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Abstract 
In this paper, the existence of chaotic behavior in the single-well Duffing Os-
cillator was examined under parametric excitations using Melnikov method 
and Lyapunov exponents. The minimum and maximum values were obtained 
and the dynamical behaviors showed the intersections of manifold which was 
illustrated using the MATCAD software. This extends some results in the li-
terature. Simulation results indicate that the single-well oscillator is sensitive 
to sinusoidal signals in high frequency cases and with high damping factor, 
the amplitude of the oscillator was reduced. 
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1. Introduction 

Duffing oscillators have received remarkable attention in the recent decades due 
to the variety of their Engineering applications, for example magneto-elastic 
mechanical system [1], large amplitude oscillator of centrifugal governing sys-
tem [2], nonlinear vibration beans and plates [3] [4] and fluid flow induced vi-
bration [5]. It is famous for the existence of chaos behavior in recent decades [6]. 
In 1979, the chaotic phenomena in Duffing equation had been investigated by 
Ueda [7]. Chaos occurs when the behavior of the dynamical system is extremely 
sensitive to initial conditions. In mechanical system, it means a motion which 
trajectories starting from slightly different initial conditions diverge exponen-
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tially. 
Various researchers have used different methods in obtaining solutions, for 

instance, Ueda [7] used the numerical simulation where changes in attractors 
were obtained under various parameters.  

The problem in Duffing-type system still remains a puzzle to so many scien-
tists for instance, suppressing and inducing of chaos, influence of time delay, 
fractional dynamics [8]-[13]. 

Melnikov method and Lyapunov exponents are very significant analytical 
techniques for determining chaos. The main idea of this method is to measure 
the distance between the stable and unstable manifolds and if the stable and un-
stable manifolds intensively intersect once, they will intersect infinite times [6]. 
Thus, according to Smale-Birkhoff theorem in [1], it implies the existence of the 
chaotic behavior in the Smale-horseshoe sense. The Melnikov theory was firstly 
used to study chaos in Duffing system by Holmes [2] and generalized Melnikov 
function was developed by Wiggins [13] [14]. This criterion is just the necessary 
condition for chaos but not sufficient for chaos, therefore, it must be sufficient 
conditions for the suppression of chaos [15]. The Lyapunov exponent is an im-
portant indicator in determining the sensitivity of chaotic behavior which cha-
racterizes the average rate of the system in phase space between adjacent tracks 
of convergence and divergence [16]. Whether the Lyapunov exponent is greater 
than zero or not is one of the most straight forward criterions to distinguish the 
chaotic systems [17]. In other to calculate the Lyapunov exponent, some me-
thods of solutions includes [16], nonlinear adaptive filtering method, QR matrix 
factorization method and its improvement methods. This paper makes use of 
two methods, the Melnikov method and improved QR matrix factorization. 

The objectives of this paper therefore are to investigate the existence of chao-
tic behavior in a single-well Duffing oscillator forced by parametric excitations.  

The rest of the paper is organized as follows: Section 2, explained the prelimi-
naries to the results, Section 3 gives the main results using the Melnikov method 
and the calculation of the Lyapunov exponent and Section 4 presents the nu-
merical simulations and finally some conclusions are given in Section 5. 

2. Preliminaries 
2.1. Melnikov Method 

One of the main tools for determining the existence or non-existence of chaos in 
a perturbed Hamiltonian system is Melnikov. In his theory, the distance between 
stable and unstable manifolds of the perturbed system were calculated up to the 
first order term. 

Melnikov method is a procedure which gives a bound on the parameters of a 
system such that chaos is predicted not to occur. The Melnikov method investi-
gate the homoclinic bifurcation in the forced Duffing oscillator system with li-
near and non-damping. It measures the distance between stable and unstable 
manifolds in the Poincare section [6] and to preserve the homoclinic loops un-
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der a perturbation requires that at 0t , if ( )0M t , that is the Melnikov function 
has a simple zero, then a homoclinic bifurcation occurs, implying that the chao-
tic motion occurs. 

2.2. Melnikov Method for Predicting Chaos 

Melnikov method gives an analytic tool for establishing the existence of trans-
verse homoclinic points of the Poincare map for a periodic orbit of a perturbed 
dynamical system of the form; 

( ) ( ) x f x g xε= + .                          (1) 

with nx R∈ . It can also be used to establish the existence of sub-harmonic pe-
riodic orbits of perturbed system of the form in (1). Furthermore, it can be used 
to show the existence of limit cycles and separatix cycles of perturbed planar 
system with 2x R∈ . For periodically perturbed planar systems, we have the 
form; 

( ) ( ),x f x g x tε= + .                         (2) 

where 2x R∈  and g is periodic with period t in T. We assume that ( )2f C R′∈  
and ( )2g C R R′∈ ×  and we make the assumption; 

1) For 0ε = , the system (2) has a homoclinic orbit; 
( )0 0: ,t tγ= −∞ < ∞Γ <X  at a hyperbolic saddle point 0X  and 

2) For 0ε = , the system has a non-parametric family of periodic orbit. Then 
the Melnikov function ( )0M t  is defined as; 

( ) ( )( ) ( )( )0 0 0 0^ , d ?M t f t g t t t tγ γ
∞

−∞
= +∫ .                (3) 

The Melnikov method can be interpreted as a derivation in energy from the 
value on the perturbed separatix. Before stating main result established by Mel-
nikov concerning the existence of transverse homoclinic point of the Poincare 
section, we need the following lemma and theory which establish the existence of 
a periodic orbit and hence the existence of the Poincare map with sufficient ε . 

