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With the ever-increasing interest in numerical calculations demanding high ac-

curacy for a wide range of length scales, such as large-eddy simulation and direct

numerical simulation of turbulence, high-order numerical methods are desired.
Particularly, high-order finite difference, finite volume, and finite element me-
thods have received more attention in handling complex problems. These
high-order methods try to achieve high accuracy and avoid spurious oscillations
and are usually characterized by their self-adaptive nature. The use of high-order
methods is particularly warranted by the need to simulate flows containing dis-
continuous phenomena, such as fluid interfaces and steep shear layers. The
compact high-order finite difference schemes provide an effective way of com-
bining the robustness of finite difference schemes and the accuracy of spectral
methods [1] [2] [3]. Generally, the computation of derivatives in compact finite
differences is implicit in the sense that the derivative values at a particular node
are computed not only from the function values but also from the values of the
derivative at the neighboring nodes [4]. Compared to non-compact counterparts

of the same order of accuracy, compact schemes utilize a smaller stencil, have
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smaller truncating errors, and give better resolution especially at higher wave
numbers [5] [6]. Compact finite difference schemes can generally be classified
into two broad categories: upwind and central. The upwind compact schemes
inherently possess the needed dissipation to control the numerical instabilities.
Fu and Ma [7] have developed some upwind compact schemes which are suc-
cessfully implemented by Shah et a/ [8] [9] [10] [11] for solving fluid flow prob-
lems. As these schemes possess appropriate dissipation to prevent non-physical
oscillations, they seem to be suitable for solving the convection dominated prob-
lems. N.B. Ali et al [12] used implicit and explicit third and fifth-order upwind
compact schemes for solving the level set equation. De V. E. and Eswaran, V. [13]
have studied some optimized upwind and upwind compact schemes for the so-
lution of acoustic wave problem. Central compact schemes have the advantage
of achieving high-order accuracy with fewer grid points in the stencil, but they
are non-dissipative, and using central compact schemes on non-staggered
meshes for convection terms might cause numerical oscillations even for flows
without discontinuities. Reducing or removing such oscillations requires the in-
troduction of dissipation terms or the use of filtering approach [14]. Resolution
characteristics imply how compact finite difference approximation represents
the exact result over the full range of length scales that can be realized for a given
mesh [15]. This work aims to study different compact schemes to find the

scheme more suitable for solving convection dominated problems.

2. Model Problem

In order to examine approximating behaviors of various numerical schemes, the

following linear convection equation (also known as one-way wave equation) is

considered.
a—u+ca—u=0, c>0. (1)
ot OX
The semi discrete form Equation (1) is
ou; ou;
—+c—=0. (2)
ot OX

i
The solution of Equation (1) represented by u(x,t) by a typical Fourier

mode is given by:
u(x.t)=0, (t)e", (3)
G, is the Fourier mode of the wave number kand i= V-1, the exact spatial

differentiation of Equation (3) is represented by;

W= i(kh)%“e‘“, (4)

where the wave number is scaled by the grid size h= ! , where /is the length of
n

domain and n is the number of grids. By analogy the numerical approximation

of the derivative is written as [13]
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U =Ke (kh)%‘e”‘x = (k, (kh)+i(ki)kh)%ke”‘x. (5)

x—ct)

The exact solution of Equation (1) is u (X,t) =" and the exact solution

—k o ik(xj——ictj
of Equation (2) can be written as U (X i ,t) —e Mg k) where the modified

wave number Kk, =K +ik;. k; is related to the phase speed in the numerical

1
solution, and K, is related to the numerical damping of a difference scheme.
Fourier analysis of different discretization schemes allows us to choose the best

scheme.

2.1. Upwind Compact Scheme

In this subsection, third and fifth-order upwind compact and upwind explicit

schemes are analyzed. For the third-order upwind compact scheme [16], we

have
2 1 u,,, +4u; =5u;_
§Uj+§uj&:%, (6)
that satisfy the relation
1 ia 2 5 —ia
6° 3760 ik
U =2 G(t)e™
“+>e
3 3
cosa+isina+4-5(cosa—isina) .. ihocs
_ (_ : )u(t)ek‘ 7)
4+2(cosa—isine)
2 ..
1-cos +isinx(8+cosa) .. -~
:( @) o a)u(t)ekJ

