y
z z

                 (1) 

where β =V c  and 21 1γ β= − . In the following paper, we designate the 
frame K as the laboratory system, while K' as the center-of-mass system. Accor-
dingly, the velocity V describes the velocity of the center-of-mass. The inverse 
transformation is given by just putting β−  to β  in Equation (1). 

Our strategy is pictorially stated in Figure 1. In the textbooks of physics, we 
have to calculate the simultaneous equations of momentum- and ener-
gy-conservation in order to obtain the final states in the laboratory system. See 
the dashed arrow in Figure 1. Our strategy is as follows. 

1) By the Lorentz inverse transformation, we obtain the velocity V of the cen-
ter-of-mass in terms of energies ( AE , BE ) and momenta ( Ap , Bp ) in the la-
boratory system before the collision. The velocity V does not change throughout 
the collision. 

2) By the Lorentz transformation, we obtain the momenta ( ∗
Ap , ∗

Bp ) in the 
center-of-mass system before the collision. See the strategy 2 in Figure 1. In this 
frame, two particles make a head on collision with the same magnitude of the 
momentum ∗p . 

3) We determine the momenta ( ∗′Ap , ∗′Bp ) in the center-of-mass system after 
the collision. See the strategy 3 in Figure 1. In this frame, two particles move the 
opposite direction with the same momentum ∗p  after the collision. We intro-
duce the collision angle θ ∗  of the incident particle for the two dimensional 
case. 
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Figure 1. The usual approach to the collision problems is along the dashed 
arrow. The strategy in this article is on the detour of the solid arrows. 

 
4) By the Lorentz inverse transformation, we obtain the momenta ( ′Ap , ′Bp ) 

in the laboratory system after the collision. See the strategy 4 in Figure 1. Finally, 
we reach the final states. We never solve the simultaneous equations in contrast 
with the usual treatment of the collision problems. 

5) Let us consider the two special cases. One is that the target particle is at rest 
( 0=Bp ) in the laboratory system before the collision. The other is that, in ad-
dition to the condition above, two particles have equal masses. 

6) We check the limit →∞c  and see whether these strategies recover the 
Newtonian mechanics. 

This paper is organized in the following way. In Section 2, we discuss one di-
mensional collisions, according to the strategy stated above. We also show the 
illustration of these collisions in Minkowski momentum space. This diagram 
shows the whole story of the one dimensional collision in the special relativity. 
In Section 3, we turn to the two dimensional collision case. We introduce the 
collision angle θ ∗  of the incident particle in the center-of-mass system. We 
show the theoretical background for the diagrammatic approach [6] [7] [8]. Sec-
tion 4 is devoted to a summary. 

2. Elastic Collisions in One Dimension 
Let us discuss the one dimensional elastic collisions. The motions of the particles 
are restricted in the x-direction. Therefore, the y- and z-components of the mo-
mentum are zero. Although the illustrations of the contents of this section are 
already done by [5] [6], we reexamined how we draw the collision problems in 
the Minkowski momentum space. 

2.1. Velocity of Center-of-Mass System 

We discuss the strategy 1 in the Introduction. Consider the Lorentz inverse 
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transformation with the whole two body system, 

0 0
0 0

.
0 0 1 00 0
0 0 0 10 0

γ βγ
βγ γ

∗ ∗

∗ ∗

  +   +  
   
 + + = 
   
          

A B A B

A B A B

E E E E
c c c c
p p p p                 (2) 

Here, 0∗ ∗+ =A Bp p  is the definition of the center-of-mass system. From the 
matrix, we obtain the following relations: 

,βγ
∗ ∗ 

+ = + 
 

A B
A B

E Ep p
c c

                      (3) 

.γ
∗ ∗ 

+ = + 
 

A B A BE E E E
c c c c

                      (4) 

Dividing these equations, we obtain the velocity of the center-of-mass 

,β
+

= =
+

A B

A B

p pV
E Ec
c c

                        (5) 

which is conserved throughout the collision because of the conservation law of 
energy and momentum. Moreover, we define the following conserved quantity: 

( )
2 2

2 ,
∗ ∗   ≡ + = + − +   

  
A B A B

A B
E E E Es p p
c c c c

              (6) 