Lemma 2.1 
Under assumption 1) and 2), for ε  sufficiently small, the system (2) has a 

unique hyperbolic periodic orbit; ( ) ( )0  0t Xε εγ = +  of period T. Correspon-
dingly, the Poincare map Pε  has a unique hyperbolic fixed point of saddle type; 

( )0 0X Xε ε= + .                           (4) 

Theorem 2.1  
Under the assumption 1) and 2), if the Melnikov function ( )0M t  has a sim-

ple zero in [0,1], then for all sufficiently small 0ε ≠ , the stable and unstable 
manifold of the Poincare map Pε  intersect transversally, that is, Pε  has a 
transverse homoclinic point.  

This theorem was established by Melnikov [1]. The idea of the proof is that 
( )0M t  is a measure of the separation of the stable and unstable manifold of the 

Poincare map. The theory is an important result because it establishes the exis-
tence of transverse homoclinic point for Pε . It implies the existence of strange 
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invariant set for some iterate of Pε  and the same type of chaotic dynamics for 
system (2) as for the Smale horseshoe map. Generally, the Melnikov method is 
very useful for detecting the presence of transverse homoclinic orbits and the 
occurance of homoclinic bifurcations.  

Theorem 2.2 (Smale-Birkhoff Homoclinic Theorem) [18] 
Let f be a diffeomorphism ( C′ ) and suppose p is a hyperbolic fixed point. A 

homoclinic point is a point q p≠  which is in the stable and unstable mani-
folds. If the stable and unstable manifolds intersect transversally at q, then q is 
called transverse. This implies that there is a homoclinic orbit ( ) nq qγ =  such 
that lim limn n n nq q p→∞ →∞= = . Since the stable and unstable manifolds are in-
variant, we have; ( ) ( )s u

nq W p W p∈ 
 for all n∈ . Moreover, if q is trans-

versal, so are all nq  since f is diffeomorphism. 

2.3. Method of Lyapunov Exponent 

The method of Lyapunov exponent serves as a useful tool to qualify chaos. Spe-
cifically, Lyapunov exponent measures the rate of convergence or divergence of 
nearby trajectories [16] [18]. Negative Lyapunov exponents indicate conver-
gence while positive Lyapunov exponents demonstrate divergence and chaos. 
The magnitude of the Lyapunov exponents is an indicator of the time scale on 
which chaotic behavior can be predicted or transients for the positive and nega-
tive cases respectively [19]. 

Physically, the Lyapunov exponent measures average exponential divergence 
or convergence between trajectories that differ only in having an infinitesimally 
small difference in their initial condition. The system is said to be chaotic if the 
trajectories remain within a bounded set of the dynamics. If one considers a ball 
of points in N-dimensional phase space in which each point follows its own tra-
jectory based upon the system equations of motion over time, the ball of points 
will collapse to a simple point, will stay a ball or will become ellipsoid in shape 
[20]. The measure of the rate at which this infinitesimal ball collapse or expands 
is the Lyapunov exponent. For a system written in the state-space form 

( )x u x= , small derivation from trajectory can be expressed by the equation  
i

i j
j

u
x x

x
δ δ

∂
=
∂

 . The maximal Lyapunov exponent is then defined by this equation. 

Other useful quantities are the short time Lyapunov exponent and the local 
Lyapunov exponent. A short time Lyapunov exponent is simply a Lyapunov ex-
ponent defined over some finite time interval. The local Lyapunov exponent is a 
short time Lyapunov exponent in the limit where the time interval approaches 
zero. Both are dependent on starting points and the short time Lyapunov expo-
nent is also independent on the magnitude of the time interval. If all points in 
the neighborhood of a trajectory converge towards the same orbit, the attractor 
is a fixed point or a limit cycle. However, if the attractor is strange, any two tra-
jectories ( ) ( )0x t f x′=  and ( ) ( ) ( )0 0x t x t f x xδ δ′+ = +  that starts over very 
close to each other separate exponentially with time. This sensitive initial condi-
tion can be quantified as; 
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( ) 0e tx t xλδ δ=                           (5) 

where λ, the mean rate of separation of trajectories of the system is called the 
Lyapunov exponent, which can be estimated for long time t as; 

( )
0

1 ln
x t

t x
δ

λ
δ

=                            (6) 

( )( ) ( )
( )0

1, lnT

X t T
X t x

T x t
δ

λ δ
δ

+
=                   (7) 

( )( ) ( )
( )

1lim lnlocal

X t T
X t

T X t
δ

λ
δ

+
=                   (8) 

Equations (7) and (8) are for short and local Lyapunov exponent. The exponent 
can be positive or negative but at least one must be positive for an attractor to be 
classified as chaotic. In particular, if 0λ < , the system converges to a stable 
fixed point or periodic orbits. A negative value of the Lyapunov exponent is 
characteristic of dissipative or non-conservative systems. If 0λ = , the system is 
conservative and converges to a stable cycle limit. If 0λ > , the system is unsta-
ble and chaotic. Hence, if the system is chaotic, it will have at least one positive 
Lyapunov exponent. Thus, the definition of chaotic system is based on a positive 
Lyapunov exponent. Finally, If λ = ∞ , the system is random. 