5+4cosa

where

" _(1—cosw)2 " _sina(8+003a)

r — 1 i (8)
5+4cosa 5+4cosa
Similarly, for the fifth-order upwind compact scheme [7], we have
§uj +EU1_1 _ Ui +12u;,, +36u; —44u; , -3u, , | )
5 5 60
with
l 2ia 12 ia 36 44 —ia 3 2ia
_ 3 j
U % 24, da(t)e
60 60
:;(24—60053 a —18sin? @ —18sina (10)
117 +108cos
+i(65in3 a + 45sin o cos a +180sin oc))l](t)eikxj
where
2(1-3cosar +3¢0s” & —cosw) sin(2sin’ o +15c0s & +60) o
T 3(13+12cos ) B 3(13+12cosa)
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For the explicit third-order upwind scheme [7],

r

k =%(3—4005a+0052a), k; =%(85ina—sin2a), (12)

and for the explicit fifth-order upwind scheme, we have,

_10-15cosa +6c0s 2 —cos3ar _ 45sina —9sin 2a +sin 3a

kr ' 1
30 30

. (13)

Figure 1 shows variations of k., and k; with the reduced wave number o
for the above four schemes. We can see the fifth-order schemes can approximate
the exact damping (kF =0) to higher waver numbers than the third-order
schemes, and the compact schemes can approximate the exact dispersion rela-
tion (k° = & ) better than the non-compact schemes.

Table 1 gives the upper limit of the reduced wave number, which corresponds
to a point in Figure 1 where k., or k; begins to reach 2% errors relative to
their exact solutions respectively. Larger upper limit implies fewer grid points
are needed to resolve a given physical structure. For example, to approximate the
exact wave speed within 2% error, the ratio of grid points needed by the
5th-order upwind compact scheme to those needed by the 5th-order upwind bi-
ased scheme is 1.25/1.71=0.73 in one dimensional case. In three-dimensional
case, this ratio becomes (1.25/1.71)3 =0.39, resulting in significant saving in

computer resources.

2.2. Central Compact Schemes

In this section, various compact finite difference schemes are studied. The family

of cell centered central compact schemes given by Lele et al [3] is given by:

!
i+1

v = Uiz —Uis +e Uipp —Uip S Uiy —Uig

VUL + MUy + U + f1U i+2 6h an oh

(14)

The order of these schemes can be based parameters values as shown in Table

Taking Fourier transform of Equation (14), we have

Figure 1. Variations of k, and k; vs. @ for the compact and non-compact schemes.
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Table 1. Upper limits of the reduced wave number when k, and k; of the difference

schemes first exceed 2% errors relative to exact solutions.

Scheme Upper limits of wave number
k< 2% -k /a| < 2%
5th-order upwind compact 1.35 1.71
3rd-order upwind compact 0.91 1.61
5th-order upwind 1.08 1.25
3rd-order upwind 0.72 0.902

Table 2. Values of parameters involved for the central compact scheme.

Order of scheme 7 v a b c
2nd order 0 0 1 0 0
4th order 0 0 4 1 0

3 3
6th order 1 0 14 1 0
3 9 9
8th order 4 1 40 25 0
9 27 54
10th order 1 — 17 11 L
2 20 20 150 100
. b . C .
asina +Esm 20 +—Sin 3
ki = 3 ; kr = 0- ( 1 5)

1+2ucosa +2vcos2a

The different values of k; are given in Table 3.

The difference between modified wave number and exact wave number is very
small, therefore these schemes have spectral like resolution. The comparison of
various central compact schemes is presented in Figure 2. The eighth-order
central compact scheme seems to follow the exact wave number more closely
than all other central compact schemes, though it has a broader stencil width.

2.3. Comparison of Upwind and Central Compact Scheme

In this subsection, the upwind and central compact schemes are compared based
upon the resolution characteristics k; vs & . For this purpose, two upwind
compact schemes and two central compact schemes are selected from the pre-
vious sections.

The comparison plot for k; vs « isshown in Figure 3.

The comparison of the scheme enables us to find the scheme best suitable
from the chosen schemes. Figure 3 shows that the upwind compact schemes
give the better resolution amongst all the schemes while central compact
schemes have poor resolution. So in order to improve the resolution of central

schemes, filtering is required.

3. Conclusion

We have analyzed upwind, upwind compact and central compact schemes of
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Table 3. Values of parameters involved for the central compact scheme.

Order of scheme &
2nd order sina
4th order Bsina +sin2a
6
14 . 1 .
——sina +-—sin2a
6th order 9 18
2
1+—cosa
3
40 . 25 .
—sina +——sin 2a
8th order 27 108
8 1
1+=cosa +-—cosa
9 18
17 . 191 . i
—sina +——sin2a + ——sin 3a
10th order 12 300 300

1+cosa +ic052a
10

Figure 2. Comparison of various central compact schemes for k; vs « .