2 2 2 2 2 , = + + − 
 

A B
A B A B

E Em c m c p p
c c

                  (7) 

where Am  and Bm  are the masses of the colliding particles. We used the rela-
tion ( ) ( )2 22− =E c p mc , which is satisfied by the relativistic particle. When we 
define W as the total energy in the center-of-mass system, then W is written in 
terms of s as follows: 

.∗ ∗≡ + =A BW E E c s                        (8) 

We also calculate the following quantities from Equation (5), 

2

1 , ,
1

γ βγ
β

+ +
= = =

−

A B

A B

E E
p pc c

s s
               (9) 

which are frequently used in the following sections. 
Figure 2 depicts the states of two particles before the collision in the labora-

tory system: 

, ,0,0 , , ,0,0 .   = =   
   

OA OBA B
A B

E Ep p
c c

             (10) 

According to the parallelogram law, we obtain the vector = +OC OA OB , 
which indicates the state of the center-of-mass. The β  in Equation (5) is un-
derstood by tanβ θ=  in Figure 2. Moreover, the vector OC  shows the case  
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Figure 2. Figure shows the case in [6]: 1=Am , 0.5= −Av c , 2=Bm , 

0.6=Bv c . The tips A and B show the states of the particles before the col-
lision in the laboratory system. The tip C is determined from A and B by 
the parallelogram law. 

 
of the perfect inelastic collision in the special relativity, i.e., the two particles are 
combined and move with the velocity β  after the collision. Contrary to this, 
this diagram is also interpreted as the decay process. The parent particle OC  
decays into two daughter particles OA  and OB . 

2.2. Momenta and Energies in the Center-of-Mass System before 
the Collision 

We discuss the strategy 2 in the Introduction. Concerning the Lorentz transfor-
mation for each particle, 

0 0 0 0
0 0 0 0

, ,
0 0 1 0 0 0 1 00 00 0
0 0 0 1 0 0 0 10 00 0

γ βγ γ βγ
βγ γ βγ γ

∗ ∗

∗ ∗

      − −         
         − −      = =   
         
                        

A BA B

A BA B

E EE E
c cc c
p pp p (11) 

we obtain the momenta in the center-of-mass system before the collision; 

,βγ γ∗
−

= − + = +

B A
A B

A
A A

E Ep pE c cp p
c s

              (12) 

,βγ γ∗
−

= − + = −

B A
A B

B
B B

E Ep pE c cp p
c s

              (13) 

where we used Equations (9). It is natural that 0∗ ∗+ =A Bp p  is fulfilled because 
of the definition of the center-of-mass system. Then we define a momentum ∗p  
as 
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,∗ ∗ ∗
−

≡ = = −

B A
A B

A B

E Ep p
c cp p p

s
              (14) 

for later use. The energies of the particles in the system are also given by Equa-
tions (11), 

2 2
2 2 2 2

,
2

γ βγ
∗ − + + −
= − = =

A B
A B A

A A A B
A

E E p p m cE E s m c m cc cp
c c s s

    (15) 

2 2
2 2 2 2

,
2

γ βγ
∗ − + − +
= − = =

A B
A B B

B B A B
B

E E p p m cE E s m c m cc cp
c c s s

    (16) 

where we used Equations (7) and (9). These energies are also derived by 

( )2 2 2∗ ∗= +A AE c p m c  and ( )2 2 2∗ ∗= +B BE c p m c  with Equations (12) and (13). 
Summing up these energies, we can easily see Equation (8). 

We obtain these results from Figure 3. We draw a new ∗p -axis which has the 
slope tanθ  with respect to the horizontal p-axis. Drawing the dotted line from 
the tips A and B to the ∗p -axis in parallel to the line OC, the crossing points 
indicate the momenta ∗

Ap  and ∗
Bp  whose distances from the origin O are 

equal. This means 0∗ ∗+ =A Bp p . Moreover, we draw the dotted line from the tips 
A and B to the line OC in parallel to the ∗p -axis. The crossing points A'' and B'' 
describe the energies ∗

AE c  and ∗
BE c  in the center-of-mass system before the 

collision. 