Generally, the most used measure of sensitive initial condition is a system 
characterization by the Lyapunov exponent, which quantifies the rate of separa-
tion of infinitesimal close trajectories. For example, consider a one-dimensional 
system with two trajectories ( )1x t  and ( )2x t  which at some point 0t  are ar-
bitrary close together and their difference in time tracked by the function;  

( ) ( ) ( )1 2x t x t x tδ = − . The sign of the lyapunov exponent characterizes whether 
or not the system is exhibiting chaotic behavior. If the exponent is negative, the 
system, at least in that set of initial conditions is said to be stable (like trajecto-
ries go to like trajectories). A Lyapunov exponent of zero implies an unstable 
system which is essentially on the edge stable and chaotic. And of course a posi-
tive exponent implies the system is chaotic where trajectories exhibit exponential 
divergence. 

3. Results 
3.1. The Single-Well Duffing Oscillator 

The single-well Duffing equation under parametrical excitation is shown below; 

( )3 cosx kx x x tε α β εγ ω+ + + =                     (9) 

The System (9) has a unique hyperbolic limit cycle. Using the Melnikov 
theory, an analysis has been performed of the limit circles in oscillator systems 
described by single-well Duffing equation under perturbation.  

Briefly, we describe Melnikov function and the bifurcations in perturbed Ha-
miltonian system as; 
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( )

( )

,

,

Hx p x y
y
Hy q x y
x

ε

ε

∂ = + ∂ 


∂ = + ∂ 





                      (10) 

where H the Hamiltonian ( ),H H x y=  is the analytic function. Also the per-
turbation functions ( ),p x y  and ( ),q x y  are analytic, ε is a small parameter. 

Let ( ) ( ) ( ), ,x y x t y tε ε=  be the solution of (3.1). Then the solution of the 
unperturbed system at ( 0ε = ) is ( ) ( ) ( )( )0 0, ,x y x t y t= . Further, we note that 
the unperturbed system at 0ε =  has one equilibrium point i.e. the center sur-
rounded by a closed trajectories. 

3.2. Melnikov Function for the Perturbed Single-Well Duffing  
Equation  

In this work, the single-well Duffing equation is represented by; 

( )3 cosx kx x x tε α β εγ ω+ + + =   

This equation can be rewritten in the following perturbed Hamiltonian sys-
tem; 

( )
3

cosx y ky t

y x x

ε γ ω

α β

= + + 


= − − 





                    (11) 

where , 0α β > . 
Let ( ) ( ) ( ), ,x y x t y tε ε=  be the solution of (11). The unperturbed system 

(11) has a Hamiltonian; 

2 2 41
2 2 4

H y x xα β
= + + .                    (12) 

and one equilibrium point surrounded by a closed trajectories.  
The solution of the unperturbed system is expressed as; 

( )
2

0 2 2

2 1   ,
1 2 1 2

ak k ax t sd t k
b k k

 −
=   − − 

.            (13) 

where sd is a Jacobian function. 
Then, the Melnikov function for the System (3) is given as; 

( ) ( )( )
( )

0

0 0

0 00

00 0

1 2

cos d

d cos d

 

T

T T

M t kx t t t

kx t t t t

kL L

γ ω

γ ω

γ

= − +

= − +

=− +

∫

∫ ∫               (14) 

now taking (13) into (14), we get; 

( )0

0

1 00

2

0 2 2

d

2 1   ,
1 2 1 2

T

T

L x t t

ak k asd t k
b k k

=

 −
=   − − 

∫

∫
            (15) 

Then, using the following properties; 
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( )
2

2
0

1 24 kT k k
a

−
=                     (A3) 

( ), 0Sd z k =                         (A2) 

( ) ( )4 2 2
0 0

, d 4 , d
k kn nsd z k z sd z k z=∫ ∫               (A3) 

The Melnikov function becomes;  

( ) ( )
2 2

2
0 0 2

4 1 2 2 1   , d
1 2

k nk ak kM t sd z k z
a b k

 − −
=  

 − 
∫         (16) 

after a long calculation and introducing the notation 2m k=  and the following 
identities; 

( )
2

2 20

1d
1

k
sd z

k k
=

−∫  

( )
4

4 20

1d
3 1

k
sd z

k k
=

−∫  

We obtain the final expression as; 

( )
( )0 2

8 1 2
1 2
a mM t

m
λ −

=
−

 

where a bλ = . 

3.3. The Lyapunov Exponent of a Single-Well Duffing Oscillator 

Consider the Duffing equation below; 

( )3 cosx kx x x tα β γ ω+ + + =                    (17) 

where x  and x  are second-order and first-order derivative, nα ∈ , 
nβ ∈ , δ  is the damping, γ  is the amplitude of the circle, ω  is the angular 

frequency of the driven circle. In other to Type equation here, determine wheth-
er the system is in chaotic state, we need to calculate the Lyapunov exponent us-
ing the QR factorization method. 