Figure 3. Comparison of upwind and central compact schemes k; versus « .
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different order accuracy for numerical investigation of convection equation. It is
observed that the use of the upwind compact scheme makes the numerical solu-
tion more stable as compared with the central scheme and can be used for con-
vection dominated problems. A comparison is also given with non-compact

schemes of the same order of accuracy with almost the same computational cost.
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Abstract

We reexamined the elastic collision problems in the special relativity for both
one and two dimensions from a different point of view. In order to obtain the
final states in the laboratory system of the collision problems, almost all text-
books in the special relativity calculated the simultaneous equations. In con-
trast to this, we make a detour through the center-of-mass system. The two
frames of references are connected by the Lorentz transformation with the
velocity of the center-of-mass. This route for obtaining the final states is easy
for students to understand the collision problems. For one dimensional case,
we also give an example for illustrating the states of the particles in the Min-
kowski momentum space, which shows the whole story of the collision.

Keywords

Relativistic Elastic Collision, Minkowski Momentum Space, Lorentz
Transformation

1. Introduction

Collisions of the interacting particles have fundamental importance in both clas-
sical mechanics and special relativity. Illustrating the collision problems is re-
warding to understand them clearly and quickly.

For one dimensional collision in classical mechanics, mass-momentum dia-
gram plays a key role [1] [2]. We can see the whole story of the collision in the
single diagram for both the center-of-mass and the laboratory systems. For two
dimensional collision in classical mechanics, two-dimensional momentum space
describes the collision clearly in the textbook [3]. We also see the slightly differ-
ent illustration which lays emphasis on the transformation of the two systems [4].
For one dimensional collision in the special relativity, Saletan [5] proposed to

understand the collision problems in the Minkowski momentum space, with
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energy F/c represented along the vertical axis and momentum p represented
along the horizontal axis. The states of the particles are expressed by the arrow
in the space. The quantitative application of it is stated by [6]. We do not need
any calculation for obtaining the whole story of the collision. For two dimen-
sional collision in the special relativity, illustration is clearly stated in the litera-
ture [6] [7]. We also see the slightly different illustration which lays emphasis on
the transformation of the two systems [8].

In this article, we propose a different point of view for the elastic collision
problems in the special relativity. We make a detour through the center-of-mass
system for obtaining the final states in the laboratory system. It is applicable to
both one and two dimensional collisions. This method shows the unified way to
think about collision problems.

Now, consider two reference frames K and K. We assume that the frame K’
moves in the x-direction at speed " with respect to the frame K. And let us as-
sume the origins O and O’of the two reference frames coincide at time t=0.
An event that occurs at some point is observed from both frames and is charac-
terized by a set of coordinates (ct,x,y,z) and (ct’,x’,y’,z') where c is the
speed of light. The Lorentz transformation gives the relation between two coor-
dinates and it is described by

ct’ y =By 0 0)fct
X' =By vy 0 0} x

= , (1)
y 0 0 1 0y

' 0 0 0 1)\z

where f=V/c and }/z]/«/l—ﬂz . In the following paper, we designate the
frame K as the laboratory system, while K"as the center-of-mass system. Accor-
dingly, the velocity V describes the velocity of the center-of-mass. The inverse
transformation is given by just putting —f to S in Equation (1).

Our strategy is pictorially stated in Figure 1. In the textbooks of physics, we
have to calculate the simultaneous equations of momentum- and ener-
gy-conservation in order to obtain the final states in the laboratory system. See
the dashed arrow in Figure 1. Our strategy is as follows.

1) By the Lorentz inverse transformation, we obtain the velocity V of the cen-
ter-of-mass in terms of energies (E,, E;) and momenta ( p,, pg) in the la-
boratory system before the collision. The velocity ¥ does not change throughout
the collision.

2) By the Lorentz transformation, we obtain the momenta ( p,, pg) in the
center-of-mass system before the collision. See the strategy 2 in Figure 1. In this
frame, two particles make a head on collision with the same magnitude of the
momentum p°*.

3) We determine the momenta ( p,, pg ) in the center-of-mass system affer
the collision. See the strategy 3 in Figure 1. In this frame, two particles move the
opposite direction with the same momentum p* after the collision. We intro-
duce the collision angle 6" of the incident particle for the two dimensional

case.
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Figure 1. The usual approach to the collision problems is along the dashed
arrow. The strategy in this article is on the detour of the solid arrows.

4) By the Lorentz inverse transformation, we obtain the momenta ( p,, Pg)
in the laboratory system affer the collision. See the strategy 4 in Figure 1. Finally,
we reach the final states. We never solve the simultaneous equations in contrast
with the usual treatment of the collision problems.