2.3. Momenta and Energies in the Center-of-Mass System after the 
Collision 

We discuss the strategy 3 in the Introduction. We determine the momenta in the  
 

 
Figure 3. Draw the line from the tips of the vectors A and B to the ∗p -axis 
in parallel to the line OC. The crossing points with ∗p -axis show the mo-
menta of each particle in the center-of-mass system. 
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center-of-mass system after the collision. In this frame, the particles move in the 
opposite direction after the collision with the same magnitude of ∗p  in Equa-
tion (14). We write down the momenta in the center-of-mass system after the 
collision 

, .∗ ∗ ∗ ∗ ∗ ∗′ ′≡ − = − ≡ − = +A A B Bp p p p p p              (17) 

Since the magnitudes of the momenta do not change, the energies of the par-
ticles 

,∗ ∗ ∗ ∗′ ′= =A A B BE E E E                      (18) 

do not change either in this frame, where ∗
AE  and ∗

BE  are given by equations 
(15) and (16). 

2.4. Momenta and Energies in the Laboratory System after the 
Collision 

We discuss the strategy 4 in the Introduction. Consider the Lorentz inverse 
transformation for each particle, 

 

0 0 0 0
0 0 0 0

, ,
0 0 1 0 0 0 1 00 00 0
0 0 0 1 0 0 0 10 00 0

γ βγ γ βγ
βγ γ βγ γ

∗ ∗

∗ ∗

′ ′   ′ ′   
         
         
   ′ ′′ ′   = =   
         
                        

A BA B

A BA B

E EE E
c cc c
p pp p    (19) 

we obtain the momenta in the laboratory system after the collision. From the 
second row of these matrices, we obtain 

2 2

,

βγ γ
∗

∗′
′ ′= +

− + + −+
= × − ×

A
A A

A B A B B A
A B A A B

A B

Ep p
c

E E E E E Ep p m c p pp p c c c c c c
s s s s

  (20) 

2 2

,

βγ γ
∗

∗′
′ ′= +

− + + −+
= × + ×

B
B B

A B A B B A
A B B A B

A B

Ep p
c

E E E E E Ep p m c p pp p c c c c c c
s s s s

  (21) 

where we used Equations (9), (17) and (18). Adding the two equations, we easily 
see the conservation of momentum: ′ ′+ = +A B A Bp p p p . Moreover, we also ob-
tain the energies from Equations (19), 

2 2

,

γ βγ
∗

∗′ ′
′= +

+ − + −+
= × − ×

A A
A

A B A B B A
A B A A B

A B

E E p
c c

E E E E E Ep p m c p pp pc c c c c c
s s s s

    (22) 
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2 2

,

γ βγ
∗

∗′ ′
′= +

+ − + −+
= × + ×

B B
B

A B A B B A
A B B A B

A B

E E p
c c

E E E E E Ep p m c p pp pc c c c c c
s s s s

   (23) 

where we used Equations (9), (17) and (18). We easily check the conservation of 

energy: 
′ ′
+ = +A B A BE E E E

c c c c
. 

Figure 4 shows the whole story of the one dimensional collision. Since the 
momenta of the particles exchange in the center-of-mass system after the colli-
sion, the tips A and B', B and A' are on the same dotted line. Thus, the dashed 
vectors 

, ,0,0 , , ,0,0
′ ′   ′ ′ ′ ′= =   

   
OA OBA B

A B
E Ep p
c c

            (24) 

show the states after the collision. Namely, the tip A(B) can slide on the hyper-
bola ( )( ) ( ) ( )

2 2 2 2− =A B A B A BE c p m c  until the tip A'(B'). Furthermore, the sum of 
these vectors ′ ′+OA OB  equals OC , which means that OC  is not altered 
throughout the collision. 

The point A''(B'') is the midpoint of the line AA'(BB') which means that the 
energies in the center-of-mass system do not change before and after the colli-
sion, i.e., Equation (18). 

Once the momenta and energies of the particles before the collision are given, 
we obtain the final states as shown in Figure 4 without any calculations. 