Let y x=  , ( ) 3,g x y ky x xα β= − − −  
Then Equation (1) is equivalent to; 

( ) ( ),
x y
y g x y f t
= 

= + 





                      (18) 

which is written in matrix form as; 

( ) ( )Y x F Y=                          (19) 

According to the variational principle, its variational equations are; 

( ) ( ) ( ) ( ), 0Y t J t Y t Y I= =                    (20) 

where ( )Y t  is a 2 by 2 matrix, I is a 2 by 2 unit matrix, ( )J t  is the Jacobian 
matrix of the system and its expression is; 

https://doi.org/10.4236/wjm.2019.94005


E. O. Eze et al. 
 

 

DOI: 10.4236/wjm.2019.94005 74 World Journal of Mechanics 
 

2

0 1

3

f f
x y

g g x k
x y

α β

∂ ∂ 
 ∂ ∂    =    ∂ ∂ − − −  
∂ ∂ 

 

Then, QR factorization of ( )Y t  can be written as; 

( )Y t QR=                            (21) 

where Q is orthogonal matrix, R is upper triangular matrix. Substituting (21) in 
(20), we obtain the variational equation; 

QR QR JQR+ =  .                       (22) 

( ) ( )0 0Q R I=  

Left multiply Equation (22) by TQ  and right multiply by 1R− , we have; 
T 1 TQ Q RR Q JQ−+ =                        (23) 

( ) ( )0 , 0Q I R I= =  

The orthogonal matrix Q is written as a function of angle variables. To the 
Duffing equation, its orthogonal matrix Q can be expressed by one angle θ . 

cos sin
sin cos

Q
θ θ
θ θ

 
=  − 

 

The upper triangular matrix R can be expressed as; 

( )

( )

1

2

12e

0 e

t

t

r
R

λ

λ

 
=  
  

 

where θ  is the angle variable, ( )i tλ  is the value associated with the Lyapunov 
exponent. Then, 

T cos sin
sin cos

Q
θ θ
θ θ

− 
=  
 

 

( )

( )

1

1 2

2

12
1 e

e
0 e

t

t

r
R

λ
λ λ

λ

−
+−

−

− 
 =  
  

 

Then putting T 1, ,Q R Q−  and R into Equation (23), we have; 

( )

( )

( )

( )

1

1

1 2

2
2

12
12

2

dde
cos sin sin cos ed d e
sin cos cos sin de 0 e0

d
cos sin 0 1 cos sin

sin cos 3 sin cos

t

t

t t

r r
t t

t

x k

λ

λ
λ λ

λ
λ

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ α β θ θ

−
+

−

 
−  − −      +      − −        

 

−     
=      

− − − −     

 

The correspondent matrix elements on both sides of (23) are equal, so we get; 
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( ) ( )

( ) ( )

( )

1 2

2 2

2 2

d 1sin 1 sin 2
d 2

d 1cos 1 sin 2
d 2

d 1 sin 2 sin cos
d 2

t g g
t y x

t g g
t y x
t g g

t y x

λ
θ θ

λ
θ θ

θ
θ θ θ

∂ ∂ = − +  ∂ ∂  
∂ ∂  = + +  ∂ ∂  
∂ ∂ = − + −

∂ ∂ 

             (24) 

We add and subtract the first two differential equations and get a new diffe-
rential equation. Together with the third differential equation, we obtain three 
new equations; 

( )

( )

1

2

2 2

d
d
d 1cos 2 1 sin 2
d 2

d 1 sin 2 sin cos
d 2

v g
t y
v g g
t y x

t g g
t y x

θ θ

θ
θ θ θ

∂
= ∂ 

∂ ∂  = − +  ∂ ∂  
∂ ∂ = − + −

∂ ∂ 

             (25) 

Then from; 

1 1 2

2 1 2

d d d
d d d
d d d
d d d

v
t t t
v
t t t

λ λ

λ λ

= + 

= −


                        (26) 

We obtain; 

( )
( ) ( )

( )
( )

1 2
1

1 2
2

2
( )

2

v t v t
t

v t v t
t

λ

λ

+  = 



−   = 

                     (27) 

The time evolution of the Lyapunov exponent is; 

( ) ( )

( ) ( )

1
1

2
2

t
f t

t
t

f t
t

λ

λ


= 


= 

                         (28) 

Then, the Lyapunov exponent is; 

( )

( )

1
1

2
2

lim

lim

t

t

t
t

t
t

λ
λ

λ
λ

→∞

→∞


= 


= 

                      (29) 

4. Numerical Simulation of Single-Well Duffing Oscillator  

In this section, we compare the numerical solution of Equation (9) using 
MATCAD simulation. In Figures 1-6, the trajectory versus time response curves 
are plotted for different sets of parameter values noted in the figure captions. In 
all figures, the solid lines represent the numerical solution and the dashed lines  
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Figure 1. Trajectory-time response curves and parameter 
values of 0.01ε = , 1α = , 0.5β = , 0.5k = , 0.1ω = . 
The solid lines represent the numerical solution and the 
dash lines represent the chaotic behavior. 

 

 
Figure 2. Velocity-time response curves and parameter 
values of 0.01ε = , 1α = , 0.5β = , 0.5k = , 0.1ω = . 
The solid lines represent the numerical solution and the 
dash lines represent the chaotic behavior. 

 

 
Figure 3. The phase portrait orbits in the chaotic state at 

0.5k = . 0.01ε = , 1α = , 0.5β = , 0.5k = , 0.1ω = . 
 
represent our chaotic solutions. 

Figure 1 and Figure 2 compare solutions by considering a strong nonlinearity 
value of 0.01ε = . The periodic solution of the Duffing’s equation were shown 
by the relationship between the first solution function values and the indepen-
dent variables values as shown in Table 1. The values were generated using the 
vector initial function values and the constant. However, the solutions are in  

https://doi.org/10.4236/wjm.2019.94005


E. O. Eze et al. 
 

 

DOI: 10.4236/wjm.2019.94005 77 World Journal of Mechanics 
 

 
Figure 4. Trajectory-time response curves and parameter val-
ues of 0.01ε = , 1α = , 0.5β = , 0.5k = , 0.1ω = . The 
solid lines represent the numerical solution and the dash lines 
represent the chaotic behavior. 