5) Let us consider the two special cases. One is that the target particle is at rest
( pg =0) in the laboratory system before the collision. The other is that, in ad-
dition to the condition above, two particles have equal masses.

6) We check the limit ¢ — o and see whether these strategies recover the
Newtonian mechanics.

This paper is organized in the following way. In Section 2, we discuss one di-
mensional collisions, according to the strategy stated above. We also show the
illustration of these collisions in Minkowski momentum space. This diagram
shows the whole story of the one dimensional collision in the special relativity.
In Section 3, we turn to the two dimensional collision case. We introduce the
collision angle #° of the incident particle in the center-of-mass system. We
show the theoretical background for the diagrammatic approach [6] [7] [8]. Sec-
tion 4 is devoted to a summary.

2. Elastic Collisions in One Dimension

Let us discuss the one dimensional elastic collisions. The motions of the particles
are restricted in the x-direction. Therefore, the y- and z-components of the mo-
mentum are zero. Although the illustrations of the contents of this section are
already done by [5] [6], we reexamined how we draw the collision problems in
the Minkowski momentum space.

2.1. Velocity of Center-of-Mass System

We discuss the strategy 1 in the Introduction. Consider the Lorentz inverse
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transformation with the whole two body system,

£+E vy By 00 iJrEB
Cc C Cc C
0 0 * *
Pt Po | = [Z g Lol Paree | )
0 0
0 0 0 01 0

Here, p, + pg =0 is the definition of the center-of-mass system. From the

matrix, we obtain the following relations:

E. E.
pA+pB=ﬂ7/[TA+TBj1 (3)
a&:y(a&} @

Cc C c C

Dividing these equations, we obtain the velocity of the center-of-mass

. )
C Ea,Bs
c c

which is conserved throughout the collision because of the conservation law of

energy and momentum. Moreover, we define the following conserved quantity:

* « )2 2
Sz(i“'ij Z(E"'E) _(pA+pB)27 (6)

c ¢ c ¢
E, E

:mﬁcz+m§cz+2(—’*—5— pApB), (7)
c c

where m, and m; are the masses of the colliding particles. We used the rela-
tion (E/ C)2 -p?=( mC)2 , which is satisfied by the relativistic particle. When we
define W as the total energy in the center-of-mass system, then W is written in
terms of sas follows:

W =E} +E; =c/s. (8)

We also calculate the following quantities from Equation (5),
En B

€., pr=

= 1 = c
4 J1- 52 Js

which are frequently used in the following sections.

Pa+ Ps
\/E '

(9)

Figure 2 depicts the states of two particles before the collision in the labora-

tory system:
E E
OA:[—A,pA,O,Oj, OB:(—B,pB,O,Oj. (10)
c C

According to the parallelogram law, we obtain the vector OC =OA+OB,
which indicates the state of the center-of-mass. The g in Equation (5) is un-
derstood by g =tan@ in Figure 2. Moreover, the vector OC shows the case
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Figure 2. Figure shows the case in [6]: m,=1, v,=-05¢c, m, =2,
v, =0.6¢c. The tips A and B show the states of the particles before the col-

lision in the laboratory system. The tip C is determined from A and B by
the parallelogram law.

of the perfect inelastic collision in the special relativity, i.e., the two particles are
combined and move with the velocity g after the collision. Contrary to this,
this diagram is also interpreted as the decay process. The parent particle OC

decays into two daughter particles OA and OB.

2.2. Momenta and Energies in the Center-of-Mass System before
the Collision

We discuss the strategy 2 in the Introduction. Concerning the Lorentz transfor-

mation for each particle,

Exl vy g o oyEe] [Es| (5, —g 0 0)Ee

c C c c

. _|=Br v 00 b o _|=pr r 00 o, | (1)
A |~ A | B | — B |»
0 0 0 10|, 0 0 0 10|,

0 0 0 0 1), 0 0 0 0 1),

we obtain the momenta in the center-of-mass system before the collision;

E E

E, Prg Py
- — 4 =+ y 12
pA ﬂy c 7p/.\ \/g ( )
E E
€, P Py
Y U R , 13
Pe Br c +7Ds \/g (13)

where we used Equations (9). It is natural that p} + p; =0 is fulfilled because
of the definition of the center-of-mass system. Then we define a momentum p*

as
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E E
. pATB_pr . .
N (14)

for later use. The energies of the particles in the system are also given by Equa-
tions (11),

BB o i
E:‘—yEA—ﬂyp ¢ ¢ raReTTAY symic? —mic? (15)
c c A Js s '

E, Eg 2 2
E; _yEB Byp e ¢ PaPetMeC o m2c?mic? (16)
c c g Js 2s '

where we _used Equations (7) and (9). These energies are also derived by
EZ/C = J( p* )2 + m,z_\c2 and E;/C = (p*)2 + mécz with Equations (12) and (13).
Summing up these energies, we can easily see Equation (8).