2.5. In Case of 0Bp =  

We discuss the strategy 5 in the Introduction. In this case, we substitute 
2=B BE m c  into the equations of this section. Equation (7) becomes simple 

form  
 

 
Figure 4. The solid and dashed arrows show the states of the particles before 
and after the collision. 
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2 2 2 2 2 ,= + + A
A B B

Es m c m c m c
c

                    (25) 

and we obtain the relation 

.βγ γ
∗

∗

 + 
 = =

A
B A B

B

E m c p m c
E cp
c s

                  (26) 

From Equations (20) and (21), we obtain the momenta in the laboratory system 
after the collision 

2 2 2 2 2
,

 + −  ′ = × = − ×

A
B B

A B
A A A A

Em c m c
m c m c cp p p p

s s
          (27) 

2
.

 + 
 ′ = ×

A
B B

B A

Em c m c
cp p
s

                    (28) 

The second term of the right hand side of Equation (27) is a momentum lost 
by the particle A, and this transfers to the momentum gained by the particle B in 
Equation (28). This is the impulse in the special relativity. We obviously under-
stand the conservation of the momentum: ′ ′+ =A B Ap p p . In addition, we obtain 
the energies from Equations (22) and (23) 

22
,

′
= − ×A A B

A
E E m c p
c c s

                      (29) 

22
.

′
= + ×B B

B A
E m cm c p
c s

                      (30) 

The second terms of the right hand side of both equations are the same and it 
transfers from the particle A to B. This is the work in the special relativity. The  

sum of these energies 
′ ′
+ = +A B A

B
E E E m c
c c c

 shows the conservation law of 

energy. 
Figure 5 shows the Minkowski momentum diagram in this case. The vector 

OB  is along the vertical axis, which means 0=Bp  before the collision. 

2.6. In Case of 0Bp =  and A Bm m m= =  

The quantity s becomes more simple form 

2 , = + 
 

AEs mc mc
c

                        (31) 

and we obtain the following relations 

.
2

βγ βγ γ
∗ ∗

∗= = =A B AE E pp
c c

                    (32) 

We obtain the momenta 

0, ,′ ′= =A B Ap p p                        (33) 

and energies 
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Figure 5. The solid and dashed arrows show the states of the particles be-
fore and after the collision in case of 0=Bp . 

 

, ,
′ ′
= =A B AE E Emc

c c c
                      (34) 

in the laboratory system. After the collision, the incident particle A stops and the 
initially rest particle B moves with the momentum of which the particle A had 
before the collision. 

2.7. In the Limit c →∞  

In the limit →∞c , the relativistic energy E is replaced by 2mc . Equation (5) 
becomes 

.
+ + +

= → =
+ ++

A B A B A B

A B A B A B

p c p c p c p c p pV
E E m c m c m m
c c

              (35) 

This is the velocity of the center-of-mass in Newtonian mechanics. Equation 
(7) shows 

( )22 2 2 2 22 2 2 ,→ + + − = + −A B A B A B A B A Bs m c m c m cm c p p m m c p p    (36) 

then, the Lorentz factors Equations (9) become 

( ) ( )2 22 2
1,

2 2
γ

+ +
→ = →

+ − + −

A B A B

A B A B A B A B

m c m c m m

m m c p p m m p p c
 

( )2 2
0.

2
βγ

+
→ →

+ −

A B

A B A B

p p

m m c p p
 

Equation (14) becomes 

( ) ( )2 22 22 2

,

∗ − −
→ =

+ − + −

−
→

+

A B B A A B B A

A B A B A B A B

B A A B

A B

p m c p m c p m p mp
m m c p p m m p p c

m p m p
m m

      (37) 

https://doi.org/10.4236/wjm.2019.912018


A. Ogura 
 

 

DOI: 10.4236/wjm.2019.912018 277 World Journal of Mechanics 
 

which is the momentum in the center-of-mass system in Newtonian mechanics. 
Using these equations, we obtain the momenta Equations (20) and (21), 

,∗
+ −′ → − = −
+ +

A B B A A B
A A A

A B A B

p p m p m pp m m V p
m m m m

          (38) 

,∗
+ −′ → + = +
+ +

A B B A A B
B B B

A B A B

p p m p m pp m m V p
m m m m

          (39) 

after the collision in the laboratory system, which are recovered the case in 
Newtonian mechanics. 