 

 
Figure 5. Velocity-time response curves and parameter values 
of 0.01ε = , 1α = , 0.5β = , 0.5k = , 0.1ω = . The solid 
lines represent the numerical solution and the dash lines 
represent the chaotic behavior. 

 

 
Figure 6. The phase portrait orbits in the chaotic state at 

2k = . 
 
good agreement over the time interval shown. Also, at 0.067t = , the maximum 
trajectory is 0.998x = . Figure 3 is the phase diagram of the chaotic system at 

0.01ε =  and damping factor 1k = . 
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The same conclusion can be drawn from Figures 4-6 but with damping factor 
at 2k = . The solutions are in excellent agreement over the time interval shown. 
However, Figure 6 is the phase portrait of the chaotic system. 

( )3 cosx kx ax x y tε β ε ω+ + + =   

: 0.01, : 1, : 0.5, : 0.5, : 0.1a kε β ω= = = = =  

Define a function that determines a vector of derivatives values at any solution 
point ( ),t Y : 

( )
( ) ( )

1
3

1 0 0

, :
cos

X
D t X

y t k X a X b Xε ω ε

 
=  

⋅ ⋅ ⋅ − ⋅ ⋅ − ⋅ − ⋅  
 

Define an additional argument for the ODE solver:  

0 : 0t =  Initial value of independent variable 

1 : 100t =  Final value of independent variable 

0

0
:

1
X  

=  
 

 Vector of initial function values 

: 1500N =  Numbers of solution values on [t0, t1] 

( )0 0 1: , , , ,S X t t N D=  

0:t S=  Independent variables values 
1

1 :X S=  First solution function values 
2

2 :X S=  Second solution function values 
 
Table 1. Solution matrix table for solution functions. 

 0 1 2 

0 0 0 0 

1 0.067 0.067 0.998 

2 0.133 0.133 0.991 

3 0.2 0.199 0.98 

4 0.267 0.264 0.964 

5 0.333 0.327 0.944 

6 0.4 0.389 0.918 

7 0.467 0.449 0.888 

8 0.533 0.508 0.853 

9 0.6 0.563 0.812 

10 0.667 0.616 0.766 

12 0.8 0.711 0.658 

13 0.867 0.753 0.596 

14 0.933 0.79 0.53 

15 1 0.823 … 
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5. Conclusions 

In the present study, the chaotic behavior in single-well Duffing oscillator is in-
vestigated using Melnikov approach and Lyapunov exponent. The distance be-
tween the stable and unstable manifold of the nonlinear system is calculated by 
Melnikov approach. The Lyapunov exponent of the nonlinear system is eva-
luated by QR factorization to determine whether the chaotic phenomenon of the 
nonlinear system actually occurs. 

As a result, threshold values were obtained and the dynamical behaviors 
showing the intersections of manifold were illustrated. To detect the chaotic 
phenomena of the nonlinear system, the Melnikov approach, Lyapunov expo-
nent, the time history, phase portrait of the nonlinear system were presented for 
various cases. 
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Abstract 
Energy is critical to the economic growth and social development of any 
country. Indigenous energy resources need to be developed to the optimum 
level to minimize dependence on imported fuels, subject to resolving eco-
nomic, environmental and social constraints. This led to an increase in re-
search and development as well as investments in the renewable energy in-
dustry in search of ways to meet the energy demand and to reduce the de-
pendency on fossil fuels. Wind and solar energy are becoming popular owing 
to the abundance, availability and ease of harnessing the energy for electrical 
power generation. This paper focuses on an integrated hybrid renewable 
energy system consisting of wind and solar energies. Many parts of Libya 
have the potential for the development of economic power generation, so 
maps locations were used to identify where both wind and solar potentials are 
high. The focal point of this paper is to describe and evaluate a wind-solar 
hybrid power generation system for a selected location. Grid-tied power gen-
eration systems make use of solar PV or wind turbines to produce electricity 
and supply the load by connecting to the grid. In this study, the HOMER 
(Hybrid Optimization Model for Electric Renewable) computer modeling 
software was used to model the power system, its physical behavior and its 
life cycle cost. Computer modeling software was used to model the power 
system, its physical behavior and its life cycle cost. The hybrid power system 
was designed for a building at the University of Al-Marj (MARJU). Through 
the use of simulations, the installation of ten 100-kW wind turbines and 
150-KW solar PV was evaluated. 
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1. Introduction 

The main resources of energy usage in Libya are oil and gas which results in high 
emissions of carbon dioxides and other gases. The modern world emphasizes 
using renewable energy to generate electricity because of its low damage to the en-
vironment. The hybrid power plant is a newly developed technology that is used 
to convert solar energy combined with any system that generates energy [1] [2].  