We obtain these results from Figure 3. We draw a new p”"-axis which has the
slope tan@ with respect to the horizontal p-axis. Drawing the dotted line from
the tips A and B to the p*-axis in parallel to the line OC, the crossing points
indicate the momenta p, and p; whose distances from the origin O are
equal. This means pj + p; = 0. Moreover, we draw the dotted line from the tips
A and Bto the line OC'in parallel to the p*-axis. The crossing points A "“and B"
describe the energies E./c and Ej/c in the center-of-mass system before the

collision.

2.3. Momenta and Energies in the Center-of-Mass System after the
Collision

We discuss the strategy 3 in the Introduction. We determine the momenta in the

Figure 3. Draw the line from the tips of the vectors A and B to the p"-axis
in parallel to the line OC. The crossing points with p”-axis show the mo-

menta of each particle in the center-of-mass system.
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center-of-mass system after the collision. In this frame, the particles move in the
opposite direction after the collision with the same magnitude of p* in Equa-
tion (14). We write down the momenta in the center-of-mass system after the
collision

s

PX =-Pi=-P". P5=-ps=+p" 17

Since the magnitudes of the momenta do not change, the energies of the par-
ticles

Ey=E., Ef=E; (18)

do not change either in this frame, where E, and E; are given by equations
(15) and (16).

2.4. Momenta and Energies in the Laboratory System after the
Collision

We discuss the strategy 4 in the Introduction. Consider the Lorentz inverse

transformation for each particle,

Evl vy oo ofEe] (B} () pr 0 0)Ee
c c c
) By v 0 0} . ) By v 0 0 .
pA = pA ) pB = pB ) (19)
0 0 0 10 0 0 0 0 10 0
0 0 0 01 0 0 0 0 01 0

we obtain the momenta in the laboratory system after the collision. From the
second row of these matrices, we obtain
Ex .
Pa=Pr—_-+7Pa
E, Eg D, . +mlc? E, Eg 0 Eg E, (20
_PatPs c c ThTEH c_c, ,"c "¢

g Vs s Vs

+

&

’ E 1
Pg = ﬂ7TB+7pB
E; E; E, (21)

EA EB 2.2 EA
—AZB _ +mic? —A4B p "B_p TA
_PatPs c ¢ PaPe + M e cXpAc Pe ¢

g Vs s Vs

where we used Equations (9), (17) and (18). Adding the two equations, we easily

see the conservation of momentum: p) + Py = P, + Pg. Moreover, we also ob-

tain the energies from Equations (19),

E. E .

A=y Byp;

C C
E, E, E,E, - E, E, (22)
Ay B ATB_ +mjc B _py A
ot e o PPt g PR

Vs s g Vs
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E! E!*

—=y—=+pyrpy
c c
E, Eg ELE E E (23)
—A 48 A8 _p pg+mgc’ T Pa— =P
_C c_ cc 4 PatPs " c c

Js Js Js Vs
where we used Equations (9), (17) and (18). We easily check the conservation of
Er BEe _Ei B
energy: ——+—=—"+—
&Y C C C c

Figure 4 shows the whole story of the one dimensional collision. Since the
momenta of the particles exchange in the center-of-mass system after the colli-
sion, the tips A and B; B and A’are on the same dotted line. Thus, the dashed
vectors

E, E.
OA,:(_Au p;\!ouojy OB’:(_B! p’B!O!OJ (24)
c c
show the states after the collision. Namely, the tip A(B) can slide on the hyper-
2
bola (EA(B)/C) - pi(B) = mi(B)c2 until the tip A {B). Furthermore, the sum of
these vectors OA'+OB’ equals OC, which means that OC is not altered
throughout the collision.

The point A(B") is the midpoint of the line AA (BB which means that the
energies in the center-of-mass system do not change before and after the colli-
sion, Ze., Equation (18).

Once the momenta and energies of the particles before the collision are given,

we obtain the final states as shown in Figure 4 without any calculations.