3. Elastic Collisions in Two Dimensions 

Let us turn our discussion to the case of the two dimensional elastic collisions. 
We suppose that the motions of the particles are restricted in the x-y plain, so 
that the z-component of the momentum is zero. Since the motions of the par-
ticles are supposed along the x-direction before the collision, we repeat the same 
discussion of Subsections 2.1 and 2.2. The illustration of this section is already 
done by [7] [8]. 

3.1. Momenta and Energies in the Center-of-Mass System after  
the Collision 

Let us start our discussion from the strategy 3 in the Introduction. In the cen-
ter-of-mass system, the magnitudes of the momenta do not change before and 
after the collision. Thus, we write down the momenta in the same way with Equ-
ation (14), 

,∗ ∗ ∗ ∗ ∗
−

′ ′≡ = = = =

B A
A B

A B A B

E Ep p
c cp p p p p

s
          (40) 

where s is defined by Equation (7). 
However, the direction of the momenta changes after the collision in two di-

mensions. As shown in Figure 6, we define the sense of the momentum ∗′pA  as 

( )cos ,sin ,0θ θ∗ ∗ ∗=n , where θ ∗  is the scattering angle of the particle A in the 
center-of-mass system. In other words, the momenta after the collisions are de-
noted by the vector-form: 

.∗ ∗ ∗ ∗′ ′= = −p n pA Bp                        (41) 

Since the magnitudes of the momenta do not change in this frame throughout 
the collision, the energies of each particle do not change either: 

, ,∗ ∗ ∗ ∗′ ′= =A A B BE E E E                       (42) 

where ∗
AE  and ∗

BE  are given by Equations (15) and (16). 

3.2. Momenta and Energies in the Laboratory System after the 
Collision 

We discuss the strategy 4 in the Introduction. The motion of the particles after 
the collision is supposed to occur in the x-y plain. Thus, the momenta are  
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Figure 6. Left: The collision in the center-of-mass system. The scattering angles θ ∗  and 
φ∗  have the relation θ φ∗ ∗+ = π . Right: The collision in the laboratory system. 

 
written by ( ) ( ), ,0 cos , sin ,0θ θ′ ′ ′ ′ ′= =pA Ax Ay A Ap p p p  and  

( ) ( ), ,0 cos , sin ,0φ φ′ ′ ′ ′ ′= = −pB Bx By B Bp p p p , where θ  and φ  are the scattering 
angle of the particles A and B in the laboratory system as shown in Figure 6. 

From the Lorentz inverse transformation, we obtain the momenta in the la-
boratory system after the collision by using Equation (41) 

0 0
0 0cos cos ,

0 0 1 0sin sin
0 0 0 10 0 0

γ βγ
βγ γθ θ

θ θ

∗

∗ ∗

∗ ∗

′ ′     
     
     
 ′ ′  = =   
     ′ ′                 

A A A

Ax A

Ay A

E E E
c c c

p p p
p p p

         (43) 

0 0
0 0cos cos .

0 0 1 0sin sin
0 0 0 10 0 0

γ βγ
βγ γφ θ

φ θ

∗

∗ ∗

∗ ∗

′ ′     
     
     
 ′ ′ − = =   
     ′ ′− −                

B B B

Bx B

By B

E E E
c c c

p p p
p p p

        (44) 

From the second and third row of these matrices, we obtain x- and 
y-components of the momentum for the particle A, 

cos cos ,θ βγ γ θ
∗

∗ ∗′ ′= = +A
Ax A

Ep p p
c

              (45) 

sin sin ,θ θ∗ ∗′ ′= =Ay Ap p p                    (46) 

and for the particle B, 

cos cos ,φ βγ γ θ
∗

∗ ∗′ ′= = −B
Bx B

Ep p p
c

              (47) 

sin sin .φ θ∗ ∗′ ′= − = −By Bp p p                  (48) 

Combining with the relation 2 2cos sin 1θ θ∗ ∗+ = , we obtain 
2

2

1,
βγ

γ

∗

∗ ∗

 
′ −  ′ 

  + = 
    
 

A
Ax Ay

Ep pc
p p

               (49) 
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2

2

1.
βγ

γ

∗

∗ ∗

 
′ −  ′ 

  + = 
    
 

B
Bx By

Ep pc
p p

                   (50) 