Since the oil crisis in the early 1970s, the utilization of the solar and wind 
power has increased significantly. In recent years, hybrid PV/wind systems have 
become viable alternatives to meet environmental protection requirements and 
electricity demands. A hybrid solar-wind energy system uses two renewable 
energy sources. Hence, efficiency and power reliability of the system increase. 
However, aggregating inherently stochastic power sources such as wind and so-
lar to achieve reliable electricity supply is a non-trivial problem. To use solar and 
wind energy resources more efficiently and economically, the optimal sizing of 
hybrid PV/wind systems is important [3]. One of the applications of a PV array 
and wind turbine is constructing a hybrid energy system PV/wind for use in 
commercial buildings. The feasibility study of using hybrid energy systems has 
been an important subject of research around the world in recent years. For in-
stance, Amutha and Rajini (2015) investigated the economic, technical and envi-
ronmental performance of various hybrid power systems for powering a remote 
telecom [4]. They concluded that replacing the present arrangement of the diesel 
power telecom system with their proposed SPV/Wind or SPV/Wind/FC was not 
just economically justifiable, but also its environment-friendly nature makes it 
an attractive option to supplement the energy supply from other sources. Nafeh 
(2011) attempted to size an optimal PV-wind hybrid system by minimizing the 
total cost of the proposed hybrid energy system and maintaining the loss of 
power supply probability (LPSP) of the system less than a certain fixed value [5]. 
Dursun et al. (2013) investigated the possibility of obtaining electricity from so-
lar/wind hybrid systems in the remote Turkish city of Edirne. He attempted to 
decrease the high cost of operating a standalone diesel system and achieve a sub-
stantial amount of fuel saving [6]. 

Ensuring energy security and energy resources used in this country in the fu-
ture need to be diversified. Also, to ensure the continuity of supply, an energy 
mix needs to be rationalized by considering important factors, such as the eco-
nomic cost, environmental impact, reliability of supplies and convenience to 
consumers. The hybrid renewable power generation is a system aimed at the 
production and utilization of the electrical energy stemming from more than 
one source, provided that at least one of them is renewable.  

To evaluate the development of the wind-solar hybrid power generation sys-
tems in Libya solar energy and wind energy potentials are investigated at geo-
graphically locations by collecting data from different sources. Then, selected 
locations were analyzed using a software tool, the HOMER (Hybrid Optimiza-
tion Model for Electric Renewable). This software is a micro-power optimization 
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model for both off-grid and grid connected power systems for a variety of appli-
cations. Wind-solar hybrid systems have numerous advantages [7] [8]. One of 
the advantages is reliability. When solar and wind power production resources 
are used together, the reliability is improved and the system energy service is 
enhanced. What this mean is that in the absence of one type of energy, another 
would be available to carry out the service. Other advantages are the stability and 
lower maintenance requirements; thus reducing downtime during repairs or 
routine maintenance. In addition, being indigenous and free, renewable energy 
resources contribute to the reduction of pollution emissions. 

2. MARJU Hybrid Power Generation System   

A design of a low cost power system that combines both wind electric and solar 
electric technologies is described in this paper. This hybrid system was designed 
to deliver 0.25 M Watts of continuous power to Al-Marj University (MARJU) to 
power a wide range of appliances and lower the consumption of the university 
that provided by the Libyan General Electric Company (Table 1). The system 
was composed of a wind generator, a solar panel, and an inverter. The solar pan-
el and wind turbine work in tandem. An inverter was used to convert DC power 
into AC power suitable for domestic use.  

3. Designing and Modeling of Hybrid System with HOMER 

The Hybrid Optimization Model for Electric Renewable (HOMER), which is 
copyrighted by the Midwest Research Institute (MRI), is a computer model de-
veloped by the US National Renewable Energy Laboratory (NREL) to assist in 
the design of power systems and facilitate the comparison of power generation 
technologies across a wide range of applications (HOMER, ver.2.81 Beta).  
 
Table 1. MARJU consumption [15]. 

Consumption  
per hour (MWH) 

Average day  
consumption 

(MWH) 

Total month  
consumption 

(MWH) 
Date 

0.240 1.92 57.6 Jan 

0.230 1.84 51.52 Feb 

0.210 1.68 50.40 Mar 

0.195 1.56 46.8 Apr 

0.205 1.64 47.56 May 

0.235 1.88 56.40 Jun 

0.240 1.92 57.6 Jul 

0.245 1.96 58.8 Aug 

0.210 1.68 50.4 Sep 

0.225 1.8 54 Oct 

0.250 2 60 Nov 

0.240 1.92 57.6 Dec 
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HOMER is used to model a power systems physical behavior and its life-cycle 
cost, which is the total cost of installing and operating the system over its life 
time. HOMER performs three principal tasks: simulation, optimization and a 
sensitivity analysis based on the raw input data given by user. In the simulation 
process, the performance of a particular power system configuration for each 
hour of the year was modeled to determine its technical feasibility and lifecycle 
cost. HOMER can simulate a wide variety of power system configurations, com-
prising any combinations of PV array, wind turbines, run-off-river hydro tur-
bines, generators and battery bank systems with grid connection or off-grid sys-
tems that can serve electrical and thermal loads. The simulation process serves 
two purposes. First, it determines whether the system is feasible. Second, it esti-
mates the lifecycle cost of system, which is the total cost of installing and oper-
ating the system over its lifetime [9] [10]. 

3.1. Location Selection  

The objective of the paper was to design and model a grid-connected wind-solar 
hybrid power generation system to meet a certain part of the load requirement 
of a local grid. As discussed in earlier, the Wind and Solar potential of different 
geographical locations were studied through literature searches and the detail 
analysis of identified locations (University of Al-Marj, Libya) was carried out as 
shown in Figure 1. 

3.2. Wind and Solar Hybrid Power System Configuration 

The grid connected wind solar hybrid system consisted of a local grid, PV arrays, 
wind turbines and inverters. The HOMER software was used as a tool to carry 
out the analysis. Figure 2 shows the configuration of the grid connected hybrid 
power system. HOMER requires input information in order to analyze a system. 
Those inputs are described in detail below. 

3.2.1. Wind Resource 
Hourly measured wind speed data from the NASA surface meteorology and so-
lar energy database at 10 m height was used as the wind resource input data.  
 