2.5.In Case of pg; =0

We discuss the strategy 5 in the Introduction. In this case, we substitute
E, =mgc® into the equations of this section. Equation (7) becomes simple

form

Figure 4. The solid and dashed arrows show the states of the particles before
and after the collision.
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E
s=maic® +mic? +2myc—2, (25)
C
and we obtain the relation

EA
. —A +mgC | pMgC
. c

E
ﬂVTB=7p = S . (26)

From Equations (20) and (21), we obtain the momenta in the laboratory system

after the collision

Pa s “Pa=Pac 5 X Pas (27)
2ch[ECA + chj
Ps = s X Py (28)

The second term of the right hand side of Equation (27) is a momentum lost
by the particle A, and this transfers to the momentum gained by the particle B in
Equation (28). This is the impulse in the special relativity. We obviously under-
stand the conservation of the momentum: p, + p; = p, . In addition, we obtain

the energies from Equations (22) and (23)

E, E, 2mgC
A=Ay, (29)
c c S

!

2mgC
_B:mB(;+ B” pi, (30)
c S

The second terms of the right hand side of both equations are the same and it
transfers from the particle A to B. This is the work in the special relativity. The
E, E;i E
—A+—8 =—A1myc shows the conservation law of

c

sum of these energies
C

energy.
Figure 5 shows the Minkowski momentum diagram in this case. The vector

OB is along the vertical axis, which means pg; =0 before the collision.

2.6.InCaseof p; =0 and m,=mg=m

The quantity s becomes more simple form

E
s:2mc[—*‘+mcj, (31)
C
and we obtain the following relations
E. E. .
Pr—t=pyo=yp=Pa (32)
c c 2
We obtain the momenta
PA=0. Pg =P (33)
and energies
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Figure 5. The solid and dashed arrows show the states of the particles be-
fore and after the collision in case of p, =0.

Ehcme, Ee_Ea (34)
C C

in the laboratory system. After the collision, the incident particle A stops and the
initially rest particle B moves with the momentum of which the particle A had

before the collision.

2.7.In the Limit ¢ > «

In the limit ¢ — oo, the relativistic energy £ is replaced by mc?. Equation (5)

becomes
V= pEAC+EBC_> PAC+ PgC _ pA+pB. (35)
Ea BEe  mue+mge m,+mg
C C

This is the velocity of the center-of-mass in Newtonian mechanics. Equation
(7) shows

s — m2c? +m2c? +2m,cmyc—2p, Py = (M +Mg ) c2 —2p,ps,  (36)

then, the Lorentz factors Equations (9) become

m,C+my,C m, +m
}/_) A - 2B — A2 B = _)1,
\/(mA+mB) c®—2p,Ps \/(mA+mB) —2p,ps/c
P+ P
By —> A = ZB —0.
\/(mA+mB) c*~2p,pg
Equation (14) becomes
. p.MgC— pgm,C p.Mg — pgMm
p N A'"'B - 2B A — A 82 B''A =
J(my+mg)* et —2p,p, f(m, +m, )’ ~2p,py e (37)
N Mg Pp — M, Pg
m, +mg
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which is the momentum in the center-of-mass system in Newtonian mechanics.

Using these equations, we obtain the momenta Equations (20) and (21),

Pa+ Ps _meA_mApB

p, —>m, =m\V -p", (38)
m, + Mg m, + Mg
+ m.p, —m .
p!B _)mB pA pB + BpA ApB :mBV+ p , (39)
m, +mg m, + My

after the collision in the laboratory system, which are recovered the case in

Newtonian mechanics.

3. Elastic Collisions in Two Dimensions

Let us turn our discussion to the case of the two dimensional elastic collisions.
We suppose that the motions of the particles are restricted in the x-y plain, so
that the z-component of the momentum is zero. Since the motions of the par-
ticles are supposed along the x-direction before the collision, we repeat the same
discussion of Subsections 2.1 and 2.2. The illustration of this section is already
done by [7] [8].

3.1. Momenta and Energies in the Center-of-Mass System after
the Collision

Let us start our discussion from the strategy 3 in the Introduction. In the cen-
ter-of-mass system, the magnitudes of the momenta do not change before and
after the collision. Thus, we write down the momenta in the same way with Equ-
ation (14),

E E

B A
Pa——Ps—
._"¢c B¢

NG

where sis defined by Equation (7).

(40)

Pa

=|ps|=[px|=[p5].