These equations show the ellipse with the following parameters: 

minor semiaxis ,∗
−

=

B A
A B

E Ep p
c cp

s
                (51) 

major semiaxis ,γ ∗

  + −  
  =

A B B A
A B

E E E Ep p
c c c cp

s
          (52) 

( )
eccentricity ,βγ ∗

 + − 
 =

B A
A B A B

E Ep p p p
c cp

s
           (53) 

( ) 2 2

midpoint of foci ,βγ
∗

 + − + 
 =

A B
A B A B A

A

E Ep p p p m c
E c c
c s

      (54) 

( ) 2 2

midpoint of foci ,βγ
∗

 + − + 
 =

A B
A B A B B

B

E Ep p p p m c
E c c
c s

      (55) 

where Equations (7), (9), (14), (15) and (16) are used. 
From the Lorentz transformation Equation (43) with Equation (15), we obtain 

the energy in the laboratory system after the collision 

( )

cos

cos

1 cos ,

γ βγ θ

γ γ βγ βγ θ

βγ θ

∗
∗ ∗

∗ ∗

∗ ∗

′
= +

 = − + 
 

= − −

A A

A
A

A

E E p
c c

E p p
c

E p
c

                (56) 

where we used Equations (9). In the same manner, from Equations (44) and (16), 
we obtain 

( )

cos

cos

1 cos .

γ βγ θ

γ γ βγ βγ θ

βγ θ

∗
∗ ∗

∗ ∗

∗ ∗

′
= −

 = − − 
 

= + −

B B

B
B

B

E E p
c c

E p p
c

E p
c

              (57) 

The second terms of the right hand side in Equations (56) and (57) show the 
energy lost by the particle A and the energy gained by the particle B. This is the  
work in the special relativity. From these energies, we clearly see the conserva-

tion law of the energy: 
′ ′
+ = +A B A BE E E E

c c c c
. 
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3.3. In Case of 0Bp =  

We discuss the strategy 5 in the Introduction. The parameters of the ellipse be-
come simple form: 

minor semiaxis ,∗ = A Bp m cp
s

                     (58) 

major semiaxis ,γ βγ
∗

∗

 + 
 = =

A
B A B

B

E m c p m c
Ecp

s c
          (59) 

2

eccentricity ,βγ ∗ = A Bp m cp
s

                    (60) 

2 2

midpoint of foci ,βγ
∗

 + 
 =

A
A B A

A

Ep m c m c
E c
c s

             (61) 

where s is given by Equation (25). Equation (59) is as the same relation with Eq-
uation (26). The ellipse Equation (49) with these parameters is depicted in Fig-
ure 7. This is already done by [8]. 

3.4. In Case of 0Bp =  and A Bm m m= =  

The parameters of the ellipse are the followings: 

minor semiaxis ,∗ = Ap mcp
s

                      (62) 

major semiaxis ,
2

γ βγ
∗

∗ = =A Bp Ep
c

                   (63) 

eccentricity ,
2

βγ ∗
−

=

AE mc
cp                      (64) 

midpoint of foci ,
2

βγ
∗

=A AE p
c

                     (65) 

where s is given by Equation (31). Equations (63) and (65) are as same as Equa-
tion (32). 

Dividing Equations (45), (46) and Equations (47), (48), we obtain the relations 
of the scattering angles 

sin sintan ,
1 coscos

θ θ γθ
θβγ γ θ

∗ ∗ ∗

∗ ∗
∗ ∗

= =
+

+A

p
E p
c

               (66) 

sin sintan .
1 coscos

θ θ γφ
θβγ γ θ

∗ ∗ ∗

∗ ∗
∗ ∗

= =
−

−B

p
E p
c

               (67) 

Thus the product of these two equations becomes 
2 2

2 2

sin 1tan tan 1.
1 cos

θ γθ φ
θ γ

∗

∗× = = <
−

                 (68) 
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Figure 7.The ellipse Equation (49) with 0=Bp  is illustrated in the solid line. 
The points E' and E'' are the foci of this ellipse and the midpoint of them is de-
picted by E. The dashed circle shows the collision in the center-of-mass system 
[8]. 