 
Figure 1. Geographical map of area (Proposed location for wind-solar hybrid power 
plant). 
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Figure 2. Configuration of grid connected hybrid 
wind-solar system in HOMER. 

 
Figure 3 illustrates the monthly averaged wind speed data that was obtained. 
The average wind speed ranges from 4.4 m/s to 8.1 m/s with an annual average 
of 6.69 m/s. 

3.2.2. Solar Radiation  
The solar resource data gives the amount of global solar radiation that strikes 
earth surface in a typical year. The measured hourly average solar radiation on 
NASA surface meteorology and solar energy database was used as solar resource 
input data. The latitude was 32˚29' and the longitude was 20˚50' for this location. 
The average solar radiation ranges from 2.6 kWh/m2/day to 7.9 kWh/m2/day 
with an annual average of 5.4 kWh/m2/day. The average clearness index is 0.56. 
The monthly average solar radiation and clearness index are shown in Figure 4 
[11]. 

3.2.3. Wind Turbine 
A wind turbine is a device that converts the kinetic energy of the wind into AC 
or DC electricity. Several wind turbine manufactures, such as Vestas, RE power, 
Gamesa, Siemens, GE Wind Energy, Enercon, etc. were evaluated for use in this 
model. The size of the turbine model to be used within a project was based on 
available wind turbine models, the wind resource at the site, and the ability to 
perform maintenance. The wind profile and wind speeds at each specific site 
were evaluated to identify which turbine was suitable for the particular site con-
ditions. As the wind turbine itself may be as much as 70% of the total project 
cost it was vital that it produced the optimal electricity for the given site [12]. 

The most suitable wind turbine for the proposed plant was selected by consi-
dering wind power density, average wind speed and power requirement of the 
site. The wind turbine with a rated power of 150 kW was chosen for the design 
in order to harness the low wind speed efficiently. Figure 5 shows the power 
curve of the selected wind turbine, a Generic 10 KW. The Technical characteris-
tics of Generic 10 KW are given in Table 2. 
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Figure 3. Monthly average wind speed data. 
 

 
Figure 4. Monthly averaged solar radiation and clearness index. 
 

 
Figure 5. Power curve of generic 10 KW wind turbine. 
 
Table 2. Generic 10 KW wind turbine specification. 

Rated power 100 KW 

Start up wind speed 3 m/s 

Rated wind speed 12 m/s 

Cut out wind speed 21 m/s 

Tower height 50 m 

Rotor diameter 22 m 

Swept area 2300 m2 

Power regulation Pitch regulated with variable speed 
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The installed costs in 2010 for onshore wind farms typically ranged between 
$1800/kW and $2200/kW in most major markets. Wind turbines account for 
64% to 84% of total installed costs onshore, with grid connection costs, con-
struction costs, and other costs making up the balance. Off-shore wind farms are 
more expensive and cost $4000 to $4500/kW, with the wind turbines accounting 
for 44% to 50% of the total cost [13]. Modern wind turbines are designed to 
work for 120,000 hours throughout their estimated lifespan of 25 years. The life 
time of the wind turbine considered in this study was assumed to be 25 years. 
The estimated maintenance costs for modern machines are in the range of 1.5% 
to 2% of the original investment per annum [14]. Using these values, a 100 KW 
power plant capital cost will be $1.3 million and the expected O&M cost for the 
same power plant was $15,000 per year. 

3.2.4. Photovoltaic Arrays 
The Sunpower x21-335-BLK solar module was selected for the design which has 
a life time of 25 years with a 21% efficiency. The electrical characteristics of the 
Sunpower x21-335-BLK are given in Table 3. The assumed installation cost of 
the 150 KW PV array system was $5.6 million with operational and maintenance 
cost at 1% of total investment cost. The duration factor was 80% for a lifetime of 
25 years. 

3.2.5. Converter 
A converter is a device that converts electric power from DC to AC in a process 
called inversion, and/or converting from AC to DC is a process called rectifica-
tion. The converter size, which is a decision variable, refers to the inverter ca-
pacity, meaning the maximum amount of AC power that the device can produce 
by inverting DC power. The rectifier capacity, which is the maximum amount of 
DC power that the device can produce by rectifying AC power as a percentage of 
the inverter capacity, has been specified. The final physical properties of the 
converter are its inversion and rectification efficiencies, which were assumed to 
be constant. The inverter and rectifier efficiencies were assumed to be 90% and 
85% for this study. The inverter capacity size was selected as 10 kW at a cost of 
$0.30 million and inverter lifetime of 15 years. Operating and maintenance cost  
 
Table 3. Electrical characteristics of Sunpower x21-335-BLK solar module. 

Maximum Power 335 W 

Type of Cell Polycrystalline Silicon 

Cell Configuration 72 in Series 

Open Circuit Voltage Voc 45.1 V 

Maximum Power Voltage Vpm 35.2 V 

Short Circuit Current Isc 8.94 A 

Maximum Power Current Ipm 8.52 A 

Module Efficiency 21% 

Maximum System Voltage (DC) 1000 V 

Dimensions 994 × 1971 × 46 mm 
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was assumed to be 1% of the inverter cost. 

4. Results and Discussions 

In this Section, the results of the designed wind-solar hybrid power generation 
system are presented and the conclusions from the findings are given. 