However, the direction of the momenta changes after the collision in two di-
mensions. As shown in Figure 6, we define the sense of the momentum p} as
n = (COS 0" ,sin 9*,0) , where 6" is the scattering angle of the particle A in the
center-of-mass system. In other words, the momenta after the collisions are de-

noted by the vector-form:
Px =p'n"=—pg. (41)

Since the magnitudes of the momenta do not change in this frame throughout

the collision, the energies of each particle do not change either:

Er =E. Eg =Eg, (42)
where E, and E; are given by Equations (15) and (16).
3.2. Momenta and Energies in the Laboratory System after the

Collision

We discuss the strategy 4 in the Introduction. The motion of the particles after

the collision is supposed to occur in the xy plain. Thus, the momenta are

DOI: 10.4236/wjm.2019.912018

277 World Journal of Mechanics


https://doi.org/10.4236/wjm.2019.912018

A. Ogura

Figure 6. Left: The collision in the center-of-mass system. The scattering angles " and
¢" have the relation 6" +¢" = . Right: The collision in the laboratory system.

written by P} =(Pj, Phy»0) = (P, c0s0, p,sin6,0) and
Pg = ( Pge» Poy» 0) =(pg cosg,—pg Sing,0), where @ and ¢ are the scattering
angle of the particles A and B in the laboratory system as shown in Figure 6.
From the Lorentz inverse transformation, we obtain the momenta in the la-

boratory system after the collision by using Equation (41)

% % y pr 00 %

Pa |=| PacOSO |= prrv 00 p*cosd” |, (43)
p, p,sin@ 0 0 10 p*sing”

N A 0 0 01

0 0 0
% % y By 00 ET

00

Pex |=| PsCOSP |= ﬁo}/ g Lo —p’coso" |. (44)
oy | | —Pssin —p’sing’

Pey PesiNdl | 5 g o 1) 7P

0 0 0

From the second and third row of these matrices, we obtain x- and

y-components of the momentum for the particle A,

Pac = Pa 0039=ﬂ7£+yp*0080*, (45)
c
Pa = PASING = p’sing’, (46)
and for the particle B,
’ ’ E; * *
Pe = Pe COS¢=ﬁyT—yp cosd’, (47)
Ps, = —PgSing=—p“sing”. (48)

Combining with the relation cos® 8" +sin’ 8" =1, we obtain

2

' E.
Pax _ﬁyTA

N
. + (ﬂ) =1, (49)
7P

p
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2

' Es
pr _ﬂyi pé 2
—*C 4 *y =1. (50)
rp p
These equations show the ellipse with the following parameters:
pA E_ pB i
: o . c c
minor semiaxis p* =——=——=—, (51)
Js
o 5nn)
major semiaxis yp* = \ (52)
s
E E
(pA+ pB)(pACB_ chAj
eccentricity SByp” = , (53)
s
E, E
¥ (pA+pB)(CACB_pApB+m/ZxCZ\J
midpoint of foci ,ByTA = S , (54)
E, E
. (pat pB)[CACB_ PaPs +méc2j
midpoint of foci ,ByTB = S , (55)

where Equations (7), (9), (14), (15) and (16) are used.
From the Lorentz transformation Equation (43) with Equation (15), we obtain
the energy in the laboratory system after the collision

' *
A

—:;/EJrﬂ;/p*cosH*
c c
EA * *
=7\ 7= ~HPrPa |+ Prp cosd (56)
=E—ﬂyp*(1—cose*),
c

where we used Equations (9). In the same manner, from Equations (44) and (16),
we obtain

E’ E* * *
—2 =y—B_ Byp"cosd
c c

E * £
=7(778—ﬂ7p3j—ﬁyp cosé (57)
EB * *
= =2+ Byp’(1-cosd").
c

The second terms of the right hand side in Equations (56) and (57) show the
energy lost by the particle A and the energy gained by the particle B. This is the
work in the special relativity. From these energies, we clearly see the conserva-

E, E; E, E
tion law of the energy: —2*+—2=—24+—8
c c c
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3.3.InCase of p; =0

We discuss the strategy 5 in the Introduction. The parameters of the ellipse be-

come simple form:

. ., pamgC
minor semiaxis p* = , (58)
Js
&
major semiaxis yp’ =-~-C = fy—=, (59)
s c
2
eccentricity ,Byp*:pAmBC, (60)
s
, o(Ememe)
midpoint of foci  py—2 = ¢ , (61)
c s

where sis given by Equation (25). Equation (59) is as the same relation with Eq-
uation (26). The ellipse Equation (49) with these parameters is depicted in Fig-
ure 7. This is already done by [8].