 
Because of the relation of the tangent  

( ) tan tantan ,
1 tan tan

θ φθ φ
θ φ
+

+ =
−

 

we obtain 
2

θ φ π
+ < , in contrast to the Newtonian case in which 

2
θ φ π
+ = . 

3.5. In Case of 0Bp =  and 0Am = : Compton Scattering 

From the Lorentz inverse transformation in Equation (43), we obtain 

cos ,γ βγ θ
∗

∗ ∗′
= +A AE E p

c c
                   (69) 

cos cos .θ βγ γ θ
∗

∗ ∗′ = +A
A

Ep p
c

                 (70) 

Eliminating ∗p  and using Equation (15), we obtain 

( )

( )

2

2

cos 1

1

.

β θ γ β

γ β γ βγ

β

∗′
′− = −

 = − − 
 

= −

A A
A

A
A

A
A

E Ep
c c

E p
c

E p
c

            (71) 

Suppose that photon has no mass 0=Am , i.e., =A
A

E p
c

 and the target elec-
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tron is at rest ( 0=Bp ) before the collision. We rewrite Equation (5) as 

,β = =
+ +

A

A

A A
B B

E
p c

E Em c m c
c c

 

and substitute it into Equation (71). Thus we obtain 

( )2

.
1 1 cosθ

′
=

+ −

A

A

A

B

E
E c

Ec
m c

                    (72) 

This equation gives the photon energy after the collision. Hence, using the re-

lation ν
λ

= =
cE h h , we obtain 

( )2 1 cos ,λ λ θ′ − = −
B

h
m c

                     (73) 

which is the Compton wavelength shift. 

3.6. In the Limit c →∞  

Using the limit of Equation (36), the parameters of the ellipse become the fol-
lowings: 

( )

( )

2 2

2 2

minor semiaxis
2

,
2

A B B A

A B A B

B A A B B A A B

A BA B A B

p m c p m cp
m m c p p

m p m p m p m p
m mm m p p c

∗ −
→

+ −

− −
= →

++ −

    (74) 

( )( )
( )

( )( )
( )

2 2

2 2

major semiaxis
2

,
2

A B A B B A

A B A B

A B A B B A B A A B

A BA B A B

m c m c p m c p m c
p

m m c p p

m m p m p m m p m p
m mm m p p c

γ ∗ + −
→

+ −

+ − −
= →

++ −

  (75) 

( )( )
( )

( )( )
( )

2 2

2 2

eccentricity
2

0,
2

A B A B B A

A B A B

A B A B B A

A B A B

p p p m c p m c
p

m m c p p

p p p m p m c

m m p p c

βγ ∗ + −
→

+ −

+ −
= →

+ −

         (76) 

( )( )
( )

( )( )
( )

2 2

2 2

2 2

2 2

midpoint of foci
2

2

,

A B A B A B AA

A B A B

A B A A B A B

A B A B

A B
A A

A B

p p m cm c p p m cE
c m m c p p

p p m m m p p c

m m p p c

p pm m V
m m

βγ
∗ + − +
→

+ −

+ + −
=

+ −

+
→ =

+

   (77) 
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( )( )
( )

( )( )
( )

2 2

2 2

2 2

2 2

midpoint of foci
2

2

,

βγ
∗ + − +
→

+ −

+ + −
=

+ −

+
→ =

+

A B A B A B BB

A B A B

A B B A B A B

A B A B

A B
B B

A B

p p m cm c p p m cE
c m m c p p

p p m m m p p c

m m p p c
p pm m V
m m

    (78) 

where V is given by Equation (35). The minor and major semiaxes become the 
same and the eccentricity becomes zero. This shows that the ellipse approaches 
the circle, which recovers the Newtonian collision [3] [4] [7] [8]. 

4. Summary 

We reexamined the elastic collision problems in the special relativity by using 
the detour through the center-of-mass system. Hopping to the center-of-mass 
system by the Lorentz transformation and jumping back to the laboratory sys-
tem by the inverse transformation, we obtain the momenta and energies in the 
laboratory system after the collision without calculating any simultaneous equa-
tions which are often used in the literature. We also show that this process is ap-
plicable to the collisions both one and two dimensions in the same manner. This 
process makes students understand the collision problems in a unified way. 
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