4.1. Results Analysis 
4.1.1. Simulation 
HOMER simulates the operation of a system by making energy balance calcula-
tions in each hourly time step of the year. For each time step, HOMER compares 
the electric demand in that time step to the energy that the system can supply in 
that time step. Then, it calculates the flow of energy to and from each compo-
nent of the system. HOMER performs these energy balance calculations for each 
system configurations that were considered. It then determines whether a con-
figuration is feasible, i.e., whether it can meet the electric demand under the spe-
cified conditions, and estimates the cost of installing and operating the system 
over the lifetime of the project. The number of installed 100 kW wind turbines 
was varied from 0 to 10 and the PV modules and converter sizes varied between 
0 - 150 kW for the proposed system. 

4.1.2. Optimization 
After simulating all of the possible system configurations, HOMER displayed a 
list of configurations sorted by net present cost (NPC), i.e. lifecycle cost, which 
can be used to compare the different system design options. The NPC of a com-
ponent is the net present value of all the costs of installing and operating that 
component over the project lifetime, minus the present value of all the revenues 
that it earns over the project lifetime. HOMER calculates the NPC of each com-
ponent in the system, and of the system as a whole. Figure 6 shows the categorized  
 

 
Figure 6. Categorized HOMER optimization results. 
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HOMER optimization results. In each category of a different design type it 
shows only the lowest NPC configuration. In Figure 7 the overall HOMER op-
timization results are presented. 

Figure 7 shows that the 100 kW wind turbine and a 150 kW PV module with 
a 10 kW converter give the cheapest configuration. This configuration has a 
COE of 0.2 $/kWh and NPC value of $59,305,207. Figure 8 shows the monthly 
average power production of the selected hybrid system. 
 

 
Figure 7. Overall HOMER optimization results. 

 

 
Figure 8. Monthly average power production of the wind-solar hybrid system. 
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The total annual power generation from the hybrid system was 0.427 GWh, 
where the solar contributed 0.27 GWh (28%) and 0.15 GWh (15%) was obtained 
from the wind. Annual generation details obtained from HOMER are given in 
Table 4. 

Annual PV Output Variation and Wind Turbine Variation are shown in Fig-
ure 9 and Figure 10, respectively. 

4.1.3. Financial Evaluation 
The financial feasibility of the project was examined using the simple payback 
method, in which the payback period was the time it takes for the return on the 
investment to re-pay the sum of the original investment. The original investment 
in this context was the sum of all investments that are related to the purchasing 
and installation of wind-solar hybrid system. The return was the income generated  
 
Table 4. Annual generation details of the proposed hybrid system. 

Quantity Units PV Array Wind Turbines 

Rated capacity Kw 150 100 (10 × 10) 

Mean output Kw 31.4 17.4 

Maximum output Kw 157 100 

Total production kWh/yr 275,147 152,721 

Hours of operation hr/yr 4357 6916 

Capacity factor % 20.9 17 

 

 
Figure 9. Annual PV output variation. 
 

 
Figure 10. Annual wind turbine output variation. 
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by sale of electricity, reduced by the cost of operation and maintenance. Figure 
11 shows the cost and income distributed over the lifetime of the project. 

Total generation capacity of the design plant = 0.427 GWh/year. 
Initial investment = $5.6 million.  
Simple payback period = 2.6 years.  
Internal Rate of Return (IRR) = 38.2%. 
The hybrid model gave a simple recovery period of no more than 2.6 years. 

Given that the typical wind turbine and solar photovoltaic group has an eco-
nomic life of up to 25 years, this indicates that an investment will certainly be 
profitable for the local conditions identified for the renewable energy resources 
and the very high costs of generating fossil fuel. 

5. Environmental Impact 

Wind or solar power cannot be the sole source of electricity in a stable base-load 
grid, but they can reduce the use of conventional energy sources. The environ-
mental benefits of the wind-solar hybrid system in this study were assessed in 
terms of avoided emissions. Given that a conventional thermal power plant 
emits a certain amount of pollutant per kWh of generated electricity, the 
wind-solar hybrid system can be considered to cause an avoidance of emissions, 
since it generates the electricity with nearly zero pollutant emissions. Although 
there are many types of emissions related to electricity production, CO2, sulfur 
dioxide and nitrogen oxides emissions were considered. CO2 was the largest 
component of the emissions from a conventional electricity production plant 
and may be considered as the greatest environmental impact caused by the  
 

 
Figure 11. Cost and income distributed over the lifetime of the project. 
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power industry. The amount of CO2 produced by conventional diesel fuel is 0.6 
kg for 1 kWh. Hence, the reduction of CO2 from energy saving of 0.427 GWh 
would be 331 tons/y, and 1.5 - 0.74 tons/y annually for sulfur dioxide and nitro-
gen oxides emissions.  

6. Conclusion 

There exists a worldwide concern regarding the energy security and sustainable 
development of energy across the globe. The role of renewable energy has there-
fore become more significant. The developed world is already on track for re-
ducing the fossil fuel usage and developing the areas of renewable energy tech-
nologies. Through this study, an insight into the energy situation and renewable 
energy potential of Libya was given. It was identified that Libya has an econom-
ically feasible power generation potential of wind and solar energy. Using the 
HOMER simulation code, a grid-tied wind-solar hybrid power generation sys-
tem was modeled for a selected location in the Al-Marj’s area of Libya (MARJU), 
located on the coastal belt near Benghazi. Through the simulation process, the 
installation of ten 100 kW wind turbines and 150 kw solar PV arrays was identi-
fied as a most feasible economical design to supply average load connected to 
grid where payback period of the design was 2.6 years. 
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