3.4.InCaseof p;=0 and my,=mg=m

The parameters of the ellipse are the followings:

. ., p.mc
minor semiaxis = , (62)
SN
. . . Pa . Eg
major semiaxis yp —7—ﬁ7/ , (63)
c
Ex e
eccentricity Byp” = CT (64)
. . Er_ Pa
midpoint of foci ﬂy_Z?' (65)
c

where s is given by Equation (31). Equations (63) and (65) are as same as Equa-
tion (32).
Dividing Equations (45), (46) and Equations (47), (48), we obtain the relations

of the scattering angles

ang - p’sing’ _sing'/y (66)
ﬂy%ﬂ/p* cosd" 1+cosé
tan g = *p sin@ :lsme /97 )
Pr=r=rpcosd’ e
Thus the product of these two equations becomes
$2 e 2
tanextanqﬁ:M:izd. (68)
1-cos* 0" vy

DOI: 10.4236/wjm.2019.912018 280 World Journal of Mechanics


https://doi.org/10.4236/wjm.2019.912018

A. Ogura

Figure 7.The ellipse Equation (49) with p, =0 is illustrated in the solid line.

The points £'and £"are the foci of this ellipse and the midpoint of them is de-
picted by E. The dashed circle shows the collision in the center-of-mass system

(8].

Because of the relation of the tangent

tan@+tang

tan(6 = ,
an( +¢) l-tanftang

. T . . . . s
we obtain O+¢ < > in contrast to the Newtonian case in which #+¢ = 2

3.5.InCaseof p; =0 and m, =0:Compton Scattering

From the Lorentz inverse transformation in Equation (43), we obtain

L ;/—EA + By p*cosd”, (69)
c c
’ E,: * *
pACOSBZﬂyT+7/p cosé". (70)

Eliminating p* and using Equation (15), we obtain

E;\ ' 2 EZ

A= ppjcos0 =y (1- 57>
=7(1—ﬂ2)(7%—ﬂymj (71)
:_A_ﬂpA

E
Suppose that photon has no mass m, =0, ie, —~=p, and the target elec-
c
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tron is at rest ( p; = 0 ) before the collision. We rewrite Equation (5) as

Ea
__ Pa c
ﬁ - i
A EA
—Aimge A 4mge
C

and substitute it into Equation (71). Thus we obtain

Ea
Ea_ = ¢ : (72)
C o1y A (1-cosd)
myC

This equation gives the photon energy after the collision. Hence, using the re-

lation E=hv = h% , we obtain

A-A=

po (1-cos®), (73)
B

which is the Compton wavelength shift.

3.6.In the Limit ¢ > «©

Using the limit of Equation (36), the parameters of the ellipse become the fol-

lowings:
P,MzC— PgM,C
\/(mA +mg ) c?—2p,ps
MgPa—MuPs MyPu—M,P
\/(mA+mB)2—2pApB/c2 My + Mg
(MAC+mgC)(PAM5C— PzM,C)
(M, +mg )" c* ~2p, pg

(mA +mB)(pAmB - meA) N Mg Py —My Pg
(mA+mB)2—2pApB/c2 m,+mg

minor semiaxis p* —

(74)

major semiaxis yp" —

(75)

(Pa+ Ps)(PaMsC — PgM,C)

(mAerB)Zc2 —2P,Ps
_ (Pa+Ps)(PaMs — Pgm, )
(M +mg )’ —2p,pg /c?

eccentricity Syp" —

(76)
/C — 0,

. P+ Pg )(m,cmec—p, pg +mic?
midpoint of foci /J’yi%( a B)( . sz — )
c (my+mg) c*—2p,pg

_ (Pa Pg)(mi +mumg — p, s /) o

(mA+mB)2—2pApB/c2

Pat Py _
Am,+m,

—m m,V,
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* p.+ P m,CmgC— P, P +mgc?
midpoint of foci ﬂy5—>( a B)( - zB 2 —— )
c (my+mg) c*—2p,Pg

B (Pat pB)<mé +MmyMg — pApB/CZ) 78)
(mA+mB)2_2pApB/C2
Pat Pg
®m, +m,

—-m =mgV,
where V'is given by Equation (35). The minor and major semiaxes become the
same and the eccentricity becomes zero. This shows that the ellipse approaches

the circle, which recovers the Newtonian collision [3] [4] [7] [8].

4. Summary

We reexamined the elastic collision problems in the special relativity by using
the detour through the center-of-mass system. Hopping to the center-of-mass
system by the Lorentz transformation and jumping back to the laboratory sys-
tem by the inverse transformation, we obtain the momenta and energies in the
laboratory system after the collision without calculating any simultaneous equa-
tions which are often used in the literature. We also show that this process is ap-
plicable to the collisions both one and two dimensions in the same manner. This

process makes students understand the collision problems in a unified way.